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Abstract
Continuous processing of a streaming graph maintains an
approximate result of the iterative computation on a recent
version of the graph. Upon a user query, the accurate result
on the current graph can be quickly computed by feeding the
approximate results to the iterative computation — a form of
incremental computation that corrects the (small amount of)
error in the approximate result. Despite the effectiveness of
this approach in processing growing graphs, it is generally
not applicable when edge deletions are present — existing ap-
proximations can lead to either incorrect results (e.g., mono-
tonic computations terminate at an incorrect minima/maxima)
or poor performance (e.g., with approximations, convergence
takes longer than performing the computation from scratch).

This paper presents KickStarter, a runtime technique that
can trim the approximate values for a subset of vertices
impacted by the deleted edges. The trimmed approximation is
both safe and profitable, enabling the computation to produce
correct results and converge quickly. KickStarter works for
a class of monotonic graph algorithms and can be readily
incorporated in any existing streaming graph system. Our
experiments with four streaming algorithms on five large
graphs demonstrate that trimming not only produces correct
results but also accelerates these algorithms by 8.5–23.7×.

Categories and Subject Descriptors C.2.4 [Distributed
Systems]: Distributed applications; D.4.7 [Organization and
Design]: Distributed systems; H.3.4 [Systems and Software]:
Distributed systems

General Terms Language, Measurements, Performance

Keywords Graph Processing, Value Dependence, Stream-
ing Graphs
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1. Introduction
Real-world graphs that are constantly changing are often
referred to as streaming graphs. Their examples include social
networks and maps with real-time traffic information. To
provide timely responses to online data analytic queries, these
graphs are continuously processed via incremental algorithms
as they change. The need to analyze streaming graphs has
led to the development of systems such as Tornado [32],
Kineograph [8], Stinger [12], Naiad [23], and others.

The core idea of these systems is to interleave iterative
processing with the application of batches of updates to the
graph. The iterative processing maintains an intermediate ap-
proximate result (intermediate for short) of the computation
on the most recent version of the graph. When a query arrives,
the accurate result for the current version of the graph where
all batched updates have been applied is obtained by perform-
ing iterative computation starting at the intermediate results.
In other words, computations at the vertices with edge up-
dates are performed directly on their most recent intermediate
values computed before the updates arrive.

This style of processing leverages incremental computa-
tion to achieve efficiency. The intuition behind it is straightfor-
ward: the values right before the updates are a better (closer)
approximation of the actual results than the initial vertex
values and, hence, it is quicker to reach convergence if the
computation starts from the approximate values.

Problems However, the above intuition has an implicit as-
sumption that is often overlooked: an intermediate value of a
vertex is indeed closer to the actual result than the initial value
even when the graph mutates. We observe that this assump-
tion always holds for strictly growing graphs if the graph
algorithm performs a monotonic computation (e.g., SSSP,
BFS, Clique, label propagation algorithms, etc.), because
adding new edges preserves the existing graph structure on
which intermediate values were computed. However, if graph
is mutated via edge deletions, the graph structure changes
may break monotonicity and invalidate the intermediate val-
ues being maintained.

It is not uncommon for real streaming graphs to have both
edge additions and deletions. For example, analytics such
as product recommendation or influential user tracking over
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Figure 1: Three different scenarios w.r.t. the use of
intermediate values after an edge update.

social network graphs [8, 18] are typically performed over
sliding windows of graph states, which may involve both
addition and deletion of several edges. As another example,
spatial-temporal road networks have time-dependent edge
weights. Changing weight on an edge is typically modeled as
an edge deletion followed by addition of the same edge with
a different weight [9, 19]. How to correctly and efficiently
process graphs in the presence of constant edge deletions is
an important problem that none of the existing techniques
have addressed.

Figure 1 depicts three scenarios w.r.t. the use of approxi-
mate results in the processing of streaming graphs. Since we
focus on monotonic graph algorithms, each spectrum shows
the unidirectional change of vertex values. Let us examine
how the computation is impacted by the use of intermediate
values. In Figure 1(a), the intermediate result is between the
initial value and the final accurate result. This scenario is a
valid use of intermediate result because it is closer to the final
result than the initial value. Performing monotonic computa-
tions on a strictly growing graph falls in this category.

Figure 1(b), however, shows an opposite scenario where
the final result is between the initial and the intermediate
values. An edge deletion may fall into this category. To il-
lustrate this situation, consider a path discovery algorithm
where the intermediate path computed before the deletion
(i.e., intermediate result) no longer exists and the new path
to be discovered (i.e., final result) is “worse” than the inter-
mediate path. If the algorithm only updates the vertex value
(i.e., path discovered) when a new “better” path is found, the
algorithm will stabilize at the non-existent old (better) path
and converge to an incorrect result.

Figure 1(c) shows a slightly different scenario than Fig-
ure 1(b) where the algorithm, despite being monotonic, is also
self-healing. In this case, the computation goes “backward”
after an edge deletion and finally stabilizes at the correct re-

sult. However, starting the computation at the intermediate
result is clearly unprofitable. It would have taken much less
effort to reach the correct result had the computation started
at the initial value after edge deletion. Detailed examples
illustrating these cases will be presented in §2.

It may appear that the problem can be solved by always
resetting the value of a vertex to its initial value at the
moment one of its incoming edges is deleted and making
its computation start from scratch. This approach would still
lead to incorrect results because computations at many other
vertices are transitively dependent upon the deleted edge;
thus, only resetting the value at the deleted edge does not
handle these other vertices appropriately (cf. §2). Resetting
all vertex values solves the problem at the cost of completely
disabling incremental computation and its benefits.

Our Approach In this paper, we present a novel runtime
technique called KickStarter that computes a safe and prof-
itable approximation (i.e., trimmed approximation) for a
small set of vertices upon an edge deletion. KickStarter is the
first technique that can achieve safety and profitability for a
general class of monotonic graph algorithms, which compute
vertex values by performing selections (discussed shortly).
After an edge deletion, computation starting at the trimmed
approximation (1) produces correct results and (2) converges
at least at the same speed as that starting at the initial value.

The key idea behind KickStarter is to identify values that
are (directly or transitively) impacted by edge deletions and
adjust those values before they are fed to the subsequent
computation. A straightforward way to do so is to tag the
target vertices of the deleted edges and to carefully propagate
the tags to the rest of graph. The values for all the tagged
vertices are reset (to the initial value) to ensure correctness.

Although tagging guarantees correctness, it is performed
conservatively as it is unaware of how the intermediate results
are dynamically computed. Hence, it typically tags vertices
excessively, leaving only a small set of vertices with usable
approximate values. To overcome this drawback, KickStarter
characterizes the dependences among values being computed
and tracks them actively as the computation progresses.
However, tracking dependences online can be very expensive;
how to perform it efficiently is a significant challenge.

We overcome this challenge by making an observation on
monotonic algorithms. In many of these algorithms, the value
of a vertex is often selected from one single incoming edge,
that is, the vertex’s update function is essentially a selection
function that compares values from all of the incoming
edges (using max, min, or other types of comparisons) and
selects one of them as the computed value of the vertex. This
observation applies to all monotonic algorithms that we are
aware of, including the eight algorithms listed later in Table 1.
This feature indicates that the current value of a vertex only
depends on the value of one single in-neighbor, resulting in
simpler dependences that can be efficiently tracked.
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Figure 2: Streaming graph processing.

Upon an edge deletion, the above dependence information
will be used first to find a small set of vertices impacted by
the deleted edges. It will also be used to compute safe ap-
proximate values for these vertices. The detailed explanation
of the dependence tracking and the trimming process can
be found in §3. We have evaluated KickStarter using four
monotonic algorithms and five large real-world graphs. Our
results show that KickStarter not only produces correct re-
sults, but also accelerates existing processing algorithms such
as Tornado [32] by 8.5–23.7×.

2. Background and Motivation
Background In a typical streaming iterative graph process-
ing system such as Tornado [32], the implementation employs
a main loop that continuously and iteratively processes the
changing graph to compute intermediate results for the most
recent snapshot of the graph. Figure 2 illustrates this pro-
cessing loop. While graph update requests constantly flow
in, updates are batched (∆Si) and not applied until the end
of an iteration. Upon a user query (for a certain property of
the graph), the main loop forks a branch loop that uses the
intermediate values computed at the end of the previous com-
pleted iteration of the main loop (e.g., σ3 in Figure 2) as its
starting values. The branch loop then iteratively processes the
graph until the computation converges. The final results are
then returned to the user.

2.1 Problem 1: Incorrectness
We use a Single Source Widest Path (SSWP) example to
show that naı̈vely using the above algorithm in presence of
edge deletions can lead to incorrect results. SSWP solves the
problem of finding a path between the designated source ver-
tex and every other vertex in a weighted graph, maximizing
the weight of the minimum-weight edge in the path. It has
many applications in network routing where the weight of an
edge represents the bandwidth of a connection between two
routers. The algorithm can be used to find an end-to-end path
between two Internet nodes that has the maximum possible
bandwidth.

1: function SSWP(Vertex v)
2: maxPath← 0
3: for e ∈ INEDGES(v) do
4: p← MIN(e.src.path,
5: e.weight)
6: if p > maxPath then
7: maxPath ← p
8: end if
9: end for

10: v .path ← maxPath
11: end function

1: function SSSP(Vertex v)
2: minPath ←∞
3: for e ∈ INEDGES(v) do
4: p← e.src.path+
5: e.weight
6: if p < minPath then
7: minPath ← p
8: end if
9: end for

10: v .path ← minPath
11: end function

(a) Single source widest path. (b) Single source shortest path.

Figure 3: Two path discovery algorithms.

Figure 3(a) illustrates a vertex-centric implementation
of SSWP. Next, we show that, for the simple graph given
in Figure 4(a), feeding the computation with either the
intermediate value or the initial value in presence of deletion
of edge A → D generates incorrect results. Figure 4(b)
reports the value of each vertex before and after deletion when
the approximate value is used (i.e., 20) for vertex D. Before
the edge update, A → D is the key edge that contributes
to the value 20 at D and G. After it is deleted, G and E
become the only in-neighbors of D. Since G’s value is still
20, D’s value is not updated; so are the values of the other
vertices. The computation stabilizes at the pre-deletion values,
generating incorrect results.

Figure 4(c) shows that resetting the value ofD to its initial
value 0 does not solve the problem either. Clearly, despite
the change, D’s value will be incorrectly updated back due
to the influence from G. The reason behind these problems
is that the three vertices B, D, and G form a cycle and the
computation of their values depends on each other. Only
settingD’s value is not enough to correct the wrong influence
from the other nodes.

Precisely, for a given widest path u→ v, the vertex func-
tion maintains the invariant that v .path ≤ u.path . Hence, for
a cycle v → w → ...→ k → v in the graph, the maintained
invariant is k.path ≤ ... ≤ w.path ≤ v.path. Suppose the
actual solution for this entire path is u.path = v .path =
w .path = k .path = m. When the edge u→ v is deleted, the
vertex function computes a new value for v using its remain-
ing incoming edges, one of which is k → v. At this point, v
would still receive value m from edge k → v. If m is greater
than the values coming from v’s other in-neighbors, v .path
will still be set to m. This is incorrect since the value m of
vertex k was originally computed from the value of v itself.

Similar incorrect behaviors can be observed for Connect-
edComponents (CC) (see Table 3) — if there is a cycle, all
vertices in the cycle can end up having the same component
ID which would create wrong influence after edge deletions.

Motivation from Real Graphs Figure 5 shows the numbers
of vertices that have wrong values in the query results for
SSWP and CC on the LiveJournal and UKDomain graphs
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(see Table 2 for details of the graphs). Edge updates are
batched in our experiments. At the end of each batch, we
send a query that asks for the values of all vertices in the new
version of the graph obtained by applying the current batch
of edge updates. The details of the experiment setup can be
found in §4.

The vertices that have wrong results are identified by
using the results of KickStarter as an oracle. Observe that
the number of such vertices is noticeably high. Furthermore,
the inaccuracies for each batch are carried over into the main
processing loop, affecting future query results – this can
be seen from the fact that there are increasing numbers of
vertices with wrong values as more queries (batches) are
performed (processed).
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Figure 5: Numbers of vertices with incorrect results.

2.2 Problem 2: Degraded Performance
Consider the SSSP algorithm in Figure 3(b). While this al-
gorithm produces the correct result, it would have severe
performance problem if the approximate value is used upon
the deletion of edgeA→ B in the graph shown in Figure 6(a).
The deletion of the edge renders the vertices B and C dis-
connected from the rest of the graph. Using the intermediate
values 6 and 8 for the forward computation would bump up
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these values at each iteration (Figure 6(b)); the process would
take a large number of iterations to reach the final (correct)
result (MAX). This is exactly an example of the scenario in
Figure 1(c).

2.3 How to Distinguish Algorithms
The above examples showed two types of monotonic algo-
rithms, those that may produce incorrect results and others
that produce correct results but may have significantly de-
graded performance in the presence of edge deletions. While
the problems in both types are caused by cycles in the graph,
different algorithm implementations may lead to different
consequences (i.e., incorrectness vs. performance degrada-
tion). We observe that the key difference between them is in
their vertex update functions. In the first type of algorithms
such as SSWP, the update function only performs value se-
lection (i.e., no computation on the value is done). Hence,
when a cycle is processed, there is a potential for a value
being propagated along the cycle without being modified and
eventually coming back and inappropriately influencing the
vertex that loses an edge, producing incorrect results.



The update function of the second type of algorithms
performs computation on the selected value. For example,
SSSP first selects a value from an in-neighbor and then adds
the edge weight to the value. The addition ensures that when
a value is propagated along the cycle, it appears as a different
value at the vertex via which the original value had entered
the cycle. In this case, the vertex function disallows cyclic
propagation and hence, upon deletion, it becomes impossible
for the algorithm to stabilize at a wrong value. To summarize,
whether the update function of an algorithm contains actual
computation can be used as a general guideline to reason
about whether the algorithm can produce incorrect values or
would only cause performance problems.

2.4 Correcting Approximations using KickStarter
For both the correctness and performance issues, KickStarter
trims the approximation such that correct results can be
computed efficiently. For our SSWP example, KickStarter
generates A(∞) B(5) C(10) D(0) E(5) F(7) G(5)
using which, it would take the computation only one iteration
to converge at the correct results. Similarly, for our SSSP
example, KickStarter generates A(5) B(MAX) C(MAX) which
is exactly the correct result. The detailed trimming algorithm
will be presented in §3.

3. Trimming Approximations
This section describes KickStarter’s trimming techniques. We
begin with an overview and then discuss the algorithm.

3.1 KickStarter Overview
Given a graph G = (V,E), let an approximation AG =
a0, a1, ..., an−1 be a set of values for all vertices in V , i.e.,
∀ai ∈ AG, ai is the value for vertex vi ∈ V and |A| = |V |.
For an iterative streaming algorithm S, a recoverable approx-
imation AS

G is an approximation with which the final correct
solution on G can be computed by S. A simple example of a
recoverable approximation is the set of initial vertex values,
i.e., values at the beginning of the processing. Note that due
to the asynchronous nature of streaming algorithms, at any
point during the computation, multiple recoverable approxi-
mations may exist, each corresponding to a distinct execution
path leading to the convergence with the same correct result.

KickStarter Workflow For monotonic streaming algorithms
(e.g., SSWP), the approximation maintained in the presence
of edge additions is always recoverable. Hence, upon a query,
running the computation on the updated graph with the ap-
proximation before the edge addition always generates the
correct result. However, when edge deletion occurs, the ap-
proximation before a deletion point may be irrecoverable.
Thus, to generate a recoverable approximation, we add a trim-
ming phase right after the execution is forked (i.e., the branch
loop in Figure 2) for answering a user query. In this phase,
the current approximation from the main loop is trimmed by

identifying and adjusting unsafe vertex values. The trimmed
approximation is then fed to the forked execution.

After the query is answered, the result from the branch
loop is fed back to the main loop as a new approximation to
accelerate the answering of subsequent queries.

Technique Overview KickStarter supports two methods for
trimming. The first method identifies the set of vertices s pos-
sibly affected by an edge deletion using a tagging mechanism
that also exploits algorithmic insights. For the vertices in s,
their approximate values are trimmed off and reset to the ini-
tial values (e.g., a large value for SSSP and 0 for SSWP). This
method guarantees safety by conservatively tagging values
that may have been affected. However, conservative trimming
makes the resulting approximation less profitable.

In the second method, KickStarter tracks dynamic de-
pendences among vertices (i.e., the value of which vertex
contributes to the computation of the value of a given vertex)
online as the computation occurs. While tracking incurs run-
time overhead, it leads to the identification of a much smaller
and thus a more precise set of affected vertices s. Further-
more, because the majority of vertices are unaffected by edge
deletions and their approximate values are still valid, trim-
ming uses these values to compute a set of safe and profitable
approximate values that are closer to the final values for the
vertices in s.

Our presentation proceeds in following steps: §3.2 presents
the first approach where trimming is performed by tag prop-
agation; §3.3 presents the second approach where dynamic
value dependences are captured and trimming is performed
by calculating new approximate values for the affected ver-
tices. An argument of safety and profitability is provided in
§3.5.

3.2 Trimming via Tagging + Resetting
A simple way to identify the set of impacted vertices is vertex
tagging. This can be easily done as follows: upon a deletion,
the target vertex of the deleted edge is tagged using a set bit.
This tag can be iteratively propagated — when an edge is
processed, KickStarter tags the target of the edge if its source
is tagged. The value of each tagged vertex is set back to its
initial value in the branch loop execution.

While tagging captures the transitive impact of the deleted
edge, it may tag many more vertices than is necessary. Their
values all need to be reset (i.e., the computation done at these
vertices is not reused at all), although the approximate values
for many of them may still be valid. To illustrate, consider the
example in Figure 4. Upon the deletion of edge A→ D, this
approach will tag all the vertices in the graph, even though
approximate values for at least C and F are valid.

To further reduce the number of tagged vertices, Kick-
Starter relies on algorithmic insights to carefully propagate
the tag across the vertices. The intuition here is to tag a vertex
only if any of its in-neighbors that actually contributes to its
current value is tagged. Since determining where the contri-



bution comes from requires understanding of the algorithm
itself, the developer can expose this information by provid-
ing a vertex-centric propagation function. For example, the
following function determines how to tag vertices in SSWP:

tag(v) ←
∨

e∈inEdges(v)s.t.
min(e.weight,e.source.value)=v.value

tag(e.source) (1)

Our insight is that in a typical monotonic algorithm, the
value of a vertex is often computed from a single incoming
edge. That is, only one incoming edge offers contributions to
the vertex value. For example, in SSSP, the value of a vertex
depends only on the smallest edge value. This observation
holds for all monotonic graph algorithms that we are aware of,
including the seven listed in Table 1. For these algorithms, the
computation is essentially a selection function that computes
the vertex value by selecting single edge value.

Algorithms Selection Func.
Reachability or()
ShortestPath, ConnectedComponents,

min()MinimalSpanningTree, BFS,
FacilityLocation
WidestPath max()

Table 1: Monotonic algorithms & their aggregation functions.

At the moment tagging is performed, an edge deletion
has already occurred and all its impacted values have already
been computed. Here we want to understand which edge
contributes to the value of a vertex. The propagation function
essentially encodes a “dynamic test” that checks “backward”
whether applying the selection on a particular edge can lead to
the value. However, since it is a backward process (e.g., that
guesses the input from the output), there might be multiple
edges that pass this test. To guarantee safety, if the source of
any of these edges is tagged, the vertex needs to be tagged.
This is reflected by the ∨ (or) operator in Eq. 1.

Use of this technique in our example no longer tags
vertices A and C. However, while propagation functions
reduce the number of tagged vertices, tagging is still a
“passive” technique that is not performed until a deletion
occurs. This passive nature of tagging dictates that we must
reset values for all the tagged vertices although many of
them have valid approximate values at the time of tagging
— KickStarter cannot determine safe approximate values for
these vertices during tagging. For example, in Figure 4, even
though vertex F has the correct approximate value 7, it gets
tagged and then its value has to be reset to 0. In fact, F
receives the same value from two different paths: A → C
→ F and A→ D→ E → F . Tagging does not distinguish
these paths and hence, it ends up marking F regardless of the
path the tag comes from.

Next, we discuss an alternative mechanism that actively
captures the “which neighbor contributes to a vertex value”
relationships, making it possible for us to compute safe
approximate values for the impacted vertices.

3.3 Trimming via Active Value Dependence Tracking
In this approach we employ active, “always-on” dependence
tracking, regardless when and where edge deletions occur.
Through the recorded dependences, we can precisely identify
the vertices impacted by a deleted edge. More importantly, the
captured dependences form a data slice, following which safe
approximate values can be computed. In contrast, tagging was
not active but rather turned on only when a deletion occurred
and thus it cannot compute approximate values.

3.3.1 Value Dependence
We first formalize a contributes-to relation (7→) to capture
the essence of this type of value dependences. Given two
vertices u and v, u 7→ v if there is an edge from u to
v and u’s value individually contributes to the value of v.
A transitive closure 7→∗ over 7→ thus involves all transitive
contributes-to relationships. Based on 7→∗, we formalize a
leads-to relation ( LT−−→) to capture the desirable transitive
dependences as described above. For two vertices u and v,
u

LT−−→ v iff. (1) u 7→∗ v and (2) v 67→∗ u.
The second condition is important because it ensures that

computation of v is not based on vertices whose values
were computed using v’s previous values (i.e., a dependence
cycle). Our goal is to guarantee safety: if a safe approximate
value needs to be calculated for v upon an edge deletion, the
calculation must avoid the effects of v’s previous values by
not considering any incoming neighbor u such that v 7→∗ u.
It is actually a property of a monotonic graph algorithm
— to guarantee convergence, the algorithm often maintains
monotonicity invariants across different values of each vertex
and values of the neighbors. For example, computation in
SSSP has the invariant that if u 7→ v, then v’s value is no
smaller than u’s value. All the algorithms listed in Table 1
maintain such monotonicity invariants.

Note that the leads-to relation is a subset of the set of
normal flow data dependences. A flow dependence, induced
by a write followed by a read operating at the same location,
may or may not give rise to a leads-to relationship, since LT−−→
is defined at a high level over vertices of the graph.

While LT−−→ may be automatically computed by runtime
techniques such as dynamic slicing [49, 50], such techniques
are often prohibitively expensive, incurring runtime overhead
that causes a program to run hundreds of times slower. Since
graph algorithms are often simple in code logic, we leverage
the developer’s input to compute LT−−→. We design a simple
API contributesTo that allows the developer to expose
contribute-to (7→) relationships when writing the algorithm.
For example, for SSWP, the edge on which the vertex value
depends is the last edge that triggers the execution of Line 7
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Figure 7: (a) Dependence tree for Figure 4(a) before the edge
deletion; (b)-(d) trimming reorganizes the dependence tree.

in Figure 3(a). The developer can add an API call right after
that line to inform KickStarter of this new relationship which
led to computation of the new value.

Note that we only rely on the developer to specify di-
rect 7→ relationships, which incurs negligible manual effort.
The transitive closure computation is done automatically by
KickStarter. The freedom from dependence cycles is actually
provided by monotonicity.

Representing Leads-to Relation as Dependence Trees
As individual contributes-to relationships are profiled, these
relationships form a dependence graph D = (V D, ED),
which shares the same set of vertices as the original graph
G = (V,E). Each edge in D represents a 7→ relationship and
the edge set ED is a subset of E. We maintain one single
dependence graph across iterations. However, dependence
profiling is not accumulative — if a new value of a vertex is
computed and it results from a different in-neighbor, a new
dependence edge is added to replace the old dependence edge
for the vertex.

This dependence graph D encodes the LT−−→ relation and
has two crucial properties. (1) It is acyclic – this follows the
definition of leads-to relation which ensures that if there
is a directed path from u to v in D, then there must be
no directed path from v back to u in D. (2) Every vertex
v ∈ V D has at most one incoming edge, i.e., if u 7→ v, then
∀w ∈ V D \ {u}, w 67→ v. This can be derived from the fact
that the selection function only selects one edge to compute
the vertex value and the computation of a new value at the
vertex replaces the old dependence edge with a new edge.

The above properties imply that D is a set of dependence
trees. Figure 7(a) shows a simple dependence tree for the
SSWP algorithm in Figure 4 before the edge A → D is
deleted.

3.3.2 Computing New Approximate Values
Taking the set of dependence trees as input, KickStarter
computes new approximate values for the vertices that are
affected by deletions. First of all, KickStarter identifies the
set of vertices impacted by a deleted edge. This can be done
simply by finding the subtree rooted at the target vertex of
the deleted edge.

To compute values for profitability, KickStarter employs
three strategies: (1) it ignores deletions of edges which do
not have corresponding dependence edges in D. This is safe
because such edges did not contribute to the values of their
target vertices; (2) if a deleted edge does have a corresponding
dependence edge in D, KickStarter computes a safe alternate
value for its target vertex. While resetting the approximate
value of the vertex is also safe, KickStarter tries to compute a
better approximate value to maximize profitability; and (3)
once a safe alternate value is found for the vertex, KickStarter
may or may not continue trimming its immediate children
in D, depending on whether this new approximate value
disrupts monotonicity.

Since the first strategy is a straightforward approach, we
focus our discussion here on the second and third strategies.

Finding Safe Approximate Values Given a vertex affected
by a deletion, KickStarter finds an alternate approximate
value that is safe. Our key idea is to re-execute the update
function on the vertex to compute a new value, starting from
the target vertex of the deleted edge. One problem here is
that, as we have already seen in Figure 4, there may be cycles
(e.g., B, G, and D in Figure 4(a)) in the actual graph (not the
dependence graph) and, hence, certain in-neighbors of the
vertex may have their values computed from its own value.
This cyclic effect would make the re-execution still produce
wrong values.

To eliminate the affect of cycles, KickStarter re-executes
the update function at vertex v on a subset of its incoming
edges whose source vertices do not depend on v. More
precisely, we pass a set of edges e such that v 67→∗ e.src into
the update function to recompute v’s value. In Figure 4, after
A→ D is deleted, we first re-execute the SSWP function in
Figure 3(a) at vertex D. The function does not take any edge
as input — neither G→ D nor E → D is considered since
both the values of G and E depend on D in the dependence
tree shown in Figure 7(a). D’s value is then reset to 0.

Determining this subset of incoming edges for vertex
v can be done by performing a dependence tree traversal
starting at v and eliminating v’s incoming edges (on the
original graph) whose sources are reachable. However, such a
traversal can be expensive when the sub dependence tree
rooted at v is large. Hence, we develop an inexpensive
algorithm that conservatively estimates reachability using
the level information in the dependence trees.

For vertex v, let level(v) be the level of v in a dependence
tree. Each root vertex gets level 0. The tree structure dictates
that ∀w : v 7→∗ w, level(w) > level(v). Hence, as a



conservative estimation, we construct this subset of incoming
edges by selecting every edge such that the level of its source
vertex u is ≤ the level of v. This approach guarantees safety
because every in-neighbor w of v such that v 7→∗ w is
excluded from the set. It is also lightweight, as the level
information can be maintained on the fly as the tree is built.

When to Stop Trimming Once a safe value is found for
a vertex, KickStarter checks whether the value can disrupt
monotonicity. For example, if this value is higher (lower)
than the previous vertex value in a monotonically decreasing
(increasing) algorithm, the monotonicity of the current value
is disrupted, which can potentially disrupt the monotonicity
of its children vertices. In such a case, the resulting approx-
imation may not be recoverable yet because cycles in the
original graph can cause the effects of the previous value to
inappropriately impact the computation at the children ver-
tices. Hence, trimming also needs to be done for the children
vertices.

On the other hand, if the monotonicity for the current
vertex is not disrupted by the new value, the trimming process
can be safely terminated because the approximate value for
the current vertex is recoverable. Since the current vertex is
the only one that contributes to the values of its children
vertices, the values of the child vertices would become
recoverable during the forward graph computation. As an
example, for SSWP, if the old value for a vertex v is vold
and its new value is vnew, whether to continue the trimming
process can be determined by the following rule:

continue←

{
true ... if vnew < vold

false ... otherwise
(2)

Example As new approximate values are computed, the
dependence trees are adjusted to reflect the new dependences.
Figure 7(b)-(d) show how the structure of the dependence
tree in Figure 7(a) changes as trimming progresses. First, the
subset of incoming edges selected for D, referred to as Ds, is
an empty set, and hence,D’s value is reset to 0 (i.e., the initial
value) and D becomes a separate root itself (Figure 7(b))
because it does not depend on any other vertex. Since this
value is smaller than its old value (20), monotonicity is
disrupted and thus D’s immediate children, E and B, need
to be trimmed. Es consists of the incoming edges from C
and D. The re-execution of the update function gives E a
safe value 5, making E a child of C in the dependence tree
(Figure 7(c)). Similarly, Bs consists of the incoming edges
fromA andD.B then receives the safe value 5, making itself
a child of A in the tree (Figure 7(c)). Similarly, trimming
continues to G, which receives a safe approximate value 5
from B (Figure 7(d)).

Putting It All Together: The Parallel Trimming Algorithm
Trimming can be done in parallel on vertices since the compu-
tations involved in determining safe approximate values are
confined to a vertex and its immediate neighbors. Hence, trim-

Algorithm 1 Vertex-centric trimming algorithm.
1: function TRIM(Vertex v)
2: B Construct the subset of incoming edges
3: vs ← ∅
4: for e ∈ INCOMINGEDGES(v) do
5: if e.source.level ≤ v .level then
6: vs.insert(e)
7: end if
8: end for
9: incomingSet ← CONSTRUCTSUBSET(v .value, vs)

10:
11: B Find safe alternate value
12: v .newValue ← VERTEXFUNCTION(incomingSet)
13:
14: B Continue trimming if required
15: continueTrim ←
16: SHOULDPROPAGATE(v .value, v .newValue)
17: if continueTrim = true then
18: SCHEDULECHILDREN(v)
19: end if
20:
21: v .value ← v .newValue
22: v.UPDATE(incomingSet)
23: end function

ming itself can be expressed as vertex-centric computation
and performed on the same graph processing engine.

Algorithm 1 presents the overall vertex-centric trimming
algorithm. It first creates a subset of incoming edges (Lines
2-9) which can be used to generate a safe approximate value.
Then it executes the same vertex function used to perform the
actual graph computation to find a safe approximate value
(Line 12). Note that when this is done, the value dependence
exposed by the developer will be captured. Finally, the old and
new vertex values are used to determine whether trimming
should be done to the children of the vertex. The algorithm
requires algorithmic insights which are provided by the
developer using a comparator function (Line 15). Depending
upon the result of the function, the immediate children in
the dependence trees may or may not be scheduled to be
processed.

Since multiple deletions can be present in the same update
batch, trimming can be performed in such a way that it starts
from the highest level of the dependence tree and gradually
moves down, rather than starting at multiple deletion points
which may be at different tree levels. This way multiple
trimming flows get merged into a single flow.

3.4 Trimming for Performance
As shown in Figure 6, certain deletions can render the ap-
proximate values of the affected vertices far away from their
final results, causing the branch loop to take a long time to
converge. The trimming technique described in §3 is automat-
ically applicable in such cases to accelerate convergence. For
example, in the case of SSSP (Figure 6), since the algorithm
is monotonically decreasing, our dependence based trimming



will keep trimming vertices when their new values are larger
than their old values. In Figure 6 (a), after A→ B is deleted,
B’s value is reset to MAX since the subset of incoming edges
used to reexecute the update function at B is empty because
C depends on B and thus C → B is not considered. This sig-
nificantly accelerates computation since C’s value can only
be set to MAX as well (due to the influence from B).

3.5 Safety and Profitability Arguments
Safety It is straightforward to see that tagging + resetting
provides safety because it resets vertex values conservatively.
For the dependence-based trimming, as long as the developer
appropriately inserts the dependence-tracking API call into
the program, all value dependences will be correctly recorded.
For monotonic algorithms that use one single incoming
edge to compute the value of a vertex, these dependence
relationships yield a set of dependence trees. When an edge is
deleted, the subtree rooted at the target vertex of the deleted
edge thus includes a complete set of vertices that are directly
or transitively impacted by the deleted edge. Given this set
of impacted vertices, we next show that trimming produces a
safe (recoverable) approximation.

Theorem 3.1. Trimming based on value dependence trees
produces a safe approximation.

Proof. We prove the safety of our trimming process by
analyzing the set of values used for computing the new
approximations and showing that these values themselves
are not unsafe approximations, that is, they are not over-
approximations for monotonic increasing algorithms and
under-approximations for monotonic decreasing algorithms.
Let us consider the deletion of an edge a→ b, which triggers
the trimming process. We prove the theorem by contradiction.
Suppose the approximation produced by trimming is unsafe
and let v be the vertex whose approximate value becomes
unsafe after trimming is performed. If we were to back-track
how the unsafe approximation got computed during trimming,
there must be an earliest point at which an unsafe value was
introduced and propagated subsequently to v. Let c be such an
earliest vertex. Since c’s value was safe prior to the deletion
of a→ b but it became unsafe afterwards, c is dependent on
a→ b. This means b LT−−→ c, and now, c LT−−→ v.

In this case, prior to the edge deletion, the dependence
relationship b LT−−→ c must have been captured. When the
deletion occurs, the trimming process considers the entire
subtree rooted at b in the collected dependence trees, which
includes the path from b to c. Our algorithm computes a
new value for c if its predecessor’s value changes against the
monotonic direction. This leads to the following two cases:
CASE 1 — The value of c’s predecessor indeed changes
against monotonicity. In this case, c’s value is recomputed.
As described earlier, only those incoming values that are not
in the subtree rooted at c are considered for computing c’s
new value, which ensures that all the vertices whose values

Graphs #Edges #Vertices
Friendster (FT) [13] 2.5B 68.3M

Twitter (TT) [6] 2.0B 52.6M
Twitter (TTW) [20] 1.5B 41.7M

UKDomain (UK) [5] 1.0B 39.5M
LiveJournal (LJ) [3] 69M 4.8M

Table 2: Real world input graphs.

were (directly or indirectly) computed using c’s old value do
not participate in this new computation. The incoming values
selected for computation must have safe approximation them-
selves because c is the earliest vertex whose approximation
became unsafe. Hence, using safe, but fewer, incoming values
for c can only lead to a safe approximate value for c due to
mononicity (e.g., a value higher than the accurate value in a
decreasing monotonic algorithm).
CASE 2 — The value of c’s predecessor does not change
against monotonicity. In this case, c’s old approximate value
is already safe w.r.t. its predecessor.

Combining Case 1 and 2, it is clear to see that there does
not exist any such vertex c whose value can become unsafe
and flow to v under our algorithm. Simple induction on the
structure of the dependence tree would suffice to show any
vertex v’s value must be safe.

Profitability It is easy to see that any safe approximate
value is at least as good as the initial value. Since the value
already carries some amount of computation, use of the
value would reuse the computation, thereby reaching the
convergence faster than using the initial value.

4. Evaluation
This section presents a thorough evaluation of KickStarter on
real-world graphs.

4.1 Implementation
KickStarter was implemented in a distributed graph process-
ing system called ASPIRE [41]. In ASPIRE, graph vertices
are first partitioned across nodes and then processed using a
vertex-centric model. The iterative processing incorporates a
vertex activation technique using bit-vectors to eliminate re-
dundant computation on vertices whose inputs do not change.

Updates are batched in an in-memory buffer and not
applied until the end of an iteration. Value dependence trees
are constructed by maintaining the level information for each
vertex along with “downward” pointers to children vertices
that allow trimming to quickly walk down a tree. A query is
performed after a batch of updates is applied. The query asks
for the values of all vertices in the updated graph. Different
types of edge updates are handled differently by KickStarter:
edge deletion removes the edge and schedules the edge target
for trimming; and standard treatment is employed for edge
additions.



Algorithm Issue VERTEXFUNCTION SHOULDPROPAGATE

SSWP Correctness v .path ← max
e∈inEdges(v)

(min(e.source.path, e.weight)) newValue < oldValue

CC Correctness v .component ← min(v .component , min
e∈edges(v)

(e.other .component)) newValue > oldValue

BFS Performance v .dist ← min
e∈inEdges(v)

(e.source.dist + 1) newValue > oldValue

SSSP Performance v.path← min
e∈inEdges(v)

(e.weight+ e.source.path) newValue > oldValue

Table 3: Various vertex-centric graph algorithms.

LJ UK TTW TT FT

SSWP
RST 7.48-10.16 (8.59) 81.22-112.01 (90.75) 94.18-102.27 (99.28) 170.76-183.11 (176.87) 424.46-542.47 (487.04)
TAG 11.57-14.71 (13.00) 1.73-62.1 (21.42) 27.38-125.91 (71.26) 262.88-278.42 (270.29) 474.64-550.25 (510.52)
VAD 3.51-5.5 (4.48) 1.17-1.18 (1.17) 21.54-34.38 (27.55) 66.85-130.84 (75.88) 113.3-413.51 (143.72)

CC
RST 6.43-7.93 (7.19) 133.92-166.33 (148.80) 105.16-111.46 (107.54) 113.92-126.35 (126.35) 212.43-230.26 (221.05)
TAG 10.98-12.81 (11.86) 170.91-203.54 (183.93) 176.91-201.12 (185.84) 193.77-249.93 (208.90) 331.79-386 (360.34)
VAD 4.89-5.85 (5.30) 1.81-7.75 (4.37) 31.78-33.24 (32.54) 21.98-22.58 (22.29) 38-39.36 (38.56)

Table 4: Trimming for correctness: query processing time (in sec) for SSWP and CC, shown in the form of min-max (average).

LJ UK TTW TT FT

SSWP TAG 3.1M-3.2M (3.1M) 8.9K-9.7M (4.1M) 1.1K-29.5M (13.4M) 28.5M-28.6M (28.6M) 49.5M-49.5M (49.5M)
VAD 20.1K-90.8K (60.8K) 2.9K-93.0K (33.4K) 1.0K-4.5K (2.3K) 2.4K-1.1M (106.4K) 20.7K-13.6M (1.3M)

CC TAG 3.2M-3.2M (3.2M) 25.9M-25.9M (25.9M) 31.3M-31.3M (31.3M) 32.2M-32.2M (32.2M) 52.1M-52.1M (52.1M)
VAD 1.1K-3.1K (1.9K) 320-1.6K (1.0K) 116-463 (212) 241-463 (344) 294-478 (374)

Table 5: Trimming for correctness: # reset vertices for SSWP and CC (the lower the better) in the form of min-max (average).

4.2 Experimental Setup
We used four monotonic graph algorithms in two categories
as shown in Table 3: SingleSourceWidestPaths (SSWP)
and ConnectedComponents (CC) may produce incorrect re-
sults upon edge deletions whereas SingleSourceShortestPaths
(SSSP) and BreathFirstSearch (BFS) produce correct results
with poor performance. VERTEXFUNCTION shows the algo-
rithms of vertex computation, while SHOULDPROPAGATE
reports the termination conditions of the trimming process.

The algorithms were evaluated using five real-world
graphs listed in Table 2. Like [32], we obtained an initial
fixed point and streamed in a set of edge insertions and dele-
tions for the rest of the computation. After 50% of the edges
were loaded, the remaining edges were treated as edge addi-
tions that were streamed in. Furthermore, edges to be deleted
were selected from the loaded graph with a 0.1 probability;
deletion requests were mixed with addition requests in the up-
date stream. In our experiments, we varied both the rate of the
update stream and the ratio of deletions vs. additions in the
stream to thoroughly evaluate the effects of edge deletions.

All experiments were conducted on a 16-node Amazon
EC2 cluster. Each node has 8 cores and 16GB main memory,
and runs 64-bit Ubuntu 14.04 kernel 3.13.

Techniques Compared We evaluated KickStarter by com-
paring the following four versions of the streaming algorithm:

• TAG uses the tagging + resetting based trimming (cf.
§3.2).

• VAD uses our value dependence based trimming (cf. §3.3).
• TOR implements Tornado [32]. This approach is used as

the baseline for BFS and SSSP, as TOR generates correct
results for these algorithms.
• RST does not perform trimming at all and instead resets

values of all vertices. This technique serves as the baseline
for SSWP and CC because TOR does not generate correct
results for them (as already shown in Figure 5 in §2).

To ensure a fair comparison among the above versions,
queries were generated in such a way that each query had
the same number of pending edge updates to be processed.
Unless otherwise stated, 100K updates with 30% deletions
were applied before the processing of each query.

4.3 Trimming for Correctness
We first study the performance of our trimming techniques,
TAG and VAD, to generate correct results for SSWP and
CC — Table 4 shows the average, minimum, and maximum
execution times (in seconds) to compute the query results
using TAG, VAD, and RST (baseline).

We observe that VAD consistently outperforms RST. On
average, VAD for SSWP and CC performs 17.7× and 10×
faster than RST, respectively. These significant speedups
were achieved due to the incremental processing in VAD that
maximizes the use of computed approximate values, as can
be seen in Table 5 — only a subset of vertices have to discard
their approximate values (via resetting). Since RST discards



the entire approximation upon edge deletions (i.e., resetting
all impacted vertices), computation at every tagged vertex
starts from scratch, resulting in degraded performance.

Finally, for the UK graph, VAD performs noticeably better
for SSWP than for CC mainly because safe approximate
values computed for SSWP were closer to the final solution
than those for CC. The reason is as follows. For CC, if the
component ID for a vertex in a component changes, this
change is likely to get propagated to all the other vertices in
that component. This means that when trimming finds a safe
approximate value, the value may still be changed frequently
during the forward execution. For SSWP, on the other hand,
if the path value for a vertex changes, the change does not
affect many other vertices. Hence, only small local changes
may occur in vertex values before the computation converges.
As a result, SSWP took less time than CC to finish the branch
loop (less than a second in all cases for SSWP vs. between 1
and 4 seconds for CC).
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Figure 8: Time taken to answer queries.

Next, we compare the tagging+resetting algorithm TAG
with VAD and RST. In most cases, TAG outperforms RST.
However, TAG performs worse than RST for CC because the
overhead of using TAG outweighs the benefit provided by
trimming — due to TAG’s conservative nature, a very large
portion of the graph is tagged and their values are reset. This
can be seen in Table 5 where there are millions of vertices
whose values are reset in CC.

Under TAG, the number of vertices whose values are reset
is significantly higher than that under VAD (see Table 5).
Hence, VAD consistently outperforms TAG. Note that the
reason why VAD works well for CC is that since CC propa-
gates component IDs, many neighbors of a vertex may have
the same component ID and thus trimming based on value
dependence may have more approximate values to choose
from. As a result, VAD resets far fewer vertices than TAG.

Figures 8a and 8b show the performance of RST, TAG,
and VAD for the first 10 queries for SSWP and CC on

UK. The performance of TAG is more sensitive to edge
deletions than VAD – for SSWP, while the solutions for many
queries were computed quickly by TAG, some queries took
significantly longer processing time. VAD, on the other hand,
is less sensitive to edge deletions because it is able to attribute
the effects of the deletions to a smaller subset of vertices.

Finally, Figures 8c and 8d compare the performance of the
two phases of the branch loop execution: trimming (TRIM)
and computation (COMP). Since CC is more sensitive to edge
additions and deletions compared to SSWP, it took longer
processing time to converge to the correct result. Hence, for
CC, the percentages of the time spent by both TAG and
VAD on the trimming phase are lower than those on the
computation phase. SSWP, on the other hand, needs less time
to converge because the approximate values available for
incremental processing are closer to the final values; hence,
the time taken by the trimming phase becomes comparable to
that taken by the computation phase. Nevertheless, as Table 4
shows, the trimming phase has very little influence on the
overall processing time due to its lightweight design and
parallel implementation.

4.4 Trimming for Performance
This set of experiments help us understand how different
trimming mechanisms can improve the performance of query
processing for BFS and SSSP. For these two algorithms, as
explained in §2, although the baseline TOR (Tornado) pro-
duces correct results, it can face performance issues. Table 6
shows the average, minimum, and maximum execution times
(in seconds) to compute the query results for SSSP and BFS
by TOR, TAG, and VAD.

VAD consistently outperforms TOR. For example, VAD
for SSSP and BFS are overall 23.7× and 8.5× faster than
TOR, respectively. Figure 9a and Figure 9b show the per-
formance for answering the first 10 queries for SSSP and
BFS. Since TOR leverages incremental processing, its per-
formance for some queries is competitive with that of VAD.
However, different edge deletions impact the approximation
differently and in many cases, TOR takes a long time to
converge, leading to degraded performance.

While TAG consistently outperforms TOR, its conser-
vative resetting of a larger set of vertex values (as seen in
Table 7) introduces overhead that reduces the overall benefit
it provides.
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Figure 9: Trimming for performance: time taken to compute
answer queries by TAG and VAD.



LJ UK TTW TT FT

SSSP
TOR 1.27-102.88 (39.10) 2.84-119.03 (24.90) 17.62-131.9 (112.57) 42.13-584.64 (190.78) 90.59-179.83 (163.99)
TAG 3.25-4.49 (3.97) 2.03-2.94 (2.19) 46.06-52.5 (48.96) 98.59-118.23 (105.73) 131.22-150.16 (142.60)
VAD 2.12-3.22 (2.55) 1.33-1.5 (1.41) 28.68-32.33 (30.21) 41.35-48.65 (44.19) 93.74-101.67 (97.22)

BFS
TOR 1.17-77.05 (7.17) 1.24-588.09 (142.55) 23.94-1015.76 (199.23) 55-283.71 (120.45) 190.52-2032.38 (881.17)
TAG 3.47-4.43 (3.88) 1.81-5.14 (1.97) 51.08-58.3 (54.36) 110.75-192.71 (127.54) 143.21-334.07 (166.60)
VAD 1.96-3.37 (2.59) 1.21-3.88 (1.42) 32.02-34.86 (32.96) 69.43-91.88 (74.27) 107.4-136.73 (114.56)

Table 6: Trimming for performance: query processing times (in sec) for SSSP and BFS in the form: min-max (average).

LJ UK TTW TT FT

SSSP TAG 8.2K-59.8K (25.9K) 4.1K-193.4K (36.4K) 19.7K-183.7K (89.4K) 6.2K-196.7K (51.5K) 19.8K-31.2K (25.4K)
VAD 1.7K-40.1K (7.0K) 2.9K-52.2K (16.6K) 2.1K-77.7K (19.6K) 836-110.9K (11.1K) 4.5K-12.5K (8.0K)

BFS TAG 10.8K-354.5K (79.0K) 1.3K-483.0K (35.5K) 20.9K-1.2M (457.6K) 44.2K-8.6M (1.1M) 19.1K-4.5M (469.8K)
VAD 5.5K-116.6K (36.4K) 3.2K-469.9K (41.2K) 860-3.1K (1.6K) 742-1.4K (1.1K) 2.7K-5.2K (3.4K)

Table 7: Trimming for performance: number of reset vertices for SSSP and BFS in the form: min-max (average).

4.5 Effectiveness of the Trimmed Approximation
To understand whether the new approximate values computed
by trimming are beneficial, we compare VAD with a slightly
modified version VAD-Reset that does not compute new
approximate values. This version still identifies the set of
impacted vertices using dependence tracking, but simply
resets the values of all vertices in the set. Figure 10 shows the
reductions in the numbers of reset vertices achieved by VAD
over VAD-Reset. The higher the reduction, the greater is the
computation reused. This comparison was done on the first
10 queries for SSWP and CC over the UK graph. We observe
that the reduction varies significantly between SSWP and CC.
This is mainly due to the different shapes of the dependence
trees constructed for CC and SSWP. For CC, the dependence
trees are fat (i.e., vertices have more children) and, hence, if a
vertex’s value is reset, the trimming process needs to continue
resetting many of its children vertices, hurting performance
significantly. In fact, 5.7K-25.9M vertices were reset for CC
under VAD-Reset.

As CC propagates component IDs and the IDs in a vertex’s
neighborhood are often the same (because the vertices in a
neighborhood likely belong to the same component), good
approximate values are often available under VAD, which
greatly reduces the number of reset vertices (to 320-1.3K).
For SSWP, on the other hand, its dependence trees are thinner
(i.e., vertices have less children), and hence VAD-Reset
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Figure 10: Reduction in # of vertices reset by VAD
compared to VAD-Reset.

does a reasonably good job as well, resetting only 3.4K-
151K vertices. This number gets further reduced to 2.9K-
85.2K when VAD is used. We have also observed that the
benefits achieved for SSWP vary significantly across different
queries; this is due to the varying impacts of deletions that
affect different regions of the dependence trees and thus the
availability of safe approximate values.
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Figure 11: Numbers of reset vertices with different deletion
percentages in the batch.

4.6 Sensitivity to Edge Deletions & Batch Size
We study the sensitivity of the trimming effectiveness to
the number of deletions performed in the update stream. In
Figure 11, we vary the percentage of deletions in an update
batch from 10% to 50% while maintaining the same batch
size of 100K edge updates. While the trend varies across
different queries and algorithms, it is important to note that
our technique found safe approximations in many cases,
keeping the number of reset values low even when the number
of deletions increases.

In Figure 12a, we varied the number of edge updates
applied for each query from 100K to 1M while setting the
deletion percentage to 30%. Clearly, the increase in the
number of edge updates, and hence in the number of edge
deletions, do not have much impact on the performance of
the forked branch loop. This is mainly because the number
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Figure 12: Query time and dependence tracking overhead.

of reset vertices remains low — it increases gradually from
31K to 230K.

4.7 Dependence Tracking Overhead
Finally, we try to understand the overhead of our dependence
tracking technique by measuring the performance of the
system with only edge additions. Since the handling of
edge additions does not need trimming, the difference of
the running time between VAD and TOR is the tracking
overhead. Figure 12b shows the overall execution times for
queries under VAD normalized w.r.t. TOR with only the edge
addition requests. That is, the deletion percentage is set to 0%.
In this case, all the four algorithms leverage the incremental
processing in TOR and hence the maintained approximation
is never changed. The error bars in Figure 12b indicate the
min and max values to help us understand the performance
variations. The overall performance is only slightly influenced
(max overhead bars are slightly above 1 in most cases) and
the query answering time under VAD increases by 13%.

5. Related Work
(A) Streaming Graph Processing Custom Solutions. These
works develop specialized streaming algorithms to solve dif-
ferent problems. They incorporate correctness in the algo-
rithm design either by relaxing the problem constraints or by
dealing with edge mutations in specific ways.

STINGER [12] uses a novel data structure which enables
quick insertions and deletions while allowing parallel traver-
sal of vertices and edges. [11] develops an approximation
method for maintaining clustering coefficients using bloom
filters. [10, 26] incorporate techniques to correctly maintain
connected components information using STINGER by using
set intersection of neighborhood vertices to quickly determine
connectivity and construct a spanning tree for each compo-
nent to check for reachability up to root. While checking
reachability is expensive, the algorithm relies on multiple
concurrent graph traversals to maximize parallelism. In com-
parison, our trimming solution does not need expensive traver-
sals since it relies on level checking. Other custom solutions
for connectivity checks upon deletions are: [33] relies on two
searches to find component splits whereas [17, 27] maintain
graph snapshots for each iteration and use LCA and coloring
technique. [45] presents a novel clustering algorithm which is

aware of the evolution whereas Fennel [38] proposes a novel
partitioning algorithm. [35] proposes greedy, chunking and
balancing based heuristics to partition streaming graphs.

Generalized Streaming Graph Processing Frameworks.
These systems allow users to express graph algorithms. When
a query arrives in Tornado [32], it takes the current graph snap-
shot and branches the execution to a separate loop to compute
results using incremental processing. Kineograph [8] is a dis-
tributed streaming graph processing system which enables
graph mining over fast-changing graphs and uses incremental
computation along with push and pull models. [36] proposes
the GIM-V incremental graph processing model based upon
matrix-vector operations. [25] constructs representative snap-
shots which are initially used for querying and upon success
uses real snapshots. Naiad [23] incorporates differential data
flow to perform iterative and incremental algorithms. Gras-
pan [42] is a disk-based graph system that processes program
graphs with constant edge additions.

(B) Evolving Graph Processing [40] presents two tempo-
ral optimizations to process evolving graphs: computation
reordering to perform communication aggregation across
graph snapshots; and incremental processing to leverage pre-
viously computed (potentially partial) results across graph
snapshots. Chronos [16] is a storage and execution engine
that also uses incremental processing. Spark [46], vertices
maintain a history of values over time and inaccuracies are
rectified by reverting back the values. Beyond these, static
graph systems [7, 14, 21, 22, 28, 29, 31, 34, 39, 43, 44] can
process graph snapshots one after the other.

(C) Data Stream Processing Various generalized data
stream processing systems [1, 2, 4, 15, 24, 37, 47, 48] have
been developed that operate on unbounded structured and
unstructured streams which allow window operations, incre-
mental aggregation and instant querying to retrieve timely
results. They allow users to develop their own streaming
algorithms; note that users must ensure correctness of algo-
rithms. [30] identifies errors in data-stream processing and
improves the accuracy of sketch-based algorithms like Count-
Min, Frequency-Aware Counting, etc.

6. Conclusion
This paper presents KickStarter, a runtime technique that
produces safe and profitable approximate values for vertices
that are impacted by edge deletions. KickStarter can be used
to augment an existing streaming graph processing engine,
enabling it to process edge updates correctly and efficiently.
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