
CoRAL: Confined Recovery in Distributed Asynchronous Graph Processing

Keval Vora1 Chen Tian2 Rajiv Gupta1 Ziang Hu2

1University of California, Riverside 2Huawei US R&D Center
{kvora001,gupta}@cs.ucr.edu {Chen.Tain,Ziang.Hu}@huawei.com

Abstract
Existing distributed asynchronous graph processing systems
employ checkpointing to capture globally consistent snap-
shots and rollback all machines to most recent checkpoint to
recover from machine failures. In this paper we argue that
recovery in distributed asynchronous graph processing does
not require the entire execution state to be rolled back to
a globally consistent state due to the relaxed asynchronous
execution semantics. We define the properties required in the
recovered state for it to be usable for correct asynchronous
processing and develop CoRAL, a lightweight checkpoint-
ing and recovery algorithm. First, this algorithm carries out
confined recovery that only rolls back graph execution states
of the failed machines to affect recovery. Second, it relies
upon lightweight checkpoints that capture locally consistent
snapshots with a reduced peak network bandwidth require-
ment. Our experiments using real-world graphs show that
our technique recovers from failures and finishes processing
1.5× to 3.2× faster compared to the traditional asynchronous
checkpointing and recovery mechanism when failures impact
1 to 6 machines of a 16 machine cluster. Moreover, capturing
locally consistent snapshots significantly reduces intermittent
high peak bandwidth usage required to save the snapshots
– the average reduction in 99th percentile bandwidth ranges
from 22% to 51% while 1 to 6 snapshot replicas are being
maintained.

1. Introduction
As graphs have become a popular means for representing
large data sets, many systems for performing iterative graph
analytics have been developed. Due to the large sizes of real-
world graphs, distributed systems are a natural choice for ana-
lyzing them as they provide scalability in both processing and
memory resources. Some examples of distributed graph pro-
cessing systems include Google’s Pregel [13], GraphLab [12],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’17, April 08-12, 2017, Xi’an, China
Copyright c© 2017 ACM 978-1-4503-4465-4/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3037697.3037747

GraphX [7], GPS [19], ASPIRE [25], Trinity [20] etc. In these
frameworks, the user defined algorithm is expressed in a ver-
tex centric manner, i.e., computations are written from the
perspective of a single vertex. Graph is iteratively processed
until computation converges to a fixed point, i.e., all com-
puted vertex/edge values in the graph stabilize. The workload
of performing vertex centric processing is distributed across
machines by dividing the vertices among the machines.

There are two execution models to iteratively process a
graph using vertex centric functions. The synchronous (or
the bulk synchronous parallel [22]) model guarantees that
processing in current iteration is based on values computed in
the preceding iteration. The asynchronous model [8, 27, 32]
on the other hand permits processing to be based upon
values that become available during the current iteration.
Moreover, it permits read-write dependences to be further
relaxed to accelerate processing. For example, ASPIRE [25]
relaxes remote reads in computations by satisfying them using
local stale values, i.e. values computed in older iterations. It
shows that resulting asynchronous algorithms significantly
outperform synchronous ones. Pregel, GraphX, and GPS
rely on the synchronous model and GraphLab supports both
synchronous and asynchronous models.

Fault tolerance in distributed graph processing systems
is provided by periodically snapshotting the vertex/edge
values of the data-graph during processing, and restarting
the execution from the latest saved snapshot during recov-
ery [13, 18, 28]. The cost of fault tolerance includes: overhead
of periodic checkpoints that capture globally consistent snap-
shots [3] of a graph computation; and repeating computation
whose results are discarded by the roll back performed dur-
ing the recovery process. For synchronous graph processing
systems, solutions that lower these overheads have been pro-
posed. Pregel [13] performs confined recovery that begins
with the most recently checkpointed graph state of the failed
machine and, by replaying the saved inputs used by bound-
ary vertices, recovers the lost graph state. Zorro [18] avoids
checkpointing and directly recovers the lost graph state at the
cost of sacrificing accuracy of computed solutions.

Due to its higher performance [9, 25, 27], asynchronous
graph processing is preferable to synchronous processing.
However, development of efficient fault tolerance techniques
for asynchronous graph processing has not achieved much

attention. Asynchronous graph processing systems necessi-
tate rolling back the entire graph state to the most recently
checkpointed globally consistent snapshot, i.e. graph state
at machines which are unaffected by failures is also rolled
back. Such a recovery is expensive since the overall progress
suffers a set back and previously performed computations on
non-failing machines are also repeated.

In this paper we present CoRAL, a highly optimized recov-
ery technique for asynchronous graph processing that is the
first confined recovery technique for asynchronous process-
ing. We observe that the correctness of graph computations
using asynchronous processing rests on enforcing the Progres-
sive Reads Semantics (PR-Semantics) which results in the
graph computation being in PR-Consistent State. Therefore
recovery need not roll back graph state to a globally consis-
tent state; it is sufficient to restore state to a PR-Consistent
state. We leverage this observation in two significant ways.
First, non-failing machines do not roll back their graph state,
instead they carry out confined recovery by reconstructing
the graph states of failed machines such that the computa-
tion is brought into a PR-Consistent state. Second, globally
consistent snapshots are no longer required, instead locally
consistent snapshots are used to enable recovery.

We have implemented our technique and evaluated it
on a cluster on Amazon EC2. Our experiments using real-
world graphs show that our technique recovers from failures
and finishes processing 1.5× to 3.2× faster compared to
the traditional asynchronous checkpointing and recovery
mechanism when failures impact 1 to 6 machines of a
16 machine cluster. Moreover, capturing locally consistent
snapshots significantly reduces intermittent high bandwidth
usage required to save the snapshots – the average reduction
in 99th percentile peak bandwidth ranges from 22% to 51%
while 1 to 6 snapshot replicas are being maintained.

2. Background and Motivation
Distributed graph processing systems provide fault tolerance
to handle machine failures that can occur in the midst of
a graph computation. The failure model assumes fail-stop
failures, i.e. when a machine fails, it does not lead to ma-
licious/unexpected behavior at other machines. Once a ma-
chine in a cluster fails, its workload can be distributed across
remaining machines in the cluster or the failed machine can
be replaced by another (cold) server.

Fault tolerance is provided via checkpointing and roll-
back based recovery mechanism [5]. The checkpoints, that
are performed periodically, save a globally consistent snap-
shot [3] of the state of a graph computation. A captured
snapshot represents the state of the entire distributed graph
computation such that it includes a valid set of values from
which the processing can be resumed. Therefore recovery,
that is performed when a machine fails, rolls back the com-
putation to the latest checkpoint using the saved snapshot
and resumes execution. For capturing a globally consistent
snapshot, both synchronous and asynchronous checkpoint-

ing methods exist [14]. Synchronous checkpointing suspends
all computations and flushes all the communication chan-
nels before constructing the snapshot by capturing the graph
computation state at each machine whereas asynchronous
checkpointing incrementally constructs the snapshot as the
computation proceeds. The frequency of capturing snapshots
balances checkpointing and recovery costs [29].

A globally consistent snapshot of a distributed graph
computation is defined below.
Definition 2.1. Given a cluster C = {c0, c1, ..., ck−1}, a
Globally Consistent Snapshot of C is a set of local snapshots,
denoted as S = {s0, s1, ..., sk−1}, such that it satisfies [P-
LCO] and [P-GCO], as specified below.

[P-LCO]: Each si ∈ S represents a consistent state
of the subgraph processed by ci ∈ C (i.e., vertex/edge
values iteratively computed by ci) that is computable by the
processing model from the initial state of the graph.

[P-GCO]: S represents a globally consistent state of the
entire graph that is computable by the processing model from
the initial state of the graph.

Note that a local snapshot of a machine simply consists of
vertex/edge values computed by that machine; the structure
of the graph, along with any static vertex and edge values, are
not captured in the snapshot because they remain the same
throughout the computation.

	
	
	
	
	
	
	
c0	 	

	
	
	
	
	
	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 c1	 	
	
	
	
	
	

	 	 	 	 	 	 	 	 	 	 	 	 c2	
	

v0	

v2	

v1	

v4	

v3	

v5	

v6	

v7	

v8	

1	
1	 1	

1	

5	 1	

10	
1	

1	

1	 1	

1	

1	

Figure 1: Example graph.

c0 c1 c2
Step v0 v1 v2 v3 v4 v5 v6 v7 v8
t0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
t1 0 10 1 ∞ ∞ ∞ ∞ ∞ ∞
t2 0 10 1 2 ∞ ∞ 11 ∞ ∞
t3 0 7 1 2 3 ∞ 11 12 ∞
t4 0 4 1 2 3 4 8 12 13
t5 0 4 1 2 3 4 5 9 5
t6 0 4 1 2 3 4 5 6 5

Table 1: SSSP example.

Consider the graph shown in Figure 1. Vertices v0 through
v8 are partitioned across machines c0, c1, and c2. After
partitioning, the edges that cross machines translate into
remote reads. A vertex having at least one neighbor residing
on a different machine is called a boundary vertex – in
this example, vertices v1 and v2 are boundary vertices of
machine c0. The boundary vertices are usually replicated

Execution Checkpointing Checkpointing Recovery
Model Model Consistency Model Model

Accuracy
Sync Async Sync Async

Globally Locally All Minimal
Consistent Consistent Rollback Rollback

Pregel 3 7 3 7 3 7 7 3 3

GraphLab 3 3 3 3 3 7 3 7 3

GPS 3 7 3 7 3 7 3 7 3

GraphX 3 7 3 7 3 7 3 7 3

Imitator 3 7 Replication Consistent Replication None 3

Zorro 3 7 None None 7 3 7

CoRAL 7 3 7 3 7 3 7 3 3

Table 2: Key characteristics of existing graph processing systems and our CoRAL system.

on remote machines so that they are readily available to
remote neighbors for their computation. Table 1 shows how
computation of shortest paths proceeds with v0 as source.
The table shows steps t0 through t6 of the computation. Let
us assume that a globally consistent checkpoint captures
(highlighted) values at step t3. Now, if c2 fails at t5, instead of
starting from the state at t0 (first row), all the execution states
are rolled back to the snapshot taken at t3 and the processing
is resumed from this rolled back state.

Next we summarize the pros and cons of existing check-
pointing and recovery methods to motivate our approach.

(1) Synchronous processing systems like Pregel, GPS,
GraphLab’s synchronous model, and Trinity’s synchronous
model use synchronous checkpointing that captures globally
consistent snapshot by initiating the checkpointing process at
the start of a global iteration (super step). Therefore the val-
ues captured are values that exist at the beginning of a global
super step. Pregel performs confined recovery that requires
rolling back the state of only the failed machine as follows.
After capturing a snapshot, at each machine, the inputs read
from other machines for boundary vertices are saved so that
they can be replayed during recovery to construct the execu-
tion state of the failed machine at the point of failure. Trinity
models confined recovery using buffered logging while [21]
performs confined recovery in a distributed manner.

Two additional approaches for fast recovery have been
proposed. Zorro [18] is motivated by the observation in
other works (GraphX [7], Giraph [4], and Distributed
GraphLab [12]) that users often disable the fault tolerance to
accelerate processing. Thus it chooses to discard the check-
pointing process altogether to eliminate its overheads. Upon
failures, the recovery process constructs an approximate exe-
cution state using the replicated boundary vertices residing
on remaining machines. Hence, it achieves fast recovery at
the cost of sacrificing accuracy [18]. Imitator [28] maintains
in-memory replicated globally consistent execution state
throughout the execution so that recovery from failure is
immediate. The cost of this approach is the overhead of main-
taining consistent replicas in memory all the time. Finally,
GraphX [7] relies on Spark [30] for tracking the lineage
of data in memory, i.e., saving the intermediate results of

high-level operations over data; however, when the lineage
tree becomes very large, it resorts to checkpointing.

Although for synchronous processing systems recovery
has been optimized, their overall performance can be sig-
nificantly lower than that of asynchronous processing sys-
tems [23, 25]. Next, we discuss asynchronous systems.

(2) Asynchronous processing systems like GraphLab’s
asynchronous model uses asynchronous checkpointing tech-
nique that captures the vertex/edge values by developing a
mechanism based on the Chandy-Lamport snapshot algo-
rithm [3] that is also used in other domains like Piccolo [17].
While the snapshots captured by such asynchronous check-
pointing reflect values coming from global states at different
centralized clock times, the order in which the values are
captured with respect to communication and computation
performed guarantee that the snapshot is globally consistent.
Trinity’s asynchronous model, on the other hand, interrupts
execution to capture the global snapshot.

While Pregel’s confined recovery is useful as it only rolls
back the state of the failed machine, it is applicable only
for synchronous processing environments since the order
in which iterations progress is deterministic with respect to
the inputs. For asynchronous execution, the lost execution
state cannot be reconstructed using the saved inputs because
the order in which vertex computations observe and process
the input values varies over the execution, thus making this
technique inapplicable. As a result, to perform recovery,
asynchronous processing systems roll back the states of all
the machines to the last available snapshot and resume the
computation from that point. This approach has the following
two drawbacks:

– Redundant computation: Since recovery rolls back the
states of all machines to the latest snapshot, when processing
is resumed, the computation from snapshot to the current
state is repeated for machines that did not fail.

– Increased network bandwidth usage: The local snapshots
are saved on remote machines, either on the distributed file
system or in memory. All machines bulk transfer snapshots
over the network simultaneously. This stresses the network
and increases peak bandwidth usage. The problem gets worse
in case of a multi-tenant cluster.

Summary. Table 2 summarizes the key characteristics of
above frameworks. The existing systems rely upon glob-
ally consistent snapshots for recovery. Apart from the syn-
chronous solutions of Pregel and Zorro, none of the works
perform minimal rollback. GraphLab’s asynchronous engine
captures globally consistent snapshots and rolls back the state
of all the machines. Solutions that do not rely on recovery
via rollback to a checkpoint, either incorporate consistent
replication (Imitator) or relax the correctness guarantees that
leads to imprecise results in case of failures (Zorro).

3. Confined Recovery for Asynchronous
model via Lightweight checkpointing

The goal of our work is to develop a technique that: (1) uses
asynchronous processing model as it provides high perfor-
mance; (2) performs minimal rollback and avoids network
bandwidth problem due to checkpointing; and (3) achieves
complete recovery so that the final solutions are guaranteed to
be accurate. Next we present CoRAL, a Confined Recovery
technique for iterative distributed graph algorithms being ex-
ecuted under the Asynchronous processing model that uses
Lightweight checkpoints.

Characteristics of Asynchronous Graph Computation. Un-
der the asynchronous model [24, 25], graph computations
are inherently non-deterministic because the model relaxes
read-write dependences to allow machines to use stale values
of remote vertices such that all machines can continue pro-
cessing independently by skipping intermediate updates from
remote vertices. As a consequence, under the asynchronous
model, there are multiple legal executions, all of which upon
convergence produce the same final results.

Asynchronous execution typically orders the values read
for each vertex x via the Progressive Reads Semantics (PR-
Semantics) such that over time, x is assigned different values
v(x, 0), v(x, 1), · · · , v(x, n) by the machine on which it
resides and these values are used (read) during processing on
other machines.

Definition 3.1. PR-Semantics ensures that if a read of x per-
formed by a thread observes the value v(x, i), the subsequent
read of x by that same thread must observe value v(x, j) such
that it either satisfies [V-SAM] or [V-FUT] as given below:

[V-SAM]: j = i, that is, the same value is observed; or
[V-FUT]: j > i, that is, a fresher value is observed on the

second read.

This means that, once a value for any data item is read by
a thread, no earlier values of that data item can be read by
the same thread. The PR-Semantics ensures that each thread
observes the values for a given data item in the same order as
they were produced, and hence, convergence and correctness
of asynchronous algorithms can be reasoned about.

Definition 3.2. An execution state E = {e1, e2, ..., ek−1}
of a graph computation is PR-Consistent if it is reached by

performing the graph computation using an asynchronous
processing model that follows the PR-Semantics.

Thus, following a failure, the recovery process must
construct the state of the subgraph(s) lost due to machine
failure(s) such that the resulting computation is in a PR-
Consistent state. Resuming execution from a PR-Consistent
state guarantees that all future remote reads adhere to PR-
Semantics.

The reliance of graph processing algorithms on PR-
Semantics and PR-Consistent state can be found in literature.
In [6] the self-stabilizing nature of PageRank algorithm is
proven assuming that the underlying system guarantees pro-
gressive reads. Below we derive an equivalence between a
PR-Consistent execution and a legal asynchronous bounded
staleness based execution [24, 25].

Theorem 3.1. Every PR-Consistent execution state of graph
computation starting from an initial state I is equivalent
to an execution state under some legal staleness based
asynchronous execution [24, 25] starting from I .

Proof. The full PR-Consistent execution can be viewed as
a sequence of intermediate PR-Consistent execution states
E0 → E1 → E2 → ... → En starting at the initial state
I = E0. Hence, we prove this theorem using induction on
Ei(0 ≤ i ≤ n).

BASE CASE (Ei = E0 = I): E0 is PR-Consistent since no
reads are performed. It is the same starting execution state
for staleness based asynchronous execution.

INDUCTION HYPOTHESIS (Ei = Ek, k > 0): Ek is PR-
Consistent and is equivalent to an execution state under some
legal staleness based asynchronous execution.

INDUCTION STEP (Ei = Ek+1): Ek+1 is a PR-Consistent
execution state constructed after Ek based on values read
from vertices in Vk+1. Without loss of generality, let us
consider a vertex x ∈ Vk+1 whose latest value read prior
to computation of Ek+1 is v(x, p). When performing a
computation requiring the value of x, the current value
of x is first read and then used in the computation. From
Definition 3.1, we know that the value read for computation
of Ek+1 is v(x, q) such that q ≥ p. Between the reading
of this value and its use, the value of x can be changed to
v(x, r) by another computation, i.e., r ≥ q. This leads to the
following cases:
– Case 1 (q = r): The second read returned v(x, q) = v(x, r).
In the equivalent staleness based execution, this read is
considered to have returned the current or the freshest value
available for x, and hence is usable, which results in the same
computation being performed.
– Case 2 (q < r): The second read returned v(x, q) 6= v(x, r).
In the equivalent staleness based execution, such a value
is considered to be stale by r − q versions, and is still
usable in the asynchronous model where staleness bound
bxk+1 is at least r − q. Note that the staleness bound does

not impact correctness, it merely impacts the performance of
asynchronous execution [25].

The above reason can be applied to all the vertices in
Vk+1 whose values are used to compute Ek+1. Let s =
max

0>j≤k+1
(max
x∈Vj

(bxj)) be the maximum staleness of reads

across all the vertex values read in Case 2. Across all the
possibilities, the computations in PR-Consistent execution
and an asynchronous staleness based execution with staleness
bound of at least s (i.e., ≥ s) are equivalent since they are
based on same values, and hence, they result in the equivalent
or same execution state Ek+1.

Corollary 3.1. The final execution state reached by a PR-
Consistent execution is equivalent to the final execution state
under some legal staleness based asynchronous execution
[24, 25].

To further illustrate the efficacy of PR-Semantics, we con-
sider SSSP, a popular example of monotonic graph algorithms
(other examples include Connected Components, K-Core,
etc.) where vertex values exhibit monotonicity which cannot
be preserved without PR-Semantics. Table 3 shows the effect
of violating the PR-Semantics at t5 in our SSSP example from
Figure 1. If at t5, c0 observes the old value of v4 =∞ after
having observed v4 = 3 at t4, the value of v1 is computed as
7 via v3 as shown below.

path(v1) = min(path(v3) + weight(v3, v1),

path(v4) + weight(v4, v2))

= min(2 + 5,∞+ 1) = 7

c0 c1 c2
Step v0 v1 v2 v3 v4 v5 v6 v7 v8
t0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
t1 0 10 1 ∞ ∞ ∞ ∞ ∞ ∞
t2 0 10 1 2 ∞ ∞ 11 ∞ ∞
t3 0 7 1 2 3 ∞ 11 12 ∞
t4 0 4 1 2 3 4 8 12 13
t5 0 7 1 2 3 4 5 9 5

Table 3: Violation of PR-Semantics disrupting monotonicity
in SSSP.

This violates the monotonicity property of SSSP because the
shortest path value for v2, instead of decreasing, increases
from 4 to 7.

Overview of PR-Consistent Recovery. The above charac-
teristics of asynchronous graph processing lead to new more
relaxed notion of recovery, called PR-Consistent recovery,
that allows use of confined recovery using lightweight check-
points. Its key features follow.

(1) Confined Recovery: Given sf and cf such that sf
is the state of the subgraph on machine cf just before it
fails. The state of the subgraph on cf following recovery, say
sr, need not be the same as sf . However, both sf and sr

must correspond to legal executions during which the PR-
Semantics is preserved. We exploit this flexibility to achieve
Confined Recovery, i.e. the subgraph states at non-failing
machines is not rolled back.

(2) Lightweight Checkpoints: Deriving the recovered state
sr does not require globally consistent snapshots. It simply
requires periodically taken local snapshots of all machines
which we refer to as Locally Consistent Snapshots. The global
ordering across the local snapshots, called PR-Ordering,
must be captured to enforce PR-Semantics during confined
recovery for multiple machine failures. The sufficiency of
locally consistent snapshots solves the problem of increased
network bandwidth usage due to bulk network transfer for
saving snapshots during checkpointing. The decision to
capture a local snapshot at a given point in time can be
made either by a central coordinator to minimize the number
of snapshots being simultaneously saved, or locally by the
machine in which snapshot is to be captured.

(3) Fast Recovery: Once a machine in a cluster fails,
its workload is distributed across remaining machines in
the cluster which then collectively reconstruct the state sr
in parallel. To further reduce checkpointing overhead and
speedup recovery, the replicated snapshots are stored in-
memory on remote machines. Both of these design decisions
are based on RAMCloud’s approach [15] for fast replication
and recovery; however, our technique is applicable if a failed
machine is replaced by a cold server and snapshots are stored
on a distributed file system.

In summary, CoRAL captures light-weight Locally Con-
sistent Snapshots and PR-Ordering information that allow the
recovery of the state(s) corresponding to failed machine(s)
such that reconstructed state is PR-Consistent from which
execution can be correctly resumed.

3.1 PR-Consistent Recovery: Single Failure Case
For ease of understanding, in this section we show how PR-
Consistent state is restored in case of a single machine failure
and in the next section we present the additions required to
handle multiple simultaneous machine failures.

We introduce the concept of Locally Consistent Snapshots
and then present a recovery algorithm that uses them to
construct the PR-Consistent state following a failure. Since a
globally consistent checkpoint captures a valid graph state,
following a failure, rolling back entire graph state to such
a captured state is sufficient to restore execution to a PR-
Consistent state. However, restoring state via a globally
consistent snapshot is too strong of a requirement, i.e. it
is not necessary for satisfying PR-Semantics after recovery.
In fact, allowing global inconsistencies in the captured graph
state is acceptable due to the relaxed nature of asynchronous
execution model semantics.

A locally consistent checkpoint represents this relaxed
notion of a distributed snapshot. Next we define a locally
consistent snapshot of the system.

Definition 3.3. Given a cluster C = {c0, c1, ..., ck−1}, a Lo-
cally Consistent Snapshot S = {s0, s1, ..., sk−1}, is defined
as a set of local snapshots such that it satisfies [P-LCO] as
specified below.

[P-LCO]: Each si ∈ S represents a consistent state of
the subgraph processed by ci ∈ C that is computable by the
processing model from the initial state of the graph.

Note that locally consistent checkpoints do not enforce
consistency requirement across different local snapshots and
hence, eliminate the need to save snapshots at the same
time; by staggering their collection over time, the stress on
network bandwidth is lowered. Also, since failures can occur
while a snapshot is being captured and transferred to remote
machines, the snapshot should not be committed until the
entire snapshot has been received.

The recovery process has two primary goals: first, the
execution state should be restored to a PR-Consistent state;
and second, the execution state of the machines which are not
affected by failures must not be rolled back, i.e., the recovery
process should be confined to workload of the failed machine.

Formally, let Ec = {ec0, ec1, ..., eci , ..., eck−1} represent the
latest execution state of machines in C right before failure of
a single machine ci ∈ C. Due to failure, the local execution
state eci is lost and the remaining available execution state is
Ecf = Ec \ {eci}. The recovery process must reconstruct the
local execution state eri of ci such that, Er = Ecf ∪ {eri }
represents a PR-Consistent state while, eri may be different
from eci . Figure 2 shows this recovery process – when eci
is lost, the subgraph is processed using values from si and
available inputs from Ec (i.e., Ecf) to generate eri .

e0c	

e1c	

eic	

ekc-‐-‐1	

si0	

si1	

sik-‐1	

⨁! e0r	

e1r	

ekr-‐-‐1	

⨁!

⨁!

!

!!!

EC	 si	 Er	

Read	 Inputs	
!

!!!Process	 until	 	
convergence	

c0	

c1	

ci	

ck-‐1	

⨁! Merge	 execution	 	
states	

sia	 Partition	 of	 si	 	
residing	 on	 ca	

Figure 2: Recovery from single failure.

Next we consider the recovery algorithm. Let si be the
last snapshot captured for ei during checkpointing. Naı̈vely
constructing eri by directly using values from si does not
represent a PR-Consistent state because ∀ecj ∈ Ecf , the
values in ecj can be based on fresher values from ci which
became available after capturing si and hence, further reads
from eri will violate the PR-Semantics.

We use =PR to denote the PR-Consistent relationship
between two local execution states, i.e., if ea and eb are PR-
Consistent, then ea =PR eb. Hence, we want to construct eri
such that ∀ecj ∈ Ecf , eri =PR ecj .

Algorithm 1 constructs a PR-Consistent state Er. The
algorithm first loads the subgraph which was handled by the

Algorithm 1: Recovery from single failure.

1: si: Snapshot of failed machine ci
2: Ecf : Current execution state of remaining machines
3: function RECOVER ()
4: ei ← LOADSUBGRAPH(si)
5: READBOUNDARYVERTICES(ei, Ecf)
6: eri ← PROCESSUNTILCONVERGENCE(ei)
7: Er ← Ecf ∪ {eri }
8: return Er

9: end function

failed machine and initializes it with: values from si (line
4); and current values of boundary vertices coming from
Ecf (line 5). Note that this initialization of boundary vertex
replicas does not violate PR-Semantics because values in si
are based on older values of boundary vertices which were
available when si was captured. Then the created subgraph ei
is iteratively processed in isolation until convergence (line 6)
– this is the crucial step in the algorithm. Fully processing ei
ensures that the effects of fresher boundary vertex’ values are
fully propagated throughout the subgraph. Hence, the values
in eci before failure were either older than or at most same
as the values in eri . This means, any further reads from eri
performed by any ecj ∈ Ecf return fresher values and hence,
do not violate PR-Semantics, i.e., ∀ecj ∈ Ecf , eri =PR ecj .
Hence, eri is included in Ecf (line 7) to represent the PR-
Consistent state Er which is used to resume processing.

3.2 PR-Consistent Recovery: Multiple Failures
Recovering from a failure impacting multiple machines in-
troduces an additional challenge. To recover a PR-Consistent
state, we must ensure that the recovery process operates on
the snapshots of failed machines such that it does not violate
the PR-Semantics. This means, the PR-Consistent state must
be constructed by carefully orchestrating the order in which
snapshots are included and processed for recovery. Hence,
we introduce the concept of PR-Ordering of Local Snapshots,
which is required to carry out PR-Consistent confined recov-
ery following failure of multiple machines.

PR-Ordering of Local Snapshots. To recover a state after
which any further reads will adhere to progressive reads
semantics, we must capture the read-write dependences
between data elements across different local snapshots that
were truly imposed due to PR-Semantics. Capturing this
information at the level of each data item is expensive
due to two reasons: 1) the space of the snapshots blows
up with number of inter-machine dependencies, which in
graph processing is based on the edge-cut; and 2) capturing
such information requires synchronization between the local
machine and all other machines.

PR-Semantics naturally enforces dependency ordering
across data values. We lift this dependency ordering to a
higher level of abstraction – the local snapshots. If we only

c0 c1 c2
Step v0 v1 v2 v3 v4 v5 v6 v7 v8
t0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
t1 0 10 1 ∞ ∞ ∞ ∞ ∞ ∞
t2 0 10 1 2 ∞ ∞ 11 ∞ ∞
t3 0 7 1 2 3 ∞ 11 12 ∞
t4 0 4 1 2 3 4 8 12 13
t5 0 4 1 2 3 4 5 9 5

Table 4: State of execution till t5; highlighted rows indicate
latest locally consistent snapshots.

Step v0 v1 v2 v3 v4 v5 v6 v7 v8
t6 0 7 1 ∞ ∞ ∞ 5 9 5
t6 0 7 1 2 ∞ 6 5 9 5
t7 0 7 1 2 3 6 5 9 5
t8 0 7 1 2 3 4 5 9 5

Table 5: Recovering vertices v3, v4 and v5.

Step v0 v1 v2 v3 v4 v5 v6 v7 v8
t8 0 7 1 2 3 4 5 9 5
t9 0 4 1 2 3 4 5 9 5

Table 6: Recovering vertices v0 to v5.

track the ordering incurred due to progressive reads across the
local snapshots, the amount of information maintained per
snapshot reduces drastically. This brings us to the definition
of ordering of local snapshots.

A PR-Ordering of snapshots, denoted as ≤PR, defines an
ordering across local snapshots based on the order of reads
performed by data-elements within the snapshot.

Definition 3.4. The PR-Ordering of a pair of local snapshots,
denoted as si ≤PR sj , indicates that the values in si for
machine ci were computed based on values from machine
cj which were available no later than when sj for cj was
captured.
In other words, si ≤PR sj ensures that values captured in
si were based on reads of data from cj prior to capturing sj .
This naturally leads us to the following observation. While
PR-Ordering is a pairwise ordering across local snapshots,
we prove that a total PR-Ordering is required to perform
recovery of PR-Consistent state.

Formally, let Ec = {ec0, ec1, ..., eck−1} represent the latest
execution state of machines in C right before failure of
machines in F ⊂ C. Let El = {eci | ci ∈ F} be set of local
execution states lost due to failure, leaving the remaining
available execution state to be Ecf = Ec \ El. The goal
of the recovery is to reconstruct the set of local execution
states Erf = {eri | ci ∈ F} of failed machines such that,
Er = Ecf ∪ Erf represents a PR-Consistent state while,
∀ci ∈ F , eri may be different from eci .

Next we illustrate the necessity of PR-Ordering during
recovery using our SSSP example. Let us assume that c0 and
c1 fail after t5. The locally consistent snapshots captured at
c0 and c1 are highlighted in Table 4. Thus, during recovery,
the local state of c2 is that at t5 while the latest available snap-

shots s0 and s1 from c0 and c1 represent their execution states
at t3 and t1 respectively. By examining the dependences in the
computation, we easily determine that s1 ≤PR s0 ≤PR c2.
Therefore, s1 is processed first using values from s0 and
c2 resulting in values shown in Table 5. After t8, recovery
for s0 can read from the computed results for v3, v4 and v5
because s0 is PR-Consistent with these values. Finally, as
s0 is PR-Consistent with c2, processing occurs for values
v0 to v5 alone, as shown in Table 6. After t9, all the values
are PR-Consistent with each other, i.e., recovery is complete
and processing resumes from this state. Note that if we had
ignored PR-Ordering monotonicity would be violated. For
example, if we had first performed computation over s0, then
by reading v3 =∞ from s1, v4 would have been computed
as 10, violating monotonicity as 10 > 7.

Theorem 3.2. A total PR-Ordering of S is a necessary
condition to recover from failures impacting machines in
F , for all possible F ⊂ C, to a PR-Consistent state using a
locally consistent snapshot S.

Proof. We must show that if the execution state recovers to
a PR-Consistent state using S, then a total PR-Ordering of
S must be available. We prove this by contraposition. Let
us assume that a total PR-Ordering of S is not available and
hence, snapshots of failed machines ci, cj ∈ F , i.e., si, sj ∈
S, are not ordered under ≤PR. Without loss of generality, we
focus on how the local execution state for ci can be restored
to eri using si so that E = Ecf ∪ {eri } is PR-Consistent.
When eri is initialized with si, E cannot be guaranteed to be
PR-Consistent because ∀eck ∈ Ecf , eck ≤PR si cannot be
guaranteed. Hence, eri must be processed further after it is
initialized using values from si. While processing eri , values
of boundary vertices from cj can be either (Case 1) read from
sj or (Case 2) not read.

Case 1: Processing of eri reads from sj . In this case PR-
Semantics cannot be guaranteed since si �PR sj may be
true. Hence, eri represents an inconsistent state.

Case 2: Processing of eri does not read from sj . In this
case after eri is computed, ∀eck ∈ Ecf , eck ≤PR eri cannot be
guaranteed because eck could have observed a fresher value
from eci prior to failure which was in turn calculated from ej
after sj was captured. Moreover, recovery of local execution
state for cj cannot be initiated at this point due to the same
choice of whether it could or could not read from eri .

This means, eri cannot be constructed such that PR-
Consistency for E = Ecf ∪{eri } is guaranteed. Since failures
can impact machines in any non-empty F ∈ PowerSet(C),
recovery of execution state of any failed machine such that it
is PR-Consistent with eck, ∀eck ∈ Ecf is not possible if total
PR-Ordering of S is not available.

Now that we know that the total PR-Ordering of S is
required for recovery, we aim to construct the PR-Consistent
state assuming that such a total PR-Ordering of S is available.
The basic idea is to recover the execution states of individual

sp	

sc	

sb	

sa	

Sf	

Ecf	

!

!!! ⨁! ⨁!⨁!
!

!!!
!

!!! ⨁!
Erf	 =PR	 sb	 Erf	 =PR	 sc	

Erf	 =PR	 sp	

Erf	 =PR	 Ecf	

Er	

Read	 Inputs	
!

!!!Process	 until	 	
convergence	

⨁! Merge	 execution	 	
states	

sa	 ≤PR	 sb	 ≤PR	 sc	 ≤PR	 …	 ≤PR	 sp	

Figure 3: Recovery from multiple failures.

Algorithm 2: Recovery from multiple failures.

1: Sf : Local snapshots captured on failed machines
2: Ecf : Execution state of remaining machines at the time

of failure
3: function RECOVER ()
4: Erf ← ∅
5: P f ← SORTASCENDING(Sf)
6: while P f 6= ∅ do
7: B Adding Phase
8: si ← GETFIRST(P f)
9: REMOVE(P f , si)

10: eri ← LOADSUBGRAPH(si)
11: Erf ← Erf ∪ {eri }
12: B Forwarding Phase
13: READBOUNDARYVERTICES(Erf , P f , Ecf)
14: PROCESSUNTILCONVERGENCE(Erf)
15: end while
16: Er ← Erf ∪ Ecf

17: return Er

18: end function

machines one by one (see Figure 3), in an order such that
PR-Semantics is never violated.

Algorithm 2 shows recovery from multiple failures. The
PR-Consistent execution state (Erf) is constructed by repet-
itively performing the adding and forwarding of the saved
states from failed machines. The addition of execution states
using saved snapshots is done in PR-Order (line 5) to guaran-
tee that PR-Consistency is always retained in Erf . During for-
warding, the processing reads inputs, i.e., boundary vertices,
from two sources (line 13): the snapshots from failed ma-
chines that are not yet incorporated in Erf (i.e., ∀si ∈ P f),
and from current execution states of remaining machines
(i.e., ∀eci ∈ Ecf). At the end of the while loop (lines 6-
15), Erf represents the workload of failed machines that is
PR-Consistent with the current execution state of the remain-
ing machines (Ecf) and hence, the two execution states are
merged (line 16) to form the required Er.

Theorem 3.3. Algorithm 2 recovers a PR-Consistent execu-
tion state.

Proof. We prove this by first showing that at any point in the
algorithm, Erf is PR-Consistent, and then proving that at the
end, Erf becomes PR-Consistent with Ecf , resulting in Er

to be PR-Consistent.
The algorithm uses Sf = {si | ci ∈ F}; without loss of

generality, let sa ≤PR sb ≤PR sc ≤PR ... ≤PR sp be the
total PR-Ordering of Sf . At each step, the algorithm adds
a snapshot into the recovery process in this PR-Order (see
Figure 3).

Initially, Erf = ∅ and era is initialized with values
from sa. This era is added to Erf . Due to the available PR-
Ordering, era can read boundary vertices available from si,
∀si ∈ Sf \ {sa}. Also, era can read from eci , ∀eci ∈ Ecf .
Hence, processing Erf by allowing it to read boundary
vertices from these sources does not violate PR-Semantics.

Since the forwarding phase fully processes Erf until
convergence, era is now based on values from sb and from
other sources which were available even after sb was captured.
On the other hand, when sb was captured, its values were
based on reads from ca which were not based on fresher
values from other sources. Hence, sb ≤PR era which further
leads to era =PR sb. This means, when erb is added to Erf ,
Erf is still PR-Consistent.

Again, erb can read from si, ∀si ∈ Sf \ {sa, sb}, and
also from eci , ∀eci ∈ Ecf which allows processing of Erf to
read boundary vertices from these sources without violating
PR-Semantics. After the forwarding phase, using the same
argument as above, we can show that era =PR erb =PR sc
which allows erc to be added to Erf while ensuring Erf

remains PR-Consistent.
At every step of this construction process, |Erf | increases

by 1. When |Erf | = |F |, we achieve Erf such that it is only
based on values from Ecf and hence, ∀eri ∈ Erf and ∀ecj ∈
Ecf , ecj ≤PR eri which further leads to Erf =PR Ecf .
Hence, the constructed Er = Erf ∪ Ecf is a PR-Consistent
execution state.

Maintaining PR-Ordering after Recovery. After the recov-
ery process, ∀si ∈ S, si ≤PR Erf . Hence, the future snap-
shots captured after the recovery process are also PR-Ordered
with snapshots in S. In case of any further failures, the avail-
able snapshots in S before the previous failure can be used
along with the newly captured snapshots following recov-
ery. Thus, the snapshots in S and newly captured snapshots
collectively guarantee that local states of all machines are
available.

Cascading Failures. Failures can occur at any point in
time during execution and hence, the recovery process can
be affected by new failures at remaining machines. Such
cascading failures need to be handled carefully so that the PR-
Consistent state constructed by the recovery process includes
the workload from newly failed machines.

Since Algorithm 2 incrementally constructs Erf while
maintaining the invariant that it is always PR-Consistent,
the snapshots of newly failed nodes cannot be directly in-
corporated in the recovery process. This is because Erf is
processed based on values from Ecf and allowing a new
snapshot to join the recovery process will cause older values
to be read by Erf thus violating PR-Semantics. Moreover,
the new snapshots cannot be made PR-Consistent with Erf

since that in turn requires these snapshots to be PR-Consistent
with Ecf . Hence, upon cascading failures, the recovery pro-
cess discards the partially constructed Erf and resumes the
process by recreating the linear plan (P f) consisting of all
the failed nodes and then incrementally constructing the PR-
Consistent execution state Erf .
Machines Participating in Recovery. In a fail-stop failure
model, the snapshots must be replicated on different machines
so that they are available for recovery. There are two main
ways to replicate a snapshot: either replicate it in entirety on a
remote machine, or partition the snapshot into smaller chunks
and distribute them across different machines. Both strategies
have pros and cons. Placing the snapshot entirely on a single
machine allows confined recovery for single machine failure
with minimal communication. However, this comes at the
cost of workload imbalance during post-recovery processing.
Partitioning the snapshot and scattering the chunks across the
remaining machines provides better load balancing.

3.3 Capturing PR-Ordering
Since the PR-ordering captures the causality relationship
across different machines, we use logical timestamps to
enable ordering of snapshots. We rely on a light-weight
centralized timestamp service to ensure that correct global
ordering of logical timestamps is possible. The role of the
timestamp service is to atomically provide monotonically
increasing timestamps; this does not require synchronization
between the machines, allowing asynchronous processing
and checkpointing to continue concurrently.

The ordering is captured using a lightweight 3-phase
protocol by ensuring that the local execution state to be
checkpointed does not change with respect to any new remote
input coming during the checkpointing process. The first
phase is the Prepare phase that blocks the input stream
representing remote reads, and then gets a logical timestamp
for the snapshot from the distributed coordinator. The second
phase is the Snapshot phase during which the execution state
of the snapshot is actually captured. This phase overlaps
computation over vertices while capturing the local snapshot
by enforcing that vertex values are saved before they are
updated (as in GraphLab [12]) which leads to a locally
consistent snapshot (i.e., ensures [P-LCO]). Finally, the third
phase is the Resume phase which marks the end of snapshot
with the acquired logical timestamp and unblocks the input
stream to allow future reads. Algorithm 3 summarizes the
above protocol for performing local checkpointing which
generates correct PR-Ordering across the captured snapshots.

The GETNEXTLOGICALTIMESTAMP() function atomically
provides a monotonically increasing logical timestamp.

Algorithm 3: Local checkpointing algorithm.

1: function CHECKPOINT ()
2: B Prepare Phase
3: BLOCKINCOMINGMESSAGES()
4: ts ← GETNEXTLOGICALTIMESTAMP()
5: B Snapshot Phase
6: SNAPSHOTUPDATE()
7: B Resume Phase
8: SAVE(END-CHECKPOINT, ts)
9: UNBLOCKINCOMINGMESSAGES()

10: end function
11:
12: function SNAPSHOTUPDATE ()
13: for v ∈ V do
14: B Snapshot Vertex
15: if v is to be checkpointed then
16: SAVE(v)
17: end if
18: B Process Vertex
19: if v is to be processed then
20: PROCESS(v)
21: end if
22: end for
23: end function

getNextLogicalTimeStamp()

getNextLogicalTimeStamp()

tsi

tsj

Remote	 Input	

ci	

cj	

Coordinator	

ra	

rb	 rc	

rd	

re	

rf	 rg	

rh	 ri	

rj	

value	 of	 x	

Figure 4: Event sequence with incorrect access
of value x.

Theorem 3.4. Algorithm 3 generates a correct total PR-
Ordering across local snapshots in S.

Proof. We first show that the generated PR-Ordering is a total
ordering, and then show its correctness.

TOTAL ORDERING: Each of the local snapshots captured is
assigned a unique timestamp via the distributed coordinator.
Hence, ∀si, sj ∈ S, their timestamps, tsi and tsj are ordered,
i.e., either tsi < tsj or tsj < tsi . By mapping this timestamp
ordering between tsi and tsj to the PR-Ordering between si
and sj , we achieve either si ≤PR sj or sj ≤PR si. Since
this mapping is done for every pair of snapshots in S, S is
totally ordered under ≤PR.

CORRECT PR-ORDERING: We prove this by contradiction.
Let us assume that si ≤PR sj is an incorrect PR-Ordering.
This ordering is a result of mapping from timestamp relation
tsi < tsj . Since the logical timestamps are monotonically
increasing in the order of arrival of requests, the timestamp
request from node ci should have arrived before than that
from node cj in real time space.

Without loss of generality, Figure 4 shows the sequence
of events representing our current case. Note that ra through
rj indicate real time points in the global real time space. We
know the following orderings are valid.

ra < rb (send-receive ordering) (1)

rb < rf (request arrival ordering) (2)

rf < rg (causality ordering) (3)

rg < rh (send-receive ordering) (4)

Moreover, since our assumption is that si �PR sj , there
should be a value x which is read from cj to ci (indicated via
dotted arrow) with the following ordering constraints:

rj < ra (prepare phase ordering) (5)

rh < ri (prepare phase ordering) (6)

ri < rj (send-receive ordering) (7)

Combining Equations 1-6 leads to rj < ri which con-
tradicts Equation 7. Hence, our assumption is false, i.e.,
si ≤PR sj is a correct PR-Ordering.

Theorem 3.5. Algorithm 3 generates a strict total PR-
Ordering across local snapshots in S, i.e., ∀si, sj ∈ S,
if si ≤PR sj , then sj �PR si.

Proof. The≤PR ordering is mapped from the ordering of log-
ical timestamps assigned using GETNEXTLOGICALTIMES-
TAMP() function which atomically provides monotonically
increasing timestamps.

Theorem 3.5 indicates two things: first, the locally con-
sistent checkpointing process generates local snapshots that
are considered to be inconsistent with other local snapshots;
even if the snapshots captured are truly globally consistent,
the monotonic nature of timestamps assigned to snapshots
does not capture this information. Secondly, the schedule for
recovery from multiple failures is deterministic.

Missing Snapshots. Failures can occur even before the
first set of snapshots from the affected machines are avail-
able. Recovery from such failures is done from the initial
state of the affected machine’s workload. To ensure PR-
Semantics is adhered to during the recovery process, a total
PR-Ordering must be available across the initial states for
different machines’ workload and the captured snapshots.
Such PR-Ordering is available naturally by viewing the ini-
tial states to have read no values from other workloads. Let
I = {i0, i1, ..., ik−1} represent the set of initial local states
of machines in cluster C.

Corollary 3.2. ∀ii ∈ I and ∀sj ∈ S, ii ≤PR sj .

Moreover, the total PR-Ordering among the individual
initial states can be captured as follows.

Corollary 3.3. ∀ii, ij ∈ I , ii ≤PR ij and ij ≤PR ii. This
means, ii =PR ij .

Corollary 3.3 captures the PR-equivalence across initial
states which means, processing an initial state using values
from other initial states adheres to PR-Semantics. For sim-
plicity, we consider the initial states as snapshots captured
at the beginning of processing and assume the PR-Ordering
based on the ordering of machine ids, i.e., if ∀ci, cj ∈ C, if
i < j then ii ≤PR ij .

4. Evaluation
System Design. We incorporated CoRAL in an asyn-
chronous iterative graph processing system based on AS-
PIRE [25] as shown in Figure 5. A fault tolerant layer is
designed to handle distributed coordination across multiple
machines and provide asynchronous communication. The dis-
tributed coordinator is based upon Apache Zookeeper [10]. It
manages membership of machines, detects machine failures,
and invokes callbacks to CoRAL module. It also provides
atomic timestamp service required for capturing PR-Ordering,
and synchronization primitives like barriers for programma-
bility. The asynchronous communication layer is built using
non-blocking primitives provided by ZeroMQ [31].

	
	
	

Fault	 Tolerant	 Layer	

Distributed	
Coordinator	

Asynchronous	
Communication	 Layer	

Data	
Graph	

Comp.	
Threads	

Comm.	
Threads	 Scheduler	 Iterative	

Engine	

CoRAL	 Checkpoint	 	
&	 Recovery	

Vertex	
Program	

Vertex	
Program	

Vertex	
Program	

In-‐Mem.	
Snapshots	

…

Figure 5: System design.

The application layer includes the graph processing engine
which operates over the given graph. The graph is partitioned
using GraphLab’s partitioner that greedily minimizes the
edge-cut. The CoRAL checkpointing and recovery module
periodically captures locally consistent snapshots of the
graph state and ensures total ordering by coordinating with
Zookeeper. Upon failures, it recovers the lost values of the
graph state using confined recovery.

Experimental Setup. Our evaluation uses four algorithms:
PageRank (PR) [16], MultipleSourceShortestPaths (MSSP),
ConnectedComponents (CC) [33], and KCoreDecomposition
(KC) taken from different sources [12, 25]. The algorithms
are oblivious to the underlying fault tolerance mechanisms
used in our evaluation and hence, no modifications were done
to their implementations. They were evaluated using three

Checkpoint Frequency (sec)
Graphs #Edges #Vertices PR MSSP CC KC

Twitter (TT) [11] 1.5B 41.7M 200 30 100 200 (k = 10)
UKDoman (UK) [2] 1.0B 39.5M 100 30 100 50 (k = 20)
LiveJournal (LJ) [1] 69M 4.8M 10 2 1 10 (k = 50)

Table 7: Real world input graphs and benchmarks used.

LJ UK TT
PR 22.8 301.6 474.9

MSSP 4.1 54.9 50
CC 4.2 102.2 78.3
KC 30.8 162.7 364.5

Table 8: Execution times (sec).

real-world graphs listed in Table 7 by allowing them to run
until convergence. The k parameter for KC is also listed.

To evaluate the effectiveness of locally consistent check-
pointing and recovery mechanism, we set the checkpointing
frequency in our experiments such that 3-6 snapshots are
captured over the entire execution lifetime. The checkpoint
frequencies used in our evaluation are shown in Table 7.
While capturing locally consistent snapshots allows relaxing
the time at which different local checkpoints can be saved,
for KC we limit this relaxation to within the same k so the
snapshot is fully captured within the same engine invocation.

All experiments were conducted on a 16-node cluster on
Amazon EC2. Each node has 8 cores, 64GB main memory,
and runs 64-bit Ubuntu 14.04 kernel 3.13.

Techniques Compared. We evaluate CoRAL using AS-
PIRE distributed asynchronous processing framework. AS-
PIRE guarantees PR-Semantics and it performs well com-
pared to other frameworks as shown in [25]. For comparison
with other systems, the raw execution times (in seconds) for
ASPIRE are shown in Table 8.

Our experiments compare two fault tolerant versions that
are described below:
– CoRAL captures locally consistent snapshots and performs
confined recovery to PR-Consistent state.
– BL is the baseline technique used by asynchronous frame-
works like GraphLab [12]. It captures globally consistent
snapshots based on the the Chandy-Lamport snapshot algo-
rithm [3] and recovers by rolling back all machines to the
most recent checkpoint.

To ensure correct comparison between the two versions,
failures are injected to bring down the same set of machines
when same amount of progress has been achieved by the
iterative algorithms. We check the execution state that is
present immediately after failure to confirm that the vertex
values are essentially the same (within tolerable bound for
floating point values) for BL and CoRAL so that recovery
starts from the same point. We also evaluate our recovery
mechanism by starting the program assuming that failure has
already occurred; we do this by feeding the same execution
state (vertex values) as initializations and starting the recovery
process; the performance results are same in this case too.
CoRAL guarantees correctness of results; thus, final results
of BL and CoRAL for each experiment are 100% accurate.

4.1 Recovery Overhead
Single Failure. We measured the execution times of
CoRAL and BL when a single failure occurs during the

program run. The execution times after the occurrence of
failures (i.e., recovery and post recovery), normalized with
respect to execution time for BL, are shown in Figure 6.
The complete execution times (in seconds) including the
execution prior to failure are given in Table 9.

 0

 0.5

 1

 1.5

 2

LJ
-B

L
LJ

-C
oR

A
L

U
K

-B
L

U
K

-C
oR

A
L

T
T

-B
L

T
T

-C
oR

A
L

LJ
-B

L
LJ

-C
oR

A
L

U
K

-B
L

U
K

-C
oR

A
L

T
T

-B
L

T
T

-C
oR

A
L

LJ
-B

L
LJ

-C
oR

A
L

U
K

-B
L

U
K

-C
oR

A
L

T
T

-B
L

T
T

-C
oR

A
L

LJ
-B

L
LJ

-C
oR

A
L

U
K

-B
L

U
K

-C
oR

A
L

T
T

-B
L

T
T

-C
oR

A
L

PR MSSP CC KC

N
or

m
al

iz
ed

E
xe

cu
ti

on

T

im
e Recovery

Post Recovery

Figure 6: CoRAL vs. BL: Single failure execution times
normalized w.r.t. BL.

LJ UK TT

PR BL 31.24 334.78 603.12
CoRAL 24.85 322.71 398.92

MSSP BL 8.73 69.72 57.00
CoRAL 6.19 53.25 40.50

CC BL 6.80 121.62 173.04
CoRAL 6.80 102.20 84.56

KC BL 64.68 195.24 612.36
CoRAL 44.35 157.82 539.46

Table 9: CoRAL vs. BL execution times (sec) for single
machine failure.

We observe that CoRAL quickly recovers and performs
faster compared to BL in all cases – on an average across
inputs, CoRAL is 1.6×, 1.7×, 1.3× and 2.3× faster than
BL for PR, MSSP, CC, and KC respectively. We also found
that the recovery process of CoRAL is lightweight – on an
average across benchmarks, the recovery process takes 22.5%,
3.5%, and 3.3% of the total execution time for inputs LJ, UK,
and TT. More importantly, the percentage time taken by the
recovery process reduces as graph size increases.

Furthermore, in some cases we observed that for CoRAL,
the overall execution time starting from the beginning of
the iterative processing goes below the original execution
time – for example, for both PR and MSSP on TT, the
overall execution time reduces by 15.7% and 18.8%. This
is because the CoRAL recovery constructs a PR-Consistent
state with fresher values that is closer to the final solution, so
the convergence is achieved faster.

 0

 0.5

 1

 1.5

 2

LJ
-B

L
LJ

-C
oR

A
L

U
K

-B
L

U
K

-C
oR

A
L

T
T

-B
L

T
T

-C
oR

A
L

LJ
-B

L
LJ

-C
oR

A
L

U
K

-B
L

U
K

-C
oR

A
L

T
T

-B
L

T
T

-C
oR

A
L

LJ
-B

L
LJ

-C
oR

A
L

U
K

-B
L

U
K

-C
oR

A
L

T
T

-B
L

T
T

-C
oR

A
L

LJ
-B

L
LJ

-C
oR

A
L

U
K

-B
L

U
K

-C
oR

A
L

T
T

-B
L

T
T

-C
oR

A
L

PR MSSP CC KC

N
or

m
al

iz
ed

E
xe

cu
ti

on

T

im
e Recovery

Post Recovery

Figure 7: CoRAL vs. BL: Recovery for single failure from
initial state. Execution times normalized w.r.t. BL.

The preceding experiment showed the combined benefit
of lightweight checkpointing and confined recovery. Next
we conducted an experiment to determine the benefit of
confined recovery alone. We turned off checkpointing and
upon (single) failure rolled back execution to initial default
values – CoRAL only rolls back state of failed machine
while BL must roll back states of all machines. Figure 7
shows that on an average across inputs, CoRAL executes
for only 0.4×, 0.4×, 0.3× and 0.6× compared to BL for
PR, MSSP, CC, and KC respectively. While BL recovery
is fast as it simply reverts back to the initial state, the
computation performed gets discarded and much time is
spent on performing redundant computations. Moreover, we
observed an increase in the overall execution time (starting
from the beginning of processing) for BL by 1.1–1.9× which
is due to the same amount of work being performed by fewer
machines after failure. CoRAL, on the other hand, does not
discard the entire global state, and hence finishes sooner.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

B
L

C
oR

A
L

B
L

C
oR

A
L

B
L

C
oR

A
L

B
L

C
oR

A
L

B
L

C
oR

A
L

B
L

C
oR

A
L

1 2 3 4 5 6

N
or

m
al

iz
ed

E
xe

cu
ti

on

T

im
e

#Failed Machines

Recovery
Post Recovery

Figure 8: CoRAL vs. BL: Varying number (1 to 6) of
machine failures. Execution times for PR on UK normalized

w.r.t. BL.

Multiple Failures. Figure 8 shows the performance for mul-
tiple failures for PR benchmark on UK graph. We simulta-
neously caused failure of 1 through 6 machines to see the
impact of our strategy. As we can see, CoRAL performs 1.5–
3.2× faster than BL. We observed that the overall execution
times for BL after occurrence of failures increase up to 1.2×,
whereas CoRAL takes only 0.2–0.8× of time to recover and
finish processing. This is because CoRAL does not discard
the progress of machines that are not impacted by failure.

Note that the execution times increase as the number
of simultaneously failing machines increase. This is due to

two reasons. First, the remaining (non-failed) state becomes
smaller and the lost states become larger, causing more
work during recovery and post-failure. Second, after failure,
the processing continues on fewer leftover machines, i.e.
computation resources decrease. It is also interesting to note
that CoRAL’s recovery time also increases with increase in
the number of simultaneously failed machines due to the
linear nature of our recovery strategy.

4.2 Partitioning Snapshots: Impact on Recovery
During checkpointing, a local snapshot can be saved by par-
titioning them and placing individual chunks on different
machines, or by placing the entire snapshot on a single ma-
chine. Based upon the manner in which snapshots are saved,
only the machines on which snapshots are locally available
can quickly perform recovery. While partitioning the snapshot
allows more machines to participate in the recovery process,
placing the snapshots without partitioning reduces the com-
munication during the recovery process – for example, for a
single machine failure, communication is not required during
the recovery process where PR-Consistent state is constructed
by iteratively processing until convergence.

Figure 9a evaluates this design choice by showing the
speedups achieved during recovery using the partitioning
strategy over maintaining the snapshot as a whole. The
speedups show that allowing multiple machines to take part
during recovery process overshadows the communication
increase and accelerates recovery. Moreover, the speedups
are higher when greater number of machines fail. While not
partitioning leads to an increase in the recovery workload by
only a constant factor (i.e., size of a single snapshot), when
more machines fail, the communication required to process
the workload increases which limits the speedups.

 0
 1

 2
 3

 4
 5

1 2 3 4 5 6

R
ec

ov
er

y
Sp

ee
du

p

PR on UK

#Failed Machines

(a) Speedup in CoRAL recovery
due to partitioning snapshots.

 0

 10

 20

 30

 40

1 2 3 4 5 6

N
or

m
al

iz
ed

R
ec

ov
er

y
T

im
e

PR on UK

#Failed Machines

CoRAL
CoRAL+OPT

(b) Recovery time with and without
optimization normalized w.r.t. single

failure case.

Figure 9

4.3 Optimizing Recovery from Multiple Failures
Various works suggest users often disable checkpointing
(GraphX [7], Giraph [4], and Distributed GraphLab [12])
to eliminate its overheads. The PR-Consistent state can be
constructed even when no snapshots are captured using
initial state, i.e., default values. Moreover, Corollary 3.3
suggests that the execution state using default values is
already PR-Consistent. Hence, the recovery process can be

further optimized to incorporate the states of all the failed
machines together, instead of adding them one by one. When
the entire failed state is fully processed, it becomes PR-
Consistent with the available current execution states of the
machines not impacted by failure. Hence, computation can
resume using this PR-Consistent state.

Figure 9b shows the time taken by the CoRAL recovery
using initial state, with and without the above optimization.
The optimization further speeds up the recovery process by an
order of magnitude. This observation can be incorporated in
the checkpointing strategy itself – if checkpointing guarantees
subsets of local snapshots to be PR-Consistent, the snapshots
in those subsets can be incorporated together during the
recovery process, instead of adding them one by one.

4.4 Checkpointing: Impact on Network Bandwidth
We now evaluate the benefits of using locally consistent
checkpointing. During checkpointing, the captured snapshots
are saved remotely so that they are available upon failure.
This leads to an increase in network usage. In Figure 10, we
measure the 99th percentile 1 network bandwidth for BL and
CoRAL by varying the replication factor (RF) from 1 to 6,
normalized w.r.t. no replication 2.

1

3

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

N
or

m
al

iz
ed

B
an

dw
id

th

PR

LJ UK TT

CoRAL BL

 1

 3

 5

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

N
or

m
al

iz
ed

B
an

dw
id

th

MSSP

LJ UK TT

 1

 3

 5

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

N
or

m
al

iz
ed

B
an

dw
id

th

CC

LJ UK TT

 1
 3
 5
 7
 9

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

R
F
1

R
F
2

R
F
3

R
F
4

R
F
5

R
F
6

N
or

m
al

iz
ed

B
an

dw
id

th

KC

LJ UK TT

Figure 10: BL vs. CoRAL: 99th percentile network
bandwidth for varying RF (1 to 6) normalized w.r.t. no

checkpointing case.

As we can see, the peak bandwidth consumption increases
rapidly with increase in RF for BL because the consistent
checkpointing process saves all the snapshots at the same
time, which leads to simultaneous bulk network transfers. The
peak bandwidth consumption for CoRAL does not increase
as rapidly – this is because CoRAL staggers the capturing
of different snapshots over time, and hence, the snapshots
are transferred to remote machines at different points in
time at which they become available. On an average across
all benchmark-input configurations, there is a 22% to 51%
reduction in 99th percentile bandwidth using CoRAL as RF
is varied from 1 to 6.

There is a noticeable increasing trend for CoRAL on KC –
this is mainly because the checkpointing process in KC can

1 The performance trend is similar for higher percentile values.
2 The network statistics were measured using tcpdump.

be relaxed only during computation for a given core, which
in certain cases became a rather narrow window over which
all the snapshots had to be transferred.

 0
 20
 40
 60
 80

 100
 120
 140

B
an

dw
id

th
 (

M
B

/s
) RF3 : BL

00:00 Time 12:03 0
 20
 40
 60
 80

 100
 120
 140

B
an

dw
id

th
 (

M
B

/s
) RF3 : CoRAL

00:00 Time 11:12

All
Checkpointing

 0
 20
 40
 60
 80

 100
 120
 140

B
an

dw
id

th
 (

M
B

/s
) RF4 : BL

00:00 Time 12:38 0
 20
 40
 60
 80

 100
 120
 140

B
an

dw
id

th
 (

M
B

/s
) RF4 : CoRAL

00:00 Time 11:20

 0
 20
 40
 60
 80

 100
 120
 140

B
an

dw
id

th
 (

M
B

/s
) RF5 : BL

00:00 Time 12:26 0
 20
 40
 60
 80

 100
 120
 140

B
an

dw
id

th
 (

M
B

/s
) RF5 : CoRAL

00:00 Time 11:47

 0
 20
 40
 60
 80

 100
 120
 140

B
an

dw
id

th
 (

M
B

/s
) RF6 : BL

00:00 Time 12:49 0
 20
 40
 60
 80

 100
 120
 140

B
an

dw
id

th
 (

M
B

/s
) RF6 : CoRAL

00:00 Time 11:47

Figure 11: BL vs. CoRAL: Network usage for PR on UK.

Figure 11 shows the bandwidth consumption for PR on UK
with RF varying from 3 to 6. Here All (red lines) indicate total
bandwidth usage while Checkpointing (blue lines) indicate
bandwidth consumed due to checkpointing alone. As we can
see, for BL, the bandwidth periodically increases; moreover,
the intermittent spikes are due to the checkpointing process.
This is mainly because the local snapshots from all machines
are sent and received at the same time. For CoRAL, the
checkpointing process on different machines can take place
at different times and hence, the transfer of local snapshots is
spread over time, reducing the effect of bulk transfer across
multiple machines. This reduces network contention.

5. Conclusion
The semantics of asynchronous distributed graph processing
enables supporting fault tolerance at reduced costs. Following
failures, PR-Consistent state is constructed without discard-
ing any useful work performed on non-failing machines, i.e.
confined recovery is achieved. CoRAL uses locally consistent
snapshots that are captured at reduced peak network band-
width usage for transferring snapshots to remote machines.
Our experiments confirm reductions in checkpointing and
recovery overhead, and low peak network bandwidth usage.

Acknowledgments
We would like to thank our shepherd Lidong Zhou as well
as the anonymous reviewers for their valuable and thorough
feedback. This work is supported in part by NSF grants CCF-
1524852 and CCF-1318103 to UC Riverside.

References
[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan.

Group formation in large social networks: Membership,
growth, and evolution. In ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 44–54, 2006.

[2] P. Boldi and S. Vigna. The WebGraph framework I: Compres-
sion techniques. In WWW, pages 595–601, 2004.

[3] K. M. Chandy and L. Lamport. Distributed snapshots: De-
termining global states of distributed systems. ACM TOCS,
3(1):63–75, Feb. 1985.

[4] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan. One trillion edges: graph processing at
facebook-scale. In Proc. VLDB Endowment, 2015.

[5] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message-passing
systems. ACM Computing Surveys, 34(3):375–408, Sept. 2002.

[6] A. Farahat, T. LoFaro, J. C. Miller, G. Rae, and L. A. Ward.
Authority rankings from hits, pagerank, and salsa: Existence,
uniqueness, and effect of initialization. SIAM Jornal of
Scientific Computing, 27(4):1181–1201, Nov. 2005.

[7] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph processing in a
distributed dataflow framework. In USENIX OSDI, pages
599–613, 2014.

[8] M. Han and K. Daudjee. Giraph unchained: Barrierless asyn-
chronous parallel execution in pregel-like graph processing
systems. Proc. VLDB Endowment, 8(9):950–961, May 2015.

[9] Harshvardhan, A. Fidel, N. M. Amato, and L. Rauchwerger.
Kla: A new algorithmic paradigm for parallel graph computa-
tions. In PACT, pages 27–38, New York, NY, 2014.

[10] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX
ATC, pages 11–11, Berkeley, CA, 2010.

[11] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a
social network or a news media? In WWW, 2010.

[12] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein. Distributed graphlab: A framework for
machine learning and data mining in the cloud. Proc. VLDB
Endowment, 5(8):716–727, Apr. 2012.

[13] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, G. Czajkowski, and G. Inc. Pregel: A
system for large-scale graph processing. In ACM SIGMOD,
pages 135–146, 2010.

[14] D. Manivannan and M. Singhal. Quasi-synchronous check-
pointing: Models, characterization, and classification. IEEE
TPDS, 10(7):703–713, 1999.

[15] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and
M. Rosenblum. Fast crash recovery in ramcloud. In ACM
SOSP, pages 29–41, New York, NY, USA, 2011. ACM.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: Bringing order to the web. Technical report,
Stanford University, 1998.

[17] R. Power and J. Li. Piccolo: Building fast, distributed programs
with partitioned tables. In USENIX OSDI, pages 293–306,
Berkeley, CA, USA, 2010.

[18] M. Pundir, L. M. Leslie, I. Gupta, and R. H. Campbell. Zorro:
Zero-cost reactive failure recovery in distributed graph process-
ing. In ACM SoCC, pages 195–208, 2015.

[19] S. Salihoglu and J. Widom. GPS: A graph processing system.
In Scientific and Statistical Database Management Conference,
pages 22:1–22:12, 2013.

[20] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph
engine on a memory cloud. In ACM SIGMOD, pages 505–516,
2013.

[21] Y. Shen, G. Chen, H. V. Jagadish, W. Lu, B. C. Ooi, and B. M.
Tudor. Fast failure recovery in distributed graph processing
systems. Proc. VLDB Endowment, 8(4):437–448, Dec. 2014.

[22] L. G. Valiant. A bridging model for parallel computation.
CACM, 33(8):103–111, Aug. 1990.

[23] H. Cui, J. Cipar, Q. Ho, J.K. Kim, S, Lee, A. Kumar,
J. Wei, W. Dai, G.R. Ganger, P.B. Gibbons, G.A. Gibson, and
E.P. Xing. Exploiting Bounded Staleness to Speed Up Big
Data Analytics. In USENIX ATC, pages 37–48, 2014.

[24] K. Vora, G. Xu, and R. Gupta. Load the Edges You Need: A
Generic I/O Optimization for Disk-based Graph Processing. In
USENIX ATC, pages 507–522, 2016.

[25] K. Vora, S. C. Koduru, and R. Gupta. ASPIRE: Exploiting
Asynchronous Parallelism in Iterative Algorithms using a
Relaxed Consistency based DSM. In OOPSLA, pages 861–
878, 2014.

[26] Q. Ho, J. Cipar, H. Cui, S. Lee, J.K. Kim, P.B. Gibbons,
G.A. Gibson, G. Ganger, and E.P. Xing. More effective
distributed ml via a stale synchronous parallel parameter server.
In NIPS, pages 1223–1231, 2013.

[27] G. Wang, W. Xie, A. Demers, and J. Gehrke. Asynchronous
large-scale graph processing made easy. In Conference on
Innovative Data Systems Research (CIDR), 2013.

[28] P. Wang, K. Zhang, R. Chen, and H. Chen. Replication-based
fault-tolerance for large-scale graph processing. In IEEE/IFIP
DSN, pages 562–573, 2014.

[29] J. W. Young. A first order approximation to the optimum
checkpoint interval. CACM, 17(9):530–531, Sept. 1974.

[30] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In USENIX NSDI, pages 2–2, 2012.

[31] ZeroMQ. http://zeromq.org/.
[32] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Accelerate large-

scale iterative computation through asynchronous accumulative
updates. In ScienceCloud, 2012.

[33] X. Zhu and Z. Ghahramani. Learning from labeled and
unlabeled data with label propagation. Technical Report
CALD-02-107, Carnegie Mellon University, 2002.

