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Abstract— TCP sessions in ad hoc networks compete with each
other for bandwidth. The use of shortest path routing can result
in multiple TCP sessions being channeled via a few congested
areas or hotspots. As a consequence, most of these multiple
TCP sessions interfere with each other and hence, experience
significant performance degradations. Spatially separating the
TCP sessions such that they inflict much lower interference
effects on each other may provide gains in performance. In this
paper we first investigate the possibilities of achieving such gains
by considering a centralized, ideal, and unrealistic congestion-
aware routing approach. We find that spatial separation benefits
are possible with the considered approach, and can especially
help long (in terms of hop count) TCP connections. We then
consider the implementation of a distributed routing protocol to
achieve the aforementioned spatial separation benefits. We find
that due to practicalities such as the need for the exchange of
congestion state, the existence of stale congestion information
and the creation of sub-optimal paths, the benefits due to
spatial separation are considerably undermined. We perform
both macroscopic simulations and microscopic studies of specific
constructed examples to understand the reasons and quantify
the various effects with both the centralized and the distributed
approaches. Our studies suggest that achieving noteworthy per-
formance gains by spatially separating TCP sessions may be
extremely difficult if not impossible in ad hoc networks.

Keywords: TCP, spatial separation, congestion-aware routing,
ad hoc networks

I. INTRODUCTION

When multiple TCP sessions exert interference on each
other, they end up losing packets and hence cause each other
to throttle. This leads to significant performance degradations.
In this paper, our objective is (a) to study whether there exist
benefits due to spatial separation of TCP connections so as
to reduce inter-connection interference and (b) to implement
a congestion-aware routing approach that can exploit benefits
due to spatial separation of TCP connections if any and thus,
improve TCP performance.

Several congestion-aware routing (or load-aware routing)
schemes have been proposed [1], [2], [3], [4]. The studies
show that the congestion-aware routing protocols provide a
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lower end-to-end packet delay and lower packet dropping rate.
However, most of the work use UDP connections and CBR
traffic to evaluate the performance of the congestion-aware
routing schemes. Instead of keeping a constant packet sending
rate as in a UDP connection, a TCP connection always tries to
maximize its throughput via congestion control and congestion
avoidance mechanisms. The congestion control and congestion
avoidance mechanisms detect packet losses and in response
the TCP source shrinks its congestion window size. Therefore,
TCP may exhibit different performance traits, as compared to
UDP, with a congestion-aware routing protocol.

In this paper, our objective is to first examine if by spatially
separating TCP connections by intelligently implementing
routing functionalities, we can alleviate inter-connection in-
terference effects and thereby improve performance. Toward
this, we consider a centralized, ideal (but unrealistic) scenario,
in which there are multiple TCP connections in a static ad hoc
network. Each TCP connection is routed on a path such that
the interference effects of a connection on other connections
are minimized. The computation of the least congested path is
based on the global awareness of the topology and the traffic
distribution over the network (i.e., the paths on which the
TCP connections are routed). We name the centralized routing
scheme as the Centralized Congestion-Aware Routing (CCAR)
scheme. The TCP performance with the CCAR scheme is
compared with that of its performance in a practical scenario in
which a shortest path routing protocol is used (in this paper we
use AODV protocol [5]). We find that if the source-destination
pair are close to each other (within 4 hops), there are no spatial
separation benefits seen and the TCP goodputs1 achieved
by such connections are not enhanced by congestion-aware
routing. This is a consequence of the fact that if congestion
occurs near a short TCP connection, either the source or the
destination is within the congestion area2, or the connection
has to find a much longer path (than the shortest one) in

1Here we define TCP goodput as the number of sequenced bits that a TCP
receiver receives per second (duplicate packets are not counted).

2The congestion area cannot be bypassed, no matter which path the
connection uses.



order to bypass a congestion area. Since the goodput of short
TCP connections is sensitive to the length of a path, it is
difficult for short TCP connections to obtain spatial separation
benefits in either of the two cases. For longer connections, the
performance of the CCAR scheme demonstrates that gains in
goodput due to spatial separation of connections is possible.
The ratio of the goodput achieved by the CCAR scheme to that
achieved by shortest path routing increases with the distance
between the source-destination pair.

Next, we design a Distributed Congestion-Aware Routing
(DCAR) protocol. Our attempt is to mimic the behavior of the
CCAR scheme to the extent feasible (without global aware-
ness). In order to do so, it is required that each node possesses
some state information, that characterizes the interference
patterns in the node’s close proximity. We modify the AODV
protocol (with HELLO messages) to make it “congestion-
aware”. We find that several factors prevent the DCAR scheme
from providing the same benefits that were observed with
the CCAR scheme. These factors are (a) additional overhead
incurred for exchanging congestion information among nodes,
(b) stale congestion information, and (c) lack of global infor-
mation at each node that inhibits the computation of optimal
paths.

We also observe that the DCAR scheme helps long TCP
connections. However, this is at the expense of hurting short
TCP connections. In order to elucidate the behavioral traits
that cause the above macroscopic effect, we consider a sim-
pler constructed example for microscopic study. The example
clearly demonstrates that, there is a competition for bandwidth
among TCP flows in ad hoc networks. With the DCAR
scheme, a longer connection can find longer paths that are
affected to a less extent by other TCP flows than with shortest
path routing. However, this is not to say that it is not affected
nor that it does not exert interference on other TCP flows. By
choosing the longer but less congested path we find that the
sources of the longer TCP connections are more aggressive
in injecting packets into the network. This, in turn, increases
the congestion experienced by shorter TCP connections, that
are unable to bypass congested regions effectively. This causes
their goodputs to decrease.

The remainder of this paper is organized as follows. In
Section II, we provide a brief description of related work on
congestion-aware routing and improving TCP performance by
means of modifications to the routing layer. Section III de-
scribes our simulation environment. We study our centralized,
ideal routing approach in Section IV. In Section V we discuss
the distributed congestion-aware routing scheme and evaluate
its effects on TCP performance. Finally, we conclude the paper
in Section VI.

II. RELATED WORK

A limited number of congestion-aware routing schemes
have been proposed in the literature. In [1], a Dynamic Load-
Aware Routing (DLAR) was proposed. The number of packets
in the interface queue of a node is used to quantify the traffic
load at the node. In [2], a Load-Balanced Ad hoc Routing

(LBAR) protocol was proposed. The traffic load experienced
by a node is defined as the total number of routes passing
through the node and its neighbors. A Load-Sensitive Routing
(LSR) scheme was proposed in [3] and in this work the traffic
load at a node is defined as the total number of packets being
queued at the mobile node and at its neighbors. A Delay
based Load Aware On-demand Routing scheme (D-LAOR)
was proposed in [4]. D-LAOR tries to discover the shortest
delay path by estimating the packet delay at each node. In
the aforementioned previous work, only UDP connections and
CBR traffic are considered in evaluating the performance of
the congestion-aware routing schemes. Since UDP does not
back-off or vary its transmission rate in response to failures,
the effects of link failure and end-to-end packet delay are less
dramatic on UDP performance. In comparison, TCP detects
packet losses and adjusts its packet sending rate in response
to packet losses to avoid congestion (by means of some
congestion control and congestion avoidance mechanisms).
Therefore, one might expect that TCP with congestion-aware
routing performs different from UDP with congestion-aware
routing. In particular, since TCP sources can more aggressively
transmit packets to commensurate with the lower levels of
congestion on a path that is discovered with congestion-aware
routing, we expect that TCP may in fact gain much more.
Different from previous work, in this paper we study the
effects of the congestion-aware routing on TCP performance.

The COPAS protocol [6] uses node-disjoint paths for TCP-
DATA packets in the forward direction and for TCP-ACK
packets in the reverse direction to eliminate interaction be-
tween TCP-DATA and TCP-ACK packets of the same connec-
tion. In contrast to COPAS, [7] proposes the use of the same
route for both TCP-DATA and TCP-ACK packets in order to
reduce the total number of links that may be occupied by the
connection. The effects of multi-path routing protocol on TCP
performance have also been studied in [8], [9]. With multi-
path routing multiple paths are computed from the source
to the destination. The studies from [9] show that using
multiple paths concurrently does not help in improving TCP
performance and the authors propose using the shortest path
as the primary route and the shortest-delay path as the backup.
However, they do not discuss whether the multi-path routing
scheme simply provides enhanced robustness to failures or if
it does provide spatial separation between TCP flows.

In this work, in contrast with [9], we attempt to spatially
separate TCP flows, and analyze via constructed examples,
as well as, by means of macroscopic simulation studies, the
reasons behind the observed behavioral traits of TCP with a
congestion-aware routing policy.

III. THE SIMULATION ENVIRONMENT

Since, our simulations form an integral part of our discus-
sions on whether spatial separation can even help in improving
TCP performance we first present our simulation framework.

For our studies we use the Network Simulator ns-2 [10].
The Distributed Coordination Function (DCF) defined in
the IEEE 802.11 standard [11] is used at the MAC layer.



The radio model is similar to a commercial radio interface,
Lucent’s WaveLAN, which is a shared-media radio with a
nominal bit-rate of 2Mb/sec, a nominal communication range
of 250 meters, and a sensing range of 550 meters3. We made
modifications to the AODV [5] routing protocol to enable
our distributed version of congestion-aware routing (to be
described in Section V). The performance metric that we are
interested in is the ratio of goodput that is observed with our
proposed scheme to that observed with a traditional shortest
path routing protocol.

In our simulations we place 200 nodes in a 2500m x 1000m
region. All nodes are static and mobility is not considered in
this paper4. In each simulation iteration, a random scenario is
generated; 5 source-destination pairs are randomly chosen and
TCP connections are established between these pairs. These
TCP connections begin sequentially. The initiation instances
of consecutive TCP sessions are separated by 1 second. Each
TCP connection lasts for 100 seconds and is then terminated.
The simulation results reported in this paper represent the
average results over 1000 different scenarios.

TCP New-reno is used in all our simulations. The length of
each TCP packet is 1460 bytes. In order to avoid inactivity
due to a sequence of TCP back-off operations which are
triggered by a series of packet losses due to link failures, in
our simulations, the TCP sender disables its retransmission
timer and enters a standby mode upon receiving a route error
(RRER) packet. Subsequently, the sender sends out a packet
periodically until an acknowledgment is received; the period
is equal to the current value of its retransmission timer. Our
approach is similar to the ones used in [12] and [13]. The
maximum congestion window size is set to be 8 [13].

IV. EXAMINING IF SPATIAL SEPARATION CAN YIELD

GAINS: A CENTRALIZED CONGESTION-AWARE ROUTING

(CCAR) APPROACH

In this section, we consider a centralized ideal case to
explore if there are benefits due to spatial separation. In the
centralized ideal scenario, we assume that each node knows the
topology of the entire network. We use a cost function similar
to the one used in [2] to measure the level of congestion at each
node. The cost function is the total number of TCP connections
passing through the node and the nodes that are within its
sensing range 5. Specifically, each node knows every TCP

3Nodes within the communication range can communicate with each
other; nodes within the sensing range of a transmitting node can sense the
transmission of the node, but the Signal-to-Noise (S/N) is too low to decode
the signal.

4Note that our main objective here is to understand the implications of
congestion and not mobility. The protocol will need additional overhead to
cope with mobility. Since our results demonstrate that even in static scenarios,
the overhead can render congestion-aware routing prohibitive, we can only
expect the benefits of the congestion-aware routing to be further undermined
with mobility.

5We count the TCP connections passing through the neighboring nodes
that are within a node’s sensing range due to the fact that, the transmission
of these neighboring nodes can be sensed by the node, and thus preclude the
node from accessing wireless medium. In short, the TCP connections passing
through the node are affected by those connections that pass through these
neighboring nodes.

source-destination pair in the network and the path on which
each connection is routed at any given time. The congestion
level of a node is then abstracted by a weight assigned to that
node. For every TCP connection that goes through a node, or
through one of its neighboring nodes that lie within its sensing
range, the weight of the node is incremented by WTCP .

Wnodei
= ni ∗ WTCP . (1)

where, ni is the number of TCP connections within node i’s
sensing range. The weight of the link between node i and node
j (represented by linki,j) is computed to be the maximum of
the weights of the two nodes i and j and a link penalty denoted
by Wp,

Wlinki,j
= MAX(Wnodei

, Wnodej
) + Wp . (2)

The link penalty, Wp, is used to take the effects of path length
on TCP performance into consideration. In our congestion-
aware routing scheme, even though, some longer paths may be
less congested than the shorter ones, the extra links increase
the round trip time experienced by packets and may cause
an inefficient use of the wireless bandwidth. By imposing the
link penalty Wp, we attempt to prevent TCP connections from
choosing extremely long paths.

In our simulations (with this ideal case) we consider 5 TCP
connections. Two heuristic strategies are used for choosing
a path for a TCP connection. In heuristic strategy I, the
connections are initiated sequentially. When a route is needed,
the source node computes a minimum weight route (the sum
of the weights of the links along the chosen route is the
minimum computed from all the possible routes); the route is
used until it breaks; when the route breaks, a new minimum
weight route is computed. Pre-existing TCP connections do not
change their paths when a new TCP connection is initiated. In
heuristic strategy II, we assume that the 5 TCP connections
begin simultaneously. We examine all possible permutations6

of routing the 5 TCP connections in the network. For each
permutation we estimate the overall congestion cost in the
network. This is denoted by the sum of the weights of all the
nodes for that permutation. We then assign routes to each TCP
connection from the permutation that minimizes this overall
congestion cost. During a simulation run, a TCP connection
continues to use the assigned route in spite of false link
failures that might occur. Note that in static networks, all
the link failures are false link failures. A false link failure
is caused by the fact that a sender may fail to obtain a
CTS response from the receiver after several consecutive RTS
attempts. The receiver fails to respond either because the
medium at the receiver side is sensed to be busy or because the
NAV (Network Allocation Vector) value of the receiver is not
zero [11]. In order to make the comparisons with “TCP with
the shortest path routing” fair, we initiate a route discovery
process at each instance of a false route failure. Furthermore,
a route is not computed until a route reply (RREP) reaches
the route request (RREQ) originator. Note here that since link

6There are 5! such permutations.



failures are ignored, the sender uses the same singular route
throughout the connection and never switches routes. Thus,
the only purpose of the RREP and RREQ is to emulate traffic
overhead.

In our simulations, we set Wp = 1 and WTCP = 17. Figure
1 shows that when two nodes are within four hops of each
other, the ideal strategies provide no benefits as compared with
TCP with shortest path routing. The reason for this observation
is due to the fact that the transmission of a node can be
sensed by all the nodes that are within its sensing range.
Since the sensing range is more than two times larger than
the communication range, if congestion occurs in the vicinity
of such a short connection, typically either the source or the
destination, or both, are within the affected area. In such cases,
the bottlenecks cannot be avoided and thus no spatial diversity
benefits are possible. When the source-destination pair are
further apart, benefits are seen due to the spatial separation
of TCP sessions. Furthermore, the two heuristic methods are
similar in terms of the achieved goodput. We varied the value
of Wp and found that Wp = 1 gives us the best performance.
If the value of Wp is too large, Wp dominates the route
discovery process and usually the shortest path has the least
congested weight. In this case the congestion-aware routing
scheme performs the same as the shortest path routing scheme.
On the other hand, if the value of Wp is too small, the path
with the least congestion weight is usually much longer than
the shortest one. Since the goodput of short TCP connections is
very sensitive to path length, the goodputs of such connections
are decreased significantly with the use of extremely long
paths.

Since short TCP connections might be expected to increase
the TCP window more rapidly than long TCP connections
(i.e., cause higher levels of congestion), we consider modifying
WTCP such that it is inversely proportional to the length of the
connection in terms of hops. Thus, the presence of shorter TCP
connections in the vicinity of a node, causes larger increases
in the assigned weight WTCP . In other words, for a given
TCP connection, we set the increment in WTCP due to the
connection to be 1/L, where L was the hop count of the
particular connection. We observed that with this modification
the heuristic strategies have a performance that was almost
identical to that of TCP with the shortest path routing. The
reason for this is that decreasing the value of WTCP has the
same effect as increasing the value of Wp. If WTCP is set
to be 1/L, Wp dominates the route discovery process and
the shortest path usually has the least congestion weight (as
discussed earlier).

Finally, in heuristic strategy I, instead of choosing the
minimum weight route, we consider choosing the route that
had the least congested bottleneck link among the first K
least congested edge-disjoint paths (K is set to 5 in our

7Simulation results with other parameter values were worse in terms of the
achieved goodput than for the case when Wp = 1 and WTCP = 1; we omit
these results from the paper due to space limitations.
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Fig. 1. Performance comparison of the heuristic strategies vs shortest path
routing

simulations8. In other words, if the maximum of the weights
of the links on a particular route say routej was Wmax,j , we
choose the route R that had the minimum of this weight, i.e.,
route R had a link with maximum weight

Wmax,R = MINj(Wmax,j) .

In case, there were ties, among the tied routes, the route
with the minimum total weight was chosen. The idea behind
this strategy was to avoid bottleneck links that were most
congested. The performance of this scheme is represented by
Heuristic strategy I (modified) in Figure 1. We see that this
strategy yields a performance that is almost identical to that
of the other strategies. The reason for this observation lies in
the fact that, the K least congested paths are usually closely
coupled and the difference in the weights of their bottleneck
links is insignificant. Generally, it is observed that the path
with the least congested bottleneck link is the path with the
least total congestion weight.

The above simulation results seem to suggest that when
a new TCP session is initiated, if one could somehow in-
telligently choose the least congested path, due to spatially
separating the connection from congested areas, one could
potentially see performance gains. However, due to inherent
capacity limitations of the broadcast medium, the benefits are
limited only to long TCP connections.

V. DISTRIBUTED CONGESTION-AWARE ROUTING (DCAR)
SCHEME

Our next objective is to investigate whether the benefits
due to spatial separation seen with our CCAR scheme are
possible via a distributed protocol. Thus, we implement a
Distributed Congestion-Aware Routing (DCAR) scheme to
mimic the CCAR strategy described in Section IV. In the
DCAR scheme, each node i keeps track of the number of TCP

8Larger values of K result in the discovery of much longer paths, which
degrades TCP goodput. Smaller values of K may inhibit the identification
and exclusion of congested bottleneck links.
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connections (nTi
) that pass through itself. Furthermore, with

a periodicity of TH seconds, each node broadcasts nTi
to its

one-hop neighbors9, in the form of HELLO messages. Thus,
each node can compute its congestion weight using Equation
(1). Note that this congestion weight is also piggybacked onto
the HELLO messages. As in the CCAR scheme, in the DCAR
scheme, 5 TCP connections are established between randomly
chosen node pairs10, in a static network. We set the weight of
a TCP connection WTCP = 1 and the link penalty Wp = 1.
The periodicity of HELLO messages TH is set to 1 second11.
We modified the AODV protocol to make it congestion-aware.
When a source node needs a route to a destination, it sends
out an RREQ request. When an intermediate node receives
the first copy of this RREQ, it sets an RREQ collection timer
and collects all the copies of this RREQ that are received
prior to the expiry of the timer. Upon the expiry of the
timer, the intermediate node updates and forwards the RREQ
that contains the lowest indicated congestion weight. Like the
intermediate nodes, once the destination receives the first copy
of the RREQ message, it sets an RREQ collection timer and
collects all the copies of this RREQ that are received prior
to the expiry of the timer. Upon the expiry of the timer, the
destination responds with an RREP to the RREQ message
that contains the lowest indicated congestion weight. Once
the source receives the RREP, a path with the least congestion
weight is established between the source and the destination.

9In order to avoid high overhead, the congestion weight is propagated only
to one-hop neighbors instead of to all neighbors within the sensing range.
If we were to propagate information with regards to a larger neighborhood
size, the size of the HELLO packets increases significantly. We performed
a few sample simulations that demonstrated that this further degraded the
performance of TCP with the DCAR scheme.

10We also performed simulations with 10 TCP connections and the simu-
lation results are similar to those with 5 TCP connections. We therefore omit
these results from this paper.

11Simulations with TH= 2 seconds and 3 seconds are also performed.
As we will discuss later, choosing longer HELLO intervals causes stale
information, which undermines the performance of the DCAR scheme. On
the other hand, choosing shorter HELLO intervals incurs high overhead which
has a significant negative effect on the performance of the DCAR scheme.

Figure 2 compares the performance, in terms of goodput,
of the DCAR scheme with that of shortest path routing. We
see that with the DCAR scheme, even though the goodputs
of long TCP connections improve, the goodputs of short TCP
connections suffer, on average, a decrease by about 5% to
10%. This observation is different from our observation in
Section IV , in which the goodput of long TCP connections
improves without hurting short TCP connections. The reason
for the observed performance difference is that even though the
DCAR scheme mimics the behavior of the CCAR approach,
the DCAR scheme is still different from the CCAR strategy
in the following ways:

• The DCAR scheme uses HELLO messages to allow
nodes to exchange congestion weight information. In the
CCAR scheme this information is provided to nodes
magically, without overhead.

• In the CCAR scheme, the congestion weight is updated at
each node instantaneously if there are any route changes
(route breakages or route establishments) in the network.
In the DCAR scheme, the congestion weights are updated
by means of HELLO messages. The HELLO messages
are broadcast only every TH seconds. It is possible that
the congestion weights of nodes stale if there are route
changes that are yet to be identified or reported. Note
that when a link breaks with AODV, the RERR message
only propagates to the source. The nodes that are on
the path between the broken link and the destination are
oblivious to the route failure until these nodes receive
another RREQ from the same source or their connection
alive timers12 for the connection expires. Furthermore,
the changes in the congestion weights of nodes along a
broken route cannot be traced by the neighbors of these
nodes until the nodes report the changes in the HELLO
messages of the next round.

• In the CCAR scheme, a globally optimal path in terms of
the chosen congestion weights can be computed because
we assume that each node knows the topology of the
entire network and the paths used by on-going TCP
connections. In the DCAR scheme, it is possible that
the discovered path is not the globally optimal path. The
reason for this is that the RREQ message that carries
the optimal path information does not always reach the
destination either due to RREQ collisions or due to the
fact that the particular RREQ message is not received by
intermediate nodes or the destination node before their
RREQ collection timer (as discussed earlier) expires.

• In the CCAR scheme, the congestion weight of a node is
computed to be the number of TCP connections passing
through itself and its neighbors that are within its sensing

12The connection alive timer is used to trace the status of each TCP
connection. The timer is updated once a node receives a packet that belongs
to the associated TCP connection. If the timer expires, the node classifies
the connection to be an expired connection and does not include it in the
computation of its congestion weight. In the simulations, we set the value of
the timer to be six times the average arrival interval (continuously estimated)
of the packets that belong to the TCP connection.
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range. In the DCAR scheme, in order to avoid high
overhead (to control the size of the HELLO messages),
the congestion weight of a node is broadcast to only its
one-hop neighbors.

In the next sub-section, we show the effects of these differ-
ences on performance of the DCAR scheme by considering
several idealized versions of the DCAR scheme.

A. Idealized Distributed Congestion-Aware Routing Schemes

In this sub-section, in order to evaluate the effects of
the differences between the DCAR scheme and the CCAR
scheme on TCP performance and to understand the reason for
the DCAR scheme’s poor performance, we consider several
idealized versions of the DCAR scheme:

• Ideal Scheme I: In order to evaluate the effects of HELLO
message on TCP performance, we consider an ideal case
in which the congestion weight is exchanged among one-
hop neighbors magically without overhead. We name it
magical hello approach.

• Ideal Scheme II: In order to evaluate the effects of stale
congestion information on TCP performance, we consider
an ideal case in which the congestion weight can be
updated instantaneously in a magical manner once there
are route changes. We call this version, the magical
update approach. In this ideal scheme, the congestion
weight is also exchanged among one-hop neighbors mag-
ically without overhead (i.e., magical-hello approach is
implicitly included).

• Ideal Scheme III: In order to evaluate the effects of the
distance up to which the congestion weight is propagated,
on TCP performance, we consider an ideal case in which
the congestion weight can be magically distributed to the
neighbors within the sensing range. In this ideal scheme,
magical hello and magical update approaches are also
included.

Figure 3 shows the TCP goodput ratio with these three
idealized DCAR schemes (the comparison base line is still
TCP with shortest path routing). We see that HELLO mes-
sages significantly hurt short TCP connections as compared

N0 N2N1 N3

N5 N6 N7 N8

N4

TCP connection

Fig. 4. A network with one TCP connection

to long TCP connections. In fact, the goodputs of long TCP
connections improve with HELLO messages than without
HELLO messages, thanks to the significant negative effects
of HELLO messages on short TCP connections. Even though
decreasing the frequency of HELLO messages may alleviate
the aforementioned negative effects on TCP performance,
longer HELLO interval causes stale congestion information
that deteriorates the performance of TCP (we will discuss
the effects of this factor later). Furthermore, by eliminating
the effects of HELLO messages through the magical hello
approach, we find that even though we improve the goodput
of short TCP connections by a significant percentage, we still
do worse than that with shortest path routing. In comparison,
long TCP connections always obtain an increase in goodput.

In Ideal Scheme II, besides eliminating the effects of
HELLO messages, we also eliminate the effects of stale
congestion information by using the magical update approach.
Stale congestion information is caused by the fact that, the
congestion weights of the neighbors (of a tagged node under
consideration) have been changed but since these neighbors
are yet to broadcast information with regard to these changes,
the tagged node under discussion is unaware of the changed
weight. Here we use an example to illustrate how stale
congestion information is caused and its effects on the route
discovery process. There is one TCP connection from N0 to
N4 in Figure 4. The solid line between nodes represents that
they are one-hop neighbors. Suppose initially the connection
uses path N0 − N1 − N2 − N3 − N4. According to Equation
(1), the weights of N0, N1, N2, N3 and N4 are 2, 3, 3, 3 and
2, respectively. The weights of N5, N6, N7 and N8 are 1, 0,
0 and 1, respectively. If a false link failure occurs when N0

tries to communicate with N1, N0 has to initiate a new route
discovery process. In this case, even though N0 knows that the
path to N4 has been broken, N1, N2, N3 and N4 still use the
old congestion weights during the new route discovery process.
Now, the weight of the path N0−N1−N2−N3−N4 is larger
than that of the path N0−N5−N6−N7−N8−N4 and thus,
the second path is chosen by the connection. Note that the
second path is one hop longer than the first path. A longer
path translates to lower TCP goodput (because there is only
one TCP connection in this network). Note that with shortest
path routing, the source could have possibly re-computed the
original path via nodes N1, N2 and N3. This effect is likely



to have a more dramatic impact on shorter TCP connections
than the longer ones13. By eliminating the effects of this factor
by means of the magical update approach, even though the
goodput of short TCP connections can be improved, it is
still less than that with shortest path routing. Since, the short
TCP connections benefits from Ideal Scheme II, they end up
injecting higher packet loads on to the network, This in turn,
hurts the goodput (due to the increased congestion) of the
longer TCP connections.

In Ideal Scheme III, besides eliminating the effects of
HELLO messages and stale congestion information, we prop-
agate the congestion weight of a node to all neighbors within
its sensing range magically, without any overhead. We see that
the goodputs of long TCP connections are improved and the
short TCP connections are not affected as much. However,
TCP with Ideal Scheme III still performs worse than TCP
with the CCAR scheme. The main reason for the performance
difference is that with the CCAR scheme, once a source
node receives a route reply, it computes the globally least
congested path and use it to communicate. With the DCAR
scheme and the three idealized versions of the DCAR scheme,
the “least congested path” being discovered may not be the
globally least congested path. The RREQ message that carries
the optimal path information may not reach the destination
either due to RREQ collisions or due to the fact that the
particular RREQ message is not received by intermediate
nodes or the destination node before their RREQ collection
timers (as discussed earlier) expire. The failure of discovering
the globally least congested path causes the TCP connection
to use a sub-optimal path to transmit packets. The use of such
sub-optimal paths further prevents the DCAR scheme from
obtaining the same benefits seen by the CCAR scheme.

B. Microscopic Performance Studies of Congestion-Aware
Routing

In this sub-section we construct a microscopic example to
provide a more fundamental understanding of the results dis-
cussed in the previous sub-section. In particular, our objective
is to deliberate the reasons for the enhancement (in terms
of goodput) in performance of the longer TCP connections
and the complementary degradation in the performance of the
shorter ones with congestion-aware routing.

We consider a grid topology shown in Figure 5. The
distances between both the vertical neighbors and horizontal
neighbors on the grid are 240 meters. There are two TCP
connections in the network: TCP connection I is from N20 to
N29 and TCP connection II is from N21 to N24. These two
TCP connections are initiated at the same time and they last
for 120 seconds. The goodputs of the two TCP connections are

13As an example, if a single hop connection enjoys a capacity of C Mbps,
by adding an additional hop immediately reduces to C/2 Mbps since only
one of three nodes in the route can transmit at any given time. Similarly
the addition of a fourth node (and a fifth node) can reduce the achievable
maximum capacity to C/3 (or C/4) Mbps. Beyond four hops however,
simultaneous transmissions of the same connection are possible and the
reductions with additional hops are less dramatic.
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Fig. 5. A network with two strings and two TCP connections

computed with the shortest path routing scheme, the DCAR
scheme and the idealized DCAR scheme III.

The simulation results tabulated in Table I are the average
of 20 simulation runs with different random seeds14. From
Table I we see that long TCP connection (Connection I) has
the lowest goodput with shortest path routing while the short
TCP connection (Connection II) has the highest goodput with
shortest path routing. With the DCAR scheme, the long TCP
connection obtains about a 74% improvement in its goodput
while the short TCP connection suffers about a 14% decrease
in its goodput. With Idealized DCAR scheme III, the goodput
of the short TCP connection is almost the same as it is with
shortest path routing. However, the goodput improvement ob-
tained by the long TCP connection is lower with the Idealized
DCAR scheme III as compared to that with the DCAR scheme.
We further examine the routes that these two connections use
with these schemes and find that with the shortest path routing
scheme, most of the time, TCP connection I uses the route
N20 −N21......N24......N29, which is the shortest path for this
connection. At the same time, TCP connection II always uses
the route N21 −N22 − N23 −N24, which is also the shortest
path for it. With the DCAR scheme, TCP connection II still
uses route N21 − N22 − N23 − N24 while TCP connection I
uses either route N20 −N10 −N0......N5......N9 −N19 −N29

or route N20 − N30 − N40......N45......N49 − N39 − N29

in order to bypass the congestion region generated by TCP
connection II15. In these two cases, N1 through N4 or N41

through N44 are within the congestion region generated by
Connection II (for example, N1 and N41 are within the sensing
range of N21). The interference caused by Connection II to
Connection I is alleviated in this case than that with shortest
path routing. Therefore, Connection I becomes more robust in
the competition with Connection II. On the other hand, since
Connection I becomes more robust, the interference caused by
it to Connection II increases. The increased interference de-
creases the goodput of TCP Connection II. With the Idealized
DCAR scheme III, we find that while TCP Connection II still

14Note here that even though the units of measurement are packets, each
packet is of fixed length (1460 bytes) as mentioned earlier.

15The exact route chosen depends on the random back-off timers particular
to the experiment.



TABLE I

GOODPUT OF THE TWO TCP CONNECTIONS WITH DIFFERENT ROUTING

SCHEMES (UNIT: NUMBER OF PACKETS)

Routing Schemes TCP Connection I TCP Connection II
Shortest Path Routing 2882 226

DCAR 2516 395
Idealized DCAR

Scheme III 2860 300

uses route N21−N22−N23−N24, TCP connection I uses route
N20 −N30 −N40 −N50......N55......N59 −N49 −N39 −N29.
Note here that, with Ideal Scheme III, the weight of the nodes
N1 through N4 and N41 through N44 are changed instanta-
neously (i.e., they reflect higher weights) with the initiation of
the short TCP connection. Thus the longer connection chooses
the correct least congested path, i.e., choose the path via
node N51 − N59. We wish to point out that with the DCAR
scheme, since the node weights of N1 through N4 and N41

through N44 reflect a zero weight even with the short TCP
connection (HELLO messages carry only one-hop congestion
information), the long TCP connection is routed on one of
these sub-optimal paths. In this case, the interference between
these two connections occurs only at N20, N21, N22, N30 and
N40. Therefore, we expect the long TCP connection to obtain
some spatial separation benefits without significantly hurting
the short TCP connection.

From this microscopic example we also observe that, with
the congestion-aware routing scheme, short TCP connections
have fewer routes to choose than long TCP connections. As
an example, if Connection II in Figure 5 were to choose a
path to circumvent (if possible) the longer connection and
its interference zone, the weight on the new chosen path
would significantly be higher than the weight of the shortest
path. Thus, with each and every considered routing policy,
Connection II is always routed on the same path which is the
shortest path. In summary, it is difficult for short TCP connec-
tions to bypass congestion areas and obtain spatial separation
benefits. Furthermore, long TCP connections become more
robust and thereby compete better with short TCP connections.
This causes the goodputs of long TCP connections to improve
at the expense of hurting short TCP connections to a certain
extent.

In a nutshell, even though we obtain performance gains by
spatially separating TCP connections in a centralized ideal
scenario, the additional overhead incurred for exchanging
congestion information, stale congestion information, and lack
of global information at each node prevent our DCAR scheme
from exploiting such benefits. The performance results of
our DCAR scheme are not specific in that, any other dis-
tributed congestion-aware routing scheme, in order to discover
congestion-aware paths, will either (a) have to expend high
overheads to obtain highly accurate congestion information, or
(b) expend much lower overhead at the expense of obtaining
much less accurate and possibly stale congestion information.
In the first case, high overhead undermines their performance

and in the second case, the reduced accuracy causes the use of
sub-optimal path and thus prevents the exploitation of spatial
separation benefits. Overall, any distributed congestion-aware
routing scheme cannot completely eliminate the effects of the
factors that were discussed earlier. In summary, we conclude
that congestion-aware routing fails to provide significant spa-
tial diversity benefits from TCP’s perspective.

VI. CONCLUSIONS

In this paper, we show that the overhead that is necessary for
achieving distributed congestion-aware routing in wireless ad
hoc networks severely undermines the spatial diversity gains
achieved. We perform a thorough investigation of whether
spatial separation of TCP connections can provide benefits
and explore a distributed way of achieving the gains. First,
we investigate if we can obtain performance gains through
separating TCP connections spatially in ad hoc networks,
with a centralized ideal approach. Our studies suggest that
the benefits due to spatial separation of TCP connections
do exist. However, the benefits only apply to long TCP
connections. Subsequently, we design a distributed congestion-
aware routing scheme to exploit the benefits observed with
the centralized ideal approach. The performance results with
our distributed congestion-aware routing scheme show that
even though the distributed congestion-aware scheme can help
improve the goodput of long TCP connections, it is at the
expense of hurting short TCP connections. We also consider
several idealized versions of the distributed congestion-aware
routing scheme to investigate (a) the effects of the overhead
incurred for exchanging congestion information, (b) the effects
of stale information, and (c) the effects of using sub-optimal
paths (possible due to inaccurate information) on the perfor-
mance of our distributed congestion-aware routing scheme.
Our studies show that these factors prevent our distributed
congestion-aware scheme from obtaining the benefits that were
observed with the centralized ideal approach. The effects that
were observed with our distributed congestion-aware routing
scheme are not specific to our scheme and will affect any other
distributed congestion-aware routing scheme. We conclude
that achieving noteworthy performance gains by spatially
separating TCP sessions may be extremely difficult if not
impossible in ad hoc networks.
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