
Introduction
Mechanical ventilators are high-tech life

support devices. They fully replace or partial-

ly support the respiratory function of

patients in three distinctly different yet

sometimes overlapping areas [1]: 

a) Ventilation: i.e., elimination of CO2,

achievement of a desired arterial pH level 

b) Pump support: support of the respiratory

muscles, short- or long-term

c) Oxygenation: oxygenation of arterial

blood 

No matter what the modes on a particular

ventilator are called, they all have the goal of

maintaining a preset alveolar ventilation,

unloading the respiratory muscles to a cer-

tain degree, preventing end-expiratory alveo-

lar collapse (by use of positive end-expirato-

ry pressure, PEEP), providing a respiratory

gas of preset oxygen content, or doing any

combination of the above. The pertinent

parameters like tidal volume (VT), rate (f ),

inspiratory time, etc. must be set manually

and such adjustment may be rather complex.

A recent consensus conference on mechani-

cal ventilation concluded that there is no

recipe for adjusting the complex parameters

of a ventilator [1]. In light of such a depress-

ing conclusion one wonders how ventilator

adjustment can be automated. 

However, a few facts are well known and

even trivial. One fact is that alveolar ventila-

tion affects the partial pressure of arterial

CO2 (PaCO2). When the first researchers

thought about automation of ventilation,

“alveolar ventilation” was an obvious choice

as a parameter to control PaCO2 (or arterial

pH). And since arterial CO2 is not readily or

continuously available, its surrogate, end-

tidal CO2 (ETCO2), was used first [2,3]. The

control structures were simple, and only

tidal volume or rate was adjusted to vary

alveolar ventilation in order to achieve a pre-

set ETCO2 value. Since ETCO2 control was

extensively studied in the past, it is used in

figure 1 to illustrate one method of closed

loop control: negative feedback, breath-by-

breath control. While breath-by-breath nega-

tive feedback control was widely used and

became almost the synonym for closed-loop

control, it is not the only possible method of

automation.

Methods of closed-loop control
Apart from “negative feedback control”

methods, there is also a “positive feedback

control”. Besides breath-to-breath control

(rather slow, inter-breath control) there is

also intra-breath control (within breath,

rather fast control). A negative feedback con-

trol circuit aims to reduce the difference

between the target and the measured value to

essentially zero, as illustrated in figure 1.  For

this purpose, the actual value is subtracted

from the target value. 

A positive feedback control circuit aims to

create a difference between the target and the

measured value. For this purpose, the actual

value is added to the nominal target value.

The ventilator control (for example the pres-

sure) is manipulated to achieve the desired

difference. Positive feedback control systems

thus act as “amplifiers“ of the patient. They

amplify the target depending on how the

patient behaves. A good example is Propor-

tional Assist Ventilation PAV [4]. PAV adjusts

the instantaneous inspiratory pressure level

(intra-breath control) based on instanta-

neous flow and volume entering the patient.

Figure 2 shows the schematic diagram.

Negative feedback controlled systems do

have clear advantages. One is that the output

of a process can be controlled very precisely. In

control theory terminology, the steady state

error can be made zero. This means, for

example, that the target can be achieved,

within limits, even if the respiratory system

mechanics change. A second advantage is

that the transient response of a process can

be dramatically improved, i.e., it can be

accelerated. A third advantage is that external

disturbances like physiotherapy, pain stimuli,

and others are automatically compensated. A

potential disadvantage is that control may be

“rigid”, i.e. the preset value will be achieved

at any cost.

Positive feedback control is inherently

unstable. In the example of Figure 2, PAV

augments patient activity as well as artifacts,

since the method cannot distinguish between

true patient activity and signal noise. PAV

rests on the assumption that the patient’s

respiratory activity is stable in nature. If the

patient stops breathing or behaves unexpect-

edly in other ways, the positive feedback

approach fails [5]. Furthermore, positive

feedback modes like PAV potentially add

complexity to the ventilator. Particularly, the

patient-ventilator system may become unsta-

ble. For these reasons, special safety mea-

sures are needed for clinical application. If

used under tight operator control, however,

positive feedback control can be a very useful

auxiliary muscle.

Inter-breath control refers to adjusting a

given control parameter from breath to

breath but keeping the parameter constant
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throughout a given breath. Such controllers

need to adjust parameters within seconds

since breaths can also be controlled within

seconds. Intra-breath control refers to adjust-

ing a given parameter within a given breath.

Intra-breath control needs to be extremely

fast, i.e. the parameters need to be adjusted

within milliseconds.

Historical development 
of closed-loop ventilation
Published work on the subject can be ana-

lyzed based on the three main tasks of

mechanical respiratory support: Ventilation,

oxygenation, and pump support (see intro-

ductory chapter). table 1 provides an overview

of selected papers.

Ventilation

The first report on a closed-loop controlled

ventilator was published in 1953 [2]; it

describes “an electro-mechanical substitute

for the human respiratory center.“ The data

was not published. The control method was

based on ETCO2 and regulation of the inspi-

ratory pressure. The same idea was later put

into practice by Frumin [3,26] who devel-

oped the famous “Autoanestheton,“ an anes-

thesia machine with integrated ventilation

feedback-control. ETCO2 was measured,

compared to a target value, and the inspirato-

ry pressure was subsequently adjusted to

meet the set ETCO2 target. 

Many authors invented closed-loop con-

trollers in the years after Frumin‘s landmark

study. Most of them used ETCO2 and, with

the advent of the first intravascular sensors,

either pHa or PaCO2 in the feedback loop.

The controller output was pressure, tidal

volume, or respiratory rate. A Japanese

group [6,9] was the first to adjust two vari-

ables at the same time (VT and f ) to control

CO2. They were also the first to introduce

Work Of Breathing (WOB) as a parameter to

select the breathing pattern. Finally, East et
al. controlled not only ventilation (CO2) but

also end-expiratory lung expansion by

means of PEEP adjustment [15].

Many authors used ETCO2 as a substitute

for arterial PCO2. However, ETCO2 might

deviate significantly from expected values.

The degree to which it deviates depends on

lung disease and even heart disease [3,27].

For example, alveolar dead space and arteri-

ovenous shunting increase the difference

between end-tidal and arterial PCO2 [28]. It

may even be dangerous to use ETCO2, since

a lung embolus might cause ventilation to

stop altogether in an automatically con-

trolled ventilator, as was concluded from

animal experiments [13].

One shortcoming of the techniques

described above was that the initial breath

pattern had to be preset by the clinician.

This handicap clearly limited the practical

use of the controllers. Laubscher et al. were

the first to address this problem [22,29] .

They published an algorithm that needs no

input from the operator and automatically

selects a breath pattern adequate for an ini-

tial period of ventilation. 

Respiratory Pump Support

Another shortcoming of the control algo-

rithms described above is that the mecha-

nism worked only when spontaneous breath-

ing was absent. A French group was the first

to take spontaneous activity into account by

switching between Controlled Mechanical

Ventilation and Pressure Support Ventilation

based on ETCO2 [17]. Laubscher et al. carried

the idea further and made the transition from

passive to active ventilation an integral part

of their Adaptive Lung Ventilation (ALV) and

its first commercial implementation Adaptive

Support Ventilation (ASV) [23, 30, 31]. Both

approaches make “negative-feedback“ the

core of the control, i.e., if the patient breaths

more, the ventilator provides less support.

“Positive-feedback” has been introduced

more recently and is called Proportional

Assist Ventilation PAV [4]. With positive-

feedback, the ventilator provides increasing

pressure support as the patient’s respiratory

activity increases. The ventilator thus acts as

an “auxiliary respiratory muscle“ and works

similarly to power steering in an automobile.

In other words, the ventilator amplifies the

breathing activity of a patient.
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Figure 1. Basic diagram of end-tidal CO2 (CO2-et) closed-loop controller, feed-
back controller, or servo controller. A target value (CO2-et) is compared with
(added to or subtracted from] the controlled variable (actual measured end-
tidal CO2), and an error signal e is passed to the CONTROLLER. The CONTROL-
LER regulates the output variable or command signal (rate) to the VENTILATOR

in order to change the total minute ventilation (MV). The resulting change in
alveolar ventilation subsequently changes PaCO2 and thus end-tidal CO2, which
is fed back and compared again to the target. As soon as the desired value of
end-tidal CO2 is achieved, the error becomes zero and the rate remains
unchanged.
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Figure 2: Principle diagram of Proportional Assist ventilation PAV. A SENSOR
measures instantaneous flow F (and volume V as function of time, i.e., several
hundred times per second). A CONTROLLER in the feedback loop calculates the
pressure Pi that needs to be added to the baseline pressure P0. The sum of the

two is forwarded to the VENTILATOR (Psupp), which applies the instantaneous
pressure to the patient’s airways. This pressure results in a new flow F, which is
again fed back for a new adjustment of Psupp.



Iotti et al. attempted to combine the two

feedback principles and have two measured

variables drive the inspiratory pressure level:

alveolar volume tidal volume minus dead

space) and P0.1 (a non-specific measure of

the patient’s respiratory activity)[25]. They

showed that it is possible to combine posi-

tive and negative feedback control. 

Oxygenation

Very few authors have addressed automation

of arterial oxygenation (PEEP and FiO2).

This seems far more challenging than

automation of ventilation because of the

strong interaction with the cardiovascular

system. Dugdale et al. automated the admin-

istration of FiO2 in neonates [32]. Techni-

cally, the controller was rather simple, yet its

combination with an umbilical catheter was

an interesting feature. Strickland et al.
attempted to automate the weaning process

on the basis of multiple parameters, includ-

ing oxygen [20]. They had the computer

adjust the mandatory rate and the pressure

support level in SIMV. Probably the most

elaborate control procedures employ multi-

dimensional control structures and simulta-

neous adjustment of PEEP and FiO2 [18,24].

However, no patient data was published

until today; thus, clinical feasibility remains

to be shown. 

Commercially available 

closed-loop controlled modes

Mandatory Minute Ventilation, proposed by

Hewlett [10], has been available for some

years in multiple forms, as an automatic

mechanism to maintain minute ventilation

at a preset level. The clinician presets tim-

ing, tidal volume, and rate (or minute vol-

ume), and the ventilator adjust respiratory

rate and/or inspiratory pressure to achieve

the preset values. Different vendors have

implemented different versions of MMV. A

selection is given in table 2; a more compre-

hensive review can be found elsewhere [33]. 

In all available MMV implementations except

ASV, the clinician tightly controls tidal vol-

ume, inspiratory time, and respiratory rate.

By contrast, ASV chooses the breath pattern

automatically with the goal of the lowest

possible work of breathing. It is based on

continuously measured pulmonary mechan-

ics, and it essentially follows the Adaptive

Lung Ventilation controller scheme [23].

ASV constitutes the first commercially avail-

able MMV algorithm to base its decision on

actual patient data and not solely on clini-

cian input. As such, it is conceptually capa-

ble of following the disease process auto-

matically and with a ventilatory pattern

adapted to the respiratory system mechanics

[34]. This capability is unique among all

MMV methods currently available.

Conclusions
Respiratory management of intubated

patients is a complex problem, even if airway

management, sedation, nutrition, and infec-

tion control are excluded and only the very

limited problem of “how to set a ventilator“

is considered. In engineering terms, closed-

loop control of ventilation may be viewed as

a multidimensional problem with four

dimensions: time, physiologic task, primary

lung disease, and general therapeutic

approach (see figure 3). Start-up, mainte-

nance, and weaning are the principal dimen-

sions in time. In each phase, three distinctly

different dimensions must be addressed.

The first dimension is the ventilator settings

to treat problems like ventilation, oxygena-

tion, and respiratory muscle (pump) sup-

port, as discussed above (note that any com-

bination of these problems may occur at any

time). The second dimension is the type of

lung disease. For illustration purposes, we

shall call them “normal“ (like post-opera-

tive), ARDS (stiff lungs), and COPD (high

airway resistance) in figure 3. The third

dimension describes the level of risk a clini-

cian is willing to accept for the treatment of

a patient. This dimension is illustrated by

three levels of therapeutic approach:

“aggressive,“ “balanced,“ and “conserva-

tive.“

In figure 3 only three categories per

dimension are allowed. This might seem like

a simplistic approach. However, the combi-

nations of the dimensions add the required
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Table 1. Selected papers on closed-loop controlled ventilation.

Author Year [ref] Target variable Controller output Remarks vent oxy rp
Saxton 1953 [2] End-tidal CO2 Pinsp No patients + - -
Frumin 1957 [3] End-tidal CO2 Pinsp 64 patients + - -
Mitamura 1971 [6] Mixed exhaled CO2 VT, f Takes dead space and WOB into account + - -
Coles 1973 [7] End-tidal CO2 VT One sheep + - -
Schulz 1974 [8] Arterial pCO2 V’I (VT) Uses indwelling catheter + - -
Mitamura 1975 [9] Mixed exhaled VT, f Takes dead space and WOB into account + + -

CO2 and SpO2 FiO2
Hewlett 1977 [10] Minute ventilation fSIMV MMV + - +
Coon 1978 [11] Arterial pH VT 30 dogs + - -
East 1982 [12] Arterial PCO2 f Differential lung ventilation + - -
Ohlson 1982 [13] End-tidal CO2 VT Points out the pitfalls of using end-tidal CO2 + - -
Chapman 1985 [14] End-tidal CO2 Minute ventilation Uses a fixed normogram to select 

partitioning of MV into VT and f + - -
East 1986 [15] End-tidal CO2 f Study of 6 animals + + -

FRC PEEP
Yu 1987 [16] SpO2 FiO2 Study of 8 dogs - + -
Chopin 1989 [17] End-tidal CO2 Mode On-Off controller + - +

(SIMV or SPONT)
East 1991 [18] Arterial pO2 PEEP Uses a computerized protocol 

FiO2 derived from ECMO studies - + -
Rudowski 1991 [19] End-tidal CO2 VT Uses a barotrauma index to optimize 

f the choice of VT and f + - -
Strickland 1991 [20] f fSIMV Applied during weaning phase + + +

Min Vol exhaled PSV level
SpO2

Dojat 1992 [21] "Zone of comfort" PSV level "Zone of comfort" defined by f, VT,
end-tidal CO2 + - +

Laubscher 1994 [22] None Pinsp Automatic start-up algorithm; no operator
fSIMV input needed + - +
Te

Laubscher 1994 [23] Alveolar ventilation Pinsp Works in paralyzed and spontaneously 
fSIMV breathing subjects + - +
Te

Waisel 1995 [24] SpO2 FiO2 - - + -
PEEP

Iotti 1996 [25] P0.1 - - - +
alveolar volume PSV level

“vent”: focus on removal of CO2; “oxy”: focus on oxygenation of arterial blood; “rp”: focus on respiratory pump support. ECMO: extracorporal 
membrane oxygenation. Pinsp: inspiratory pressure level; PSV: pressure support ventilation; VT : tidal volume; f: rate; PEEP: positive end-expiratory 
pressure  

Table 2. Selected examples of MMV implementations

Name Preset variables Ventilator controlled variables Device
Original MMV f, VT f None
MMV MV, VT f CPU-1 (Ohmeda)
MMV MV, VT f, Pinsp Evita 4 (Dräger)
MMV MV Pinsp VEOLAR (Hamilton Medical)
AutoMode VT, f Pinsp, Psupp, Mode (PRVC or VS) Servo 300A (Siemens)
ASV %MV Pinsp, Psupp, f, Ti GALILEO (Hamilton Medical)
f: rate; VT: tidal volume; MV: minute volume; Pinsp: inspiratory pressure level, Psupp; pressure support level, Ti: inspiratory time, PRVC:
pressure-regulated volume control, VS: volume support, ASV: Adaptive Support Ventilation
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References

complexity. A simple calculation tells us that,

overall, 27 (3 x 3 x 3) different isolated cases

can be produced with the simple representa-

tion in Figure 3. For example, a patient with

COPD in the start-up phase needs a ventilator

to aid in ventilation and respiratory muscle

support. The treatment depends on the level

of risk the clinician is willing to take, i.e., on

the patient’s age, for example. When allow-

ing for multiple diseases (like acute-on-

chronic) and multiple problems (like ventila-

tion and respiratory pump support problem),

one ends up with 84 (4 x 7 x 3) different

combinations per phase in time. When these

84 combinations are multiplied by the num-

ber of phases (3), 252 different clinical prob-

lems that can be described by Figure 3 are

obtained. Each of these sub-problems may be

solved by a dedicated automatic ventilator.

However, it is clear that a ventilator with 252

modes of ventilation is a useless device.

Thus, closed-loop control methods must

address much more than  isolated problems

to be clinically useful. A few promising ideas

were shown above. However, it remains a

challenge to put all the particular and isolat-

ed solutions “under one hat“ for the benefit

of the patient and the team of care providers.
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Figure 3: Closed-loop control of ventilation. Start-up, maintenance, and weaning
are the principal phases. In each phase, three distinctly different issues need to
be addressed: The first issue concerns one or more principal deficiencies that
may be grouped in ventilation, oxygenation, respiratory muscle (pump) support
or any combination of these. The second issue is the type of lung disease: nor-

mal (like post-operative), ARDS (stiff lungs), and COPD (high airway resistance).
The third issue is the strategic dimension of risk management. This is illustra-
ted by three levels of therapeutic approaches: aggressive, “balanced,“ and con-
servative.


