
1

Automatic Conversion of Floating Point MATLAB Programs

 into Fixed Point FPGA Based Hardware Design
P. Banerjee D. Bagchi, M. Haldar, A. Nayak, V. Kim, R. Uribe

Northwestern University AccelChip, Inc.

2145 Sheridan Road, Evanston, IL-60208 350 E. Hubbard, Suite 400, Chicago, IL-60600

banerjee@ece.northwestern.edu www.accelchip.com

1. Introduction

Most practical FPGA designs are limited to finite
precision signal processing using fixed-point arithmetic
because of the cost and complexity of floating point
hardware. While mapping DSP applications onto FPGAs,
a DSP algorithm designer, who often develops his
applications in MATLAB, must determine the dynamic
range and desired precision of input, intermediate and
output signals in a design implementation to ensure that
the algorithm fidelity criteria are met. The first step in a
flow to map MATLAB applications into hardware is the
conversion of the floating point MATLAB algorithm into a
fixed point version using “quantizers” from the Filter
Design and Analysis (FDA) Toolbox for MATLAB.

This paper describes how the floating point computations
in MATLAB can be automatically converted to a fixed
point MATLAB version of specific precision for hardware
design. The techniques have been incorporated in the
AccelFPGA behavioral synthesis tool [7] that reads in
high-level descriptions of DSP applications written in
MATLAB, and automatically generates synthesizable RTL
models in VHDL or Verilog. Experimental results are
reported with the AccelFPGA version 1.5 compiler on a
set of five MATLAB benchmarks that are mapped onto the
Xilinx Virtex II FPGAs.

2. Related Work

The strategies for solving floating-point computations to
fixed-point conversion can be roughly categorized into
two groups [6]. The first one is basically an analytical
approach coming from those algorithm designers who
analyze the finite word length effects due to fixed-point
arithmetic [1,2]. The other approach is based on bit-true
simulation originating from the hardware designers [3,4,5].
There have been some recent work on automated compiler
techniques for conversion of floating point representations
to fixed point representations [8,9,10]. This paper
describes an efficient approach for converting floating
point MATLAB programs into fixed point MATLAB
programs automatically within the framework of a
commercial behavioral synthesis system called
AccelFPGA [7].

3. Algorithms for Auto-quantization
We now describe the algorithm for auto-quantization of
MATLAB programs. The overall algorithm consists of the
following passes:
1. Scalarization
2. Levelization
3. Computation of Partial Value Ranges of Variables
4. Forward Propagation of Value Ranges of Variables
5. Backward Propagation of Value Ranges of Variables
6. Auto-quantization

Scalarization Pass
The scalarization pass takes a vectorized MATLAB
statement and converts it into scalar form using enclosing
FOR loops.
Levelization Pass
The levelization pass takes a MATLAB assignment
statement consisting of complex expressions on the right
hand side and converts it into a set of statements each of
which is in a single operator form. This pass operates on
both scalar and array operations.
Computation of Partial Value Ranges of Variables
This algorithm takes in a scalarized and levelized
MATLAB program with some of the quantizations of
input variables specified, and computes the initial value
ranges for each variable in the program.
Forward Propagation of Value Ranges
This step takes the partial value ranges of the variables
obtained at the previous step and propagates the value
ranges in the forward direction using use-def analysis. The
algorithm handles simple blocks of assignment statements,
conditionals such as IF-THEN-ELSE, and FOR loops.
Backward Propagation of Value Ranges
This step propagates the value ranges of variables in the
backward direction. If the user has only specified the
quantizers of the output variables, the back propagation
pass will propagate the results to the right-hand side of an
assignment statement. The algorithm is similar to Forward
propagation.
Auto-Quantization
This step assigns values of quantizers based on the value
ranges of various variables.

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

2

4. Results on Benchmarks
We now report some experimental results on various
benchmark MATLAB programs using the AccelFPGA
version 1.5 compiler:
• A 16 tap Finite Impulse Response Filter (fir)
• A Decimation in Time FIR filter (dec)
• An Infinite Impulse Response Filter of type DF1 (iir)
• An Interpolation FIR filter (int)
• A 64 point Fast Fourier Transform (fft)
Table 1 shows the characteristics of the five MATLAB
benchmarks. We show the lines of MATLAB code, the
number of variables and computations for which automatic
quantization has been applied, and the distribution of the
precisions of the automatic quantizations. For example,
the 16 tap FIR filter needs 20 lines of MATLAB code, and
the automatic quantization has been applied to 10
variables. The precisions of the quantized variables are
[16,0], [16,2], [6,0], [16,8],[16,9], [5,0].

We now report on some results of comparisons of the
hardware designs produced by the AccelFPGA 1.5
compiler using the automatic quantizations. We report
results of resources and the frequency of the design for a
default case of 32 bit quantizations that is specified for all
variables using manual quantizations Table 2 shows the
results of the manual and automatic quantization for 5
benchmark examples for the Xilinx XC2V250 Virtex2
device.

5. References

1. L. B. Jackson, “On the interaction of roundoff noise and
dynamic range in digital filters,” Bell Syst. Tech. J., pp. 159-
183, Feb. 1970.

2. R. M. Gray, D. L. Neuhoff,, “Quantization”, Information
Theory, IEEE Transactions on , Volume: 44 Issue: 6 , Oct.
1998 pp. 2325 –2383.

3. W. Sung, and K.I. Kum, “Simulation-based word-length
optimization method for fixed-point digital signal
processing systems,” IEEE Trans. Signal Processing, vol.
43, no. 12, Dec. 1995.

4. S. Kim, K. I. Kum, and W. Sung, “ Fixed-point
optimization utility for C and C++ Based digital signal
processing programs,” IEEE Trans. Cir. Sys.-II: analog and
digital signal processing, vol. 45, no. 11, Nov, 1998.

5. H. Keding, M. Willems, M. Coors, and H. Meyr, “FRIDGE:
a fixed-point design and simulation environment” Design,
Automation and Test in Europe, 1998., Proceedings , pp.
429 –435,1998.

6. C. Shi, “Statistical Method for Floating-point to Fixed point
Conversion,” M.S. Thesis, Univ. California, Berkeley,
EECS Department, 2002.

7. P. Banerjee, M. Haldar, A. Nayak, V. Kim, V. Saxena, R.
Anderson, J. Uribe, "AccelFPGA: A DSP Design Tool for
Making Area Delay Tradeoffs While Mapping MATLAB
Programs onto FPGAs," Proc. International Signal
Processing Conference,Apr. 2003.

8. J. Babb, M. Rinard, C. A. Moritz, W. Lee, M. Frank, R.
Barua, A. Amarasinghe, “Parallelizing Applications into
Silicon,” Proc. FCCM Apr. 1999.

9. D. Brooks and M. Martonosi, “Dynamically Exploiting
Narrow Width Operands to Improve Processor Power and
Performance, “ Proc. HPCA, Jan. 1999.

10. A. Nayak, M. Haldar, A. Choudhary, P. Banerjee, "Precision
And Error Analysis Of MATLAB Applications During
Automated Hardware Synthesis for FPGAs," Proc. Design
Automation and Test in Europe (DATE 2001), Mar. 2001,
Berlin, Germany.

Table 1. Characteristics of the MATLAB Benchmarks.
Benchmark fir fft dec iir int

MATLAB
lines 20 98 38 33 38

Number of
auto
quantizers 10 42 11 17 11

Auto-
Quantizer

Values

[16,0],
[16,2],
[6,0],
[16,8],[
16,9],
[5,0]

[16,15],
[16,14],
[16,0]
[8,0],
[7,0],
7,1],
[5,0],
[4,0] ,
[3,0],
[1,0]

[16,11],
[17,15],
[8,0],
[7,0],
[3,0]

[17,15],
[17,16],
[16,14],
[3,0]

[16,11],
[17,15],
[7,0],
[4,0]

AccelFPG
A 1.5
Compile
Time (sec) 4.0 10.2 8.9 2.7 2.5

Table 2. Comparison of resource usage and
performance with the auto-quantization feature.

Resources Freq
fir LUTS MUX Mult ROMS (MHz)

32 bit 2938 2837 0 0 78.1

Auto 1185 1108 0 0 83.8
dec

32 bit 1837 696 4 32 44.3

Auto 975 362 1 17 57.1
iir

32 bit 1085 835 8 0 58.7

Auto 321 197 2 0 83.5
int

32 bit 832 318 4 32 49.5

Auto 407 97 1 0 48.8
fft

32 bit 23227 8770 0 32 29.6

Auto 5700 2628 4 16 39.2

Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’03)
1082-3409/03 $17.00 © 2003 IEEE

