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ABSTRACT
User surveys have shown that a typical user has over
a hundred apps on her smartphone [1], but stops using
many of them. We conduct a user study to identify such
unused apps, which we call zombies, and show via exper-
iments that zombie apps consume significant resources
on a user’s smartphone and access her private informa-
tion. We then design and build ZapDroid, which enables
users to detect and silo zombie apps in an e↵ective way
to prevent their undesired activities. If and when the
user wishes to resume using such an app, ZapDroid re-
stores the app quickly and e↵ectively. Our evaluations
show that: (i) ZapDroid saves twice the energy from un-
wanted zombie app behaviors as compared to apps from
the Play Store that kill background unwanted processes,
and (ii) it e↵ectively prevents zombie apps from using
undesired permissions. In addition, ZapDroid is energy-
e�cient, consuming < 4% of the battery per day.
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INTRODUCTION
The Google Play Store has more than 1.3 million
apps [22], and the number of app downloads is roughly 1
billion per month [15]. However, after users interact with
many such apps for an initial period following the down-
load, they almost never do so again. Statistics indicate
that for a typical app, less than half of the people who
downloaded it use it more than once [13]. Reports also
suggest that more than 86 % of users do not even revisit
an app, a day after the initial download [30]. Uninstall
rates of apps however (longer term), of about 15 to 18 %
are considered high [26]. This means that users often
leave installed apps on their phones.
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More generally, users may only interact with some down-
loaded apps infrequently (i.e., not use them for prolonged
periods). These apps continue to operate in the back-
ground and have significant negative e↵ects (e.g., leak
private information or significantly tax resources such
as the battery). Unfortunately, users are often unaware
of such app activities. We call such seldom-used apps,
which indulge in undesired activities, “zombie apps.”

In this paper, we seek to build a framework, ZapDroid, to
identify and subsequently quarantine such zombie apps
to stop their undesired activities. Since a user can change
her mind about whether or not to use an app, a zombie
app must be restored quickly if the user chooses.1

The classification of an app as a zombie app is inher-
ently subjective. An app unused for a prolonged period
should be classified as a zombie app if its resource usage
during the period is considered significant and/or if its
access of private data is deemed serious. Thus, instead
of automatically classifying zombie apps, we seek to em-
power the user by exporting the information that she
would need to make this decision. Moreover, the way in
which a zombie app should be quarantined depends on
whether the user is likely to want to use the app again
in the future (e.g., a gaming app that the user tried once
and decided is not interesting vs. a VoIP app that the
user uses infrequently). The apps that a user is likely to
use again fairly soon must not be fully uninstalled; real
time restoration (when needed) may be di�cult if there
is no good network connectivity. We seek to enable users
to deal with these di↵erent scenarios appropriately.
Challenges: We address many challenges en route de-
signing and building ZapDroid. First, to motivate the
need for ZapDroid, we ask the question: “How often do
users download apps and leave them on their phones,
and how do these apps adversely a↵ect the user in terms
of consuming phone resources and privacy leakage?” We
address this challenge via an extensive user study. Next,
we ask “How can we detect background apps that either
consume high resources or violate privacy in a lightweight
manner ?” Such apps are the candidates for being zombie

1For example, [12] reports that there are over 300 million
installs of Skype, but the number of active users daily is only
4.9 million. Inactive users of Skype may want to disengage
the app to prevent it from using network/energy resources.
However, they may want quick restoration when needed.



apps. Continuous app monitoring (e.g., [49]) can be too
resource-intensive to be practical. Further, application-
level implementations are infeasible since Android does
not allow any app to track the permission access patterns
of other apps. The third challenge is to e↵ectively quar-
antine apps, i.e., “How can we design e↵ective methods
to ensure that zombie apps are quarantined and remain
in that state unless a user wants them restored?” With
current approaches, apps’ background activities are con-
strained only temporarily [32], until they are woken up
due to time-outs or external stimuli [6, 14]. Finally, “
How can we restore previously quarantined apps in a
timely way, even under conditions of poor network con-
nectivity (if the user desires)?” The restored app must
be in the same state that it was in prior to the quaran-
tine. Reinstalls from the Google Play Store can be hard
if network connectivity is poor and hence, should not be
invoked when it is highly likely that the user will restore
the app. Further, clean uninstalls can result in loss of
application state.
Contributions: Our framework, ZapDroid, addresses
the above challenges and allows users to e↵ectively man-
age infrequently used apps. In designing and building
ZapDroid, we make the following contributions.

• Showcase the unwanted behaviors of candi-

date zombie apps: We conduct a month-long study
where we enlist 80 users on Amazon’s Mechanical
Turk to download an app (TimeUrApps) we develop.
TimeUrApps identifies (other) apps that have not been
used for the month, on the users’ phones. Once we
identify these apps, we undertake an in-house, com-
prehensive experimental study to understand their be-
haviors when they are not being actively used. We find
that a zombie app on a typical user’s phone (the me-
dian user in our targeted experiments) could consume
as much as 58 MB of bandwidth and more than 20%
of the total battery capacity in a day. Further, many
of such apps access information such as the user’s lo-
cation and transmit this over the network.

• Identify candidate zombie apps that are most

detrimental to the user’s device: We design mech-
anisms that are integrated within the Android OS (we
make changes to the underlying Android Framework’s
activity management, message passing, and resource
management components) to track (i) a user’s inter-
actions with the apps on her device to identify unused
apps, and (ii) the resources consumed and the private
information accessed by these apps to determine can-
didate zombie apps, from which the user can choose
to quarantine those she considers to be zombie apps.

• Dynamically revoke permissions from zombie

apps, or o✏oad them to external storage: The
quarantine module of ZapDroid is invoked based on
user input. She has to categorize a zombie app as
either “likely to restore” or “unlikely to restore”; the
two categories are quarantined di↵erently. For the first
category, only permissions enjoyed by the zombie app
are revoked but all relevant data/binaries are stored

on the device itself. For the second category, the asso-
ciated data/binaries are removed from the device and
user-specific app state is moved to either the cloud or
to a di↵erent device (a desktop) owned by the user;
the transfers occur when there is good network con-
nectivity (e.g., WiFi coverage or a USB cable).

• Restore an app with all its permissions if the

user desires: ZapDroid restores a zombie app on the
user’s device if she so desires. The state of the app
is identical to that prior to the quarantine. For the
“likely to restore” category of apps, the restoration
time is < 6ms. For the “unlikely to restore” cate-
gory, restoration depends on the network connectivity
to where the app was stored during the quarantine and
is typically on the order of a few seconds.

We evaluate ZapDroid via extensive measurements on
5 di↵erent Android smartphones (from 4 vendors). We
show that the overhead of ZapDroid is low ( < 4% of the
battery is consumed per day). We show that ZapDroid
saves more than 2⇥ the energy expended due to zombie
app activities, as compared to other popular apps on
the Google Play Store used to kill undesired background
processes; further, unlike these apps, it prevents access
to undesired permissions by the zombie apps.

Note that ZapDroid does not require changes to an exter-
nal cloud store (for quarantine or restoration); all modi-
fications are made only in the Android OS. We envision
that the features of ZapDroid will be useful in general,
and our hope is that this could lead to an integration of
the functions within the Android OS.

UNDERSTANDING ZOMBIE APPS
We begin with an in-depth measurement study that has
two main goals: (a) revealing zombie apps, via an IRB-
approved user study, and (b) profiling zombie apps to
quantify their adverse e↵ects both in terms of resource
consumption as well as privacy leaks.

User Studies
We undertake a large-scale user study to identify apps
that are installed but not used. We build an app,
TimeUrApps,and post it to the Google Play Store. We
solicit volunteers on Amazon Mechanical Turk to install
TimeUrApps. TimeUrApps records the following for 30
days: (i) the apps installed on users’ devices, and (ii)
the timestamps of all events where an app is switched
to the foreground from the background or vice versa. It
implicitly starts the Accessibility Services [3] upon ac-
tivation, which facilitates the collection of this informa-
tion. This allows the detection of apps that have been
inactive for extended periods.

To be eligible for our study, we required that a user must
have at least 40 third-party apps installed. This number
was motivated by a Nielsen study [20], which reports
that the average number of third-party apps on a user’s
smartphone is 41 (although many users can have a much
higher number of such apps [13]). A total of 87 users
downloaded TimeUrApps. We filtered out 7 users that



Category Types of Apps

Games Role playing and turn-based games

Tools Memory cleaners and task managers

Productivity Barcode scanners and cloud drives

Entertainment Media streaming and ticket sales

Social Social networks and event planning

Table 1: Types of apps in the top 5 categories.
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Figure 1: App statistics from the user study.

installed new apps just prior to downloading our app, to
reach the required app count of 40 (so that they could
claim the reward that we promised). This left us with
80 users. The data collected by TimeUrApps from each
user’s phone was transferred to our servers using WiFi
as long as access was available within a five day period
after collection. If no WiFi access was available for 5
days, the data was transferred on the cellular network.
All the apps that were unused for a period of a month
are considered potential zombie apps. We select the top
5 categories of unused apps (Table 1) based on this data
set and perform a more in-depth study. The categories
are based on the definitions in the Google Play Store.

The number of apps in various categories that we ob-
served in our dataset is plotted in Figure 1a. We see
that more than 1,000 unique apps were not used in the
one-month test period. We also examine whether the
number of unused apps on a device depends on the to-
tal number of apps installed. In Figure 1b, we show the
fraction of apps that were never used, for each user, in
the month. Interestingly, the results suggest that regard-
less of how many apps were installed on a phone, a user
rarely interacts with more than half of them.

Offline Measurement Methodology
Once we identify unused apps from our users, we per-
form o✏ine measurements to determine which of these
consume significant resources or access/leak private in-
formation while running in the background. We measure
the resources consumed in terms of the battery drain, the
network bandwidth, and time spent on the CPU. Note
that we did not measure these on the study subjects’
phones since this needs active monitoring (rooting the
phones) and transferring large volumes of data.
Scenarios considered: Our measurement studies were
conducted on five di↵erent smartphones, from four dif-
ferent vendors: a Moto X (Motorola), a Nexus 4 and a
Nexus 5 (LG), a Samsung Galaxy S4, and an HTC One.
First, we did a quick examination to find the apps that
consumed the highest resources. We then installed these
apps in isolation, and let them run in background mode
without user intervention for a period of 100 hours. Our

goal is to characterize individual app behavior. Second,
we chose 15 users at random from our 80 volunteers, each
with a di↵erent number of unused apps (ranging from 7
to 54), and installed all the unused apps from a user
profile on a phone. We then executed all these apps in
background mode without user intervention, to quantify
the collective impact of the apps. In this section, we only
show subsets of our results due to space constraints.

For some of the apps, we took additional steps to en-
sure their proper execution. For example, the Facebook
app will not execute unless the user has an account and
has logged onto it on the device (many users who had
Facebook installed never interacted with it during our
month-long study!). A second example was the Angry
Birds game; unless the users finished the first level, the
app would not have an initial score to check against other
users and would not communicate with a server. In this
case, we assume that a user who installed Angry Birds
has completed at least one level. Our rendering in the
above cases provides a conservative estimate of resources
consumed by the apps; a more complex (and possibly re-
alistic) profile will incur higher resource drain.
Measuring resource consumption: Our smartphones
transfer content over WiFi (we have some limited ex-
periments over LTE as discussed later). Each device
connects to a Man-in-the-Middle (MitM) Proxy, which
logs every IP packet that the device sends out. On the
Android devices themselves, we (a) embed a certificate
generated by our proxy as a “root certificate” to en-
sure that the proxy can decode all packets sent by the
device, and (b) install tcpdump to monitor the tra�c
the device sends out on the local network, e.g., UDP
broadcasts. We used PowerTutor[49] to estimate the
CPU usage and energy consumption by each app. The
readings in Joules are converted to a battery percent-
age. For example, the Samsung Galaxy S4 has a a rating
of 9.88Wh (2600mAh@3.8V [24]), which corresponds to
9.88⇥ 3600 J. The percentage of battery power is ex-
pressed relative to this rating. Note that PowerTutor is
not used with ZapDroid; it is only used in our measure-
ment study.
Permission access patterns: Since Android does not au-
tomatically allow us to log the permissions accessed by
an app, we root one of our phones and install ZapDroid
(described later). This allowed us to log the default per-
missions that were accessed by these applications.
Measuring space consumed by zombie apps: As an aux-
iliary resource, we measure the disk space consumed by
each zombie app on any user’s smartphone. There are
two types of data being stored: (i) App Binary : This
is user-independent data, which includes the app binary
downloaded from the Google Play Store (.apk) and any
additional data that the app will need for it to function;
the Google Play Store puts a limit of 50MB on the for-
mer and 2GB on the latter [17], (ii) App Data: This is
user-dependent data, which is not content created by the
user herself (e.g., photos) but the byproduct of her inter-
action with the app (e.g., temporary files); we only focus
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Figure 3: Energy consumption by zombie apps.

on the latter because the former cannot be classified as
something that the user would want to get rid of. Since
our user study did not provide us with any information
on the App data (the phones were not rooted), we dis-
tributed our app to 25 volunteer students with rooted
Android phones and gathered this data separately.

Measurement Results and Inferences
Next, we present our measurements to showcase the im-
pact of zombie apps (any app that was unused for the
month is considered a zombie app) on a user’s device.
Bandwidth impact: In Figure 2a, we quantify the net-
work tra�c generated by some of the popular zombie
apps in our dataset. Many of these consume bandwidth
due to advertisements. Games like Words with Friends,
in addition, actively try to find new games that are likely
to interest the user. These apps therefore consumed an
inordinate amount of network bandwidth, due to contin-
uous synchronization with remote servers. Worse, even if
the user ignored or disabled the app’s notifications it con-
tinued to perform the activity in the background. The
figure also shows that a zombie app could consume more
than 1 MB of bandwidth over a 24-hour period; thus,
over the same period, a user with 20 zombie apps could
consume 20 MB of bandwidth; most of our 80 volunteer
users had at least 20 apps that remained unused for the
month. If the WiFi is turned o↵, these communications
happen over the cellular network. We verified this over a
12-hour period. During this time, for example, approx-
imately 38 MB was transferred over LTE due to Words
with Friends (similar to WiFi). This hurts the user when
mobile operators impose limits on cellular data usage.

Our next experiment is performed with the second sce-
nario described earlier, and captures the collective be-
haviors of apps for a randomly selected set of users.
The network transfers due to each user’s zombie apps
are shown in Figure 2b. We observe that the collective

group of zombie apps on some users’ phones could trans-
fer more than 100 MB of data per day.
CPU consumption: For many zombie apps, CPU
spikes caused by the apps correlate with network trans-
fers. There are, however, some zombie apps that continu-
ously consume CPU cycles in the background, even when
not indulging in network activities. One such app is Hill-
Climb, which, as revealed in our strace-based [27] in-
spection, updates its internal database that stores cached
advertisements; the app also records the levels that have
been completed by the user. Since this resource expense
is implicitly captured in our energy results, we omit the
details due to space constraints.
Energy drain: In Figure 3a, we show the battery drain
due to both network and CPU activities by popular zom-
bie apps (the same as in Figure 2a) on a Google Nexus
5, which has a battery capacity of 2300 mAh at 3.7V.
We see that 4 of the zombie apps consumed about 6% of
the battery capacity per day (⇡ 25% of the battery over
the 100-hour period). Note that this measurement was
conducted over WiFi; over the cellular network the en-
ergy consumed could have been three times as much [43].
Finally, the collective impact of a larger number of such
zombie apps (as is the case on our volunteers’ phones)
will be even worse. In Figure 3b, we see that over the
24-hour period, the zombie apps installed on a typical
user’s phone consumed about 24% of a Galaxy S4’s bat-
tery power on average (median of about 22%).
Use of undesirable permissions and privacy leaks:
From Figure 4, we observe that almost all zombie apps
access the phone’s state which allows them to get a
unique identifier associated with the device. This is
mostly used for advertisement delivery and for tracking
the end user. However, a zombie app can use this permis-
sion to track who a user may be calling [29]. In addition,
most zombie apps requested access to the user’s location,
or a permission to modify the network connectivity (e.g.,
switch access points with WiFi, or disconnect from a net-
work) of the device. Note that all the zombie apps shown
accessed the Internet in the background. The part of the
figure that is shaded, indicates permission bits that leak
privacy; we verified that some of this information was ac-
tually communicated over the network (e.g., HillClimb
accessed and transferred the unique device identifier –
Read Phone State – over the network). These results in-
dicate that there is a significant risk of privacy leakages
when a user has zombie apps on her smartphone.
Storage: From Figure 5, we see that the amount of
space taken up by an app is dominated by the size of the
binary (and additional user-independent data required
by the app) and not the data created by the user. Thus,
if storage is a concern for users, stopping the execution
of zombie apps is inadequate by itself.

AN OVERVIEW OF ZAPDROID
ZapDroid’s goal is to eliminate the adverse e↵ects of in-
frequently used apps on a user’s device by e↵ectively
quarantining them. However, it also seeks to quickly re-
store such apps if the user later wishes to interact with
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them. In Figure 6, we show the high-level architecture
of ZapDroid and the interactions between its modules.
Detecting and profiling zombie apps: The detection
and profiling module monitors all apps on a user’s device.
Apps with which the user does not interact for prolonged
periods (a parameter that is set by the user; set to 1
week in our implementation) are candidate zombie apps.
For these apps, the module then (i) tracks their resource
consumption and (ii) logs the permission bits accessed
by them. This allows zombie apps to be identified.
User input for quarantine: A rank ordered list
of the candidate zombie apps (based on either re-
source consumption or permission access criteria) iden-
tified as above, is presented to the user via the front
end of ZapDroid. The list also contains a sum-
mary of each zombie app’s activity in terms of the
CPU usage (in seconds), network usage (in KB/MB),
battery consumption (in %), storage consumed (in MB),
and the permission bits accessed by each zombie app.
The user may sort the list based on any metric of her
concern and tag a subset of these zombie apps to be
quarantined. In addition, the user may declare these
zombie apps (individually) as ones that she is likely to
use in the near future (“likely to restore”) or as ones that
she will not be using again in the near future (“unlikely
to restore”).
Quarantining zombie apps: Based on the user’s in-
put as above, the quarantine module of ZapDroid seam-
lessly quarantines the chosen zombie apps. Depending
on whether the zombie app is tagged as “likely to re-
store” or “unlikely to restore”, ZapDroid retains it on
the device (in the first case) or moves the zombie app
along with its associated data to the cloud or to another
form of free storage (in the second case).

No free lunch: By quarantining an app, a user essentially
“removes” the app from her phone (albeit temporarily).
Thus, if she stopped using the app because of the lack
of some features that are later incorporated by an up-
date, she must get to know of these new features from
an external channel (e.g., a website), since her phone
will not receive updates for quarantined apps. Second,
if interactive apps (e.g., Skype) are quarantined, exter-
nal messages using that app are not received with the
current ZapDroid implementation, unless the user ex-
plicitly restores the app (we discuss how ZapDroid may
be modified to overcome this later). Given this, apps are
not automatically quarantined; instead, the user decides

which apps are to be virtually removed from her smart-
phone. To use a previously quarantined zombie app, the
user ‘untags’ the app from ZapDroid’s front end.
Restoring apps chosen for quarantine: Based on
user input, the restoration module of ZapDroid returns
the app to the exact same state that it was in, prior
to quarantine. The process of restoration for “likely to
restore” apps just involves re-enabling their permissions.
To restore an “unlikely to restore” app, the restoration
module downloads the app from where it is stored and
subsequently re-enables its permissions.
Remark: ZapDroid exclusively resides on the user’s
smartphone. No changes are needed to the store to which
an “unlikely to restore” app is moved. The only require-
ments are that put and get interfaces be implemented
by the store (as is commonly the case).
Auxiliary goals: We seek to satisfy the following ad-
ditional goals when designing ZapDroid:

• Low overhead: ZapDroid should not consume sig-
nificant resources on a user’s smartphone. The quar-
antine process should not impact device performance
(e.g., o✏oad to cloud when good WiFi connectivity is
available), and restoration of apps should be quick.

• Broad compatibility: ZapDroid should be usable
on most Android devices, if not all. In other words, it
must not be limited to working on a specific vendor’s
device(s) or on a particular version of Android.

• Security: ZapDroid should not escalate the privileges
of any application (if such escalations are allowed, po-
tentially new unknown vulnerabilities could arise).

IDENTIFYING AND PROFILING ZOMBIE APPS
The first module of ZapDroid detects unused apps and
monitors their resource consumption and permission ac-
cess patterns. Any unused app that consumes resources
or accesses permissions is a candidate zombie app.
Finding unused apps: ZapDroid classifies third-party
apps with which the user does not interact for prolonged
periods (the value is set by the user via ZapDroid’s front
end) as unused apps.
Detecting foreground apps: An app is considered as be-
ing used if it is executed in the foreground. To detect
apps that run in the foreground, ZapDroid uses assistive
technology that is part of Android;2 since ZapDroid is
2We could have used Activity lifecycle callbacks towards
identifying candidate zombie apps; instead, we simply reuse
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partly implemented in Android’s Linux kernel, no user
intervention is required to enable accessibility. At install
time, ZapDroid adds an accessibility service that cus-
tomizes the wake-up trigger by subscribing to the event
TYPE WINDOW CONTENT CHANGED. This event
notifies a user space function (see Figure 7a) whenever
a new window, menu, or activity is launched. Similarly,
whenever a new app is brought to the foreground or when
the screen is locked, the accessibility service notifies the
user-space function. The user-space function records all
of these events in a user file that is created upon install
(this file contains a list of all third-party apps and is pop-
ulated upon install). Periodically, ZapDroid parses the
file to examine those apps that were not activated for a
duration greater than the user-specified period. These
apps are then categorized as the candidate zombie apps.
Monitoring network usage: ZapDroid uses the ker-
nel netfilter module qtaguid (available since Android-
3.0 Linux kernel) to track network tra�c based on the
UID of the owner process (which is the app’s unique iden-
tifier). The output of this module is written to the file
(/proc/net/xt qtaguid/stats). ZapDroid’s Resource
Manager component (see Figure 7a) checks this file ev-
ery 24 hours (it uses Android’s Alarm Manager to set the
timers) or whenever the device is rebooted (ZapDroid is
notified by the Broadcast Receiver) and copies the rele-
vant content with regards to unused apps to a user file.
Specifically, it records the total numbers of bytes sent
and received by each unused app in that period.
Monitoring CPU usage: To monitor CPU
usage, ZapDroid leverages Android’s cgroups

(Control Groups). ZapDroid reads the file
/acct/uid/<uid of app>/cpuacct.usage (there is
a file per UID) to determine the CPU ticks consumed
by an app. The single entry in each of these files is then
copied to the user file discussed earlier.
Determining battery consumption: To compute the en-
ergy consumed by an unused app, the Resource Monitor
uses the linear scaling model (based on CPU ticks con-
sumed and network tra�c transferred) used in Android’s
Fuel Gauge [8] but at coarser time periods of 24 hours.

assistive technology that was part of TimeUrApps. We ob-
serve that the overheads are similar (minuscule) with both
approaches (results omitted due to space constraints).

Determining storage: The Resource Monitor in Zap-
Droid calls the du command to measure the disk usage
of an unused app. It essentially measures the space con-
sumed by three folders (recursively): 1) /data/data/

<pkg name>/ (the application’s data on the flash), 2)
/data/data/<pkg name>/lib which is a soft link to
the app library (the app libraries), and 3) <External

Media>/Android/<pkg name>/ (any data on external
storage such as an SD card).
Remarks: We do not use approaches that rely on
iptables [11] or cgroups [19] for tracking network traf-
fic since these approaches result in higher energy over-
heads without really o↵ering any additional benefits. We
also do not use Fuel Gauge or PowerTutor [49] directly
since they do not account for UDP tra�c transferred by
some of the zombie apps (e.g., Pandora).
Tracking apps’ permission access patterns: The
permission access patterns of an app are not exposed to
any user-level tool (or even a system-level tool unless
it is enforcing the permission). Thus, ZapDroid requires
modifications to components of Android to track the per-
missions accessed by zombie apps.
Tracking permissions invoked by unused apps: To track
the permissions accessed, ZapDroid includes a new
system-level service in Android called the Permission
Service. It also executes a modified version of Android’s
Service Manager to start the Permission Service at boot
time. The Permission Service does not have privileges
to make modifications to any other component(s) in the
OS and executes as an isolated process. Our modifica-
tions essentially cause the Android’s service manager to
send an asynchronous message to the Permission Ser-
vice whenever it grants a permission to an app. The
messaging does not block the service manager process
from acting on the permission; therefore, it does not in-
troduce any significant delays. The message consists of
the UID of the app invoking the permission, the permis-
sion, and the resource that the app is trying to access
(if any). Note that the messaging is essentially an IPC
(inter-process communication) mechanism. It is imple-
mented using AIDL (Android Interface Definition Lan-
guage) [4]. Note also that the asynchronous messages
are “one-way” (from the service manager to the Permis-
sion Service). To enable permission tracking, we had to
modify many files in the Android Framework (wherever



permissions were being enforced). Note that Android
requires apps to create Java wrapper methods (JNI) to
enable native code (C/C++) to interact with its API.
These wrapper methods enable Android to enforce the
permissions as with regular Java apps and do not require
special consideration for native code [41].

QUARANTINING ZOMBIE APPS
Zombie apps can belong to one of two categories de-
pending on user input: “likely to restore” (Category L)
or “unlikely to restore” (Category U). For Category L,
quarantine involves revoking permissions from the zom-
bie apps and preventing them from consuming resources;
the apps are however retained on the user’s smartphone
to ensure a quick restoration when needed. For Category
U, primarily to save on storage in addition, ZapDroid
moves the app binary and any associated data from the
smartphone to remote storage. These functions of Zap-
Droid are performed by a Quarantine Manager which is
implemented as an unprivileged Android system service.
User input: When a user indicates that a zombie
app should be quarantined using ZapDroid’s front end
(therein, also indicating its category), ZapDroid’s quar-
antine module is invoked. The user, using the front end,
can also indicate the external storage to which a zombie
app is to be moved if it belongs to Category U.
Quarantining “likely to restore” zombie apps:
The Quarantine Manager of ZapDroid essentially kills a
Category L process that is executing in the background.
It also prevents other apps or processes from communi-
cating (and thus re-initializing or waking up) this app.
Note that a user-level swipe away of an app (i.e., switch-
ing to another app) does not kill the app [28].
Killing the zombie app: ZapDroid leverages Android’s
Activity Manager’s “am force-stop” command to kill
the chosen zombie app.
Keeping the zombie app in the inactive state: Inac-
tive apps can potentially be activated by messages from
deputy apps or cloud services like GCM (Google Cloud
Message service). In an extreme case, an app may try to
overcome “being force stopped” by signing up for such
activation messages. To prevent such messages from
reaching a zombie app killed by the Quarantine Man-
ager, we “design and implement new” hooks to Android’s
Broadcast Queue (BQ) and its Activity Manger Service
(AMS). The hook in BQ registers a callback from the
Quarantine Manager. A function, mCallback, executes
in the Quarantine Manager but with the privileges of
BQ; the manager sends BQ a message whenever a new
Category L zombie app is identified, providing the de-
tails of that app. This information is stored locally in
BQ. The hook is again activated each time a new mes-
sage is dequeued from BQ, to be sent out. If the message
is associated with a Category L zombie app (as indicated
in the stored record), the hook suppresses the message.

The hook in AMS fulfills a similar purpose. It registers a
callback from the Quarantine Manager, which provides
AMS with a list of zombie apps. Whenever a new activ-
ity is initiated, intents are used to invoke apps that are

currently inactive. The hook checks the local record and
suppresses intents meant for Category L zombie apps.
Quarantining “unlikely to restore” zombie apps:
For a Category U zombie app, the Quarantine Manager
first kills the process associated with the app (similar to
Category L zombie apps). Next, it deletes the binary as-
sociated with the zombie app, and compresses and ships
the data to an external storage of the user’s choice. We
discuss why the binary can be deleted later; based on
user preferences, ZapDroid could also simply delete the
user data (this is a clean uninstall of the zombie app).
Shipping data/binary to external storage: The external
storage can be a USB stick, an alternative computer, or
even cloud storage (where the user has an account). The
only two APIs that we require of this storage are: 1) a
PUT primitive which returns a URI (Uniform Resource
Identifier) for the stored content, and 2) a GET primi-
tive that allows the retrieval of a previously stored object
based on its URI. Using the PUT primitive, the Quaran-
tine Manager puts the user data associated with the app
in external storage, and logs the URI in the previously
constructed file in user space.
Why delete the app binary? The binary can be retrieved
when needed from the Google Play Store. If the zombie
app is restored, the data is retrieved from the external
storage. If the binary is unchanged at restoration time,
it can simply function with the retrieved data. A binary
change is equivalent to an upgrade process, and can thus
seamlessly function with the user’s data (verified later).
Thus, we see no point in storing the binary in the user’s
external store. Note that ZapDroid can backup the bi-
nary instead of deleting it if the user prefers to do so;
this can allow the user to safeguard the possibility that
the quarantined zombie app may be unavailable on the
Play Store at a future time.

RESTORING ZOMBIE APPS
The restoration of a previously-quarantined zombie app
is also handled by the Quarantine Manager. The goal is
to return the quarantined app to the same state it was
in (or an upgraded version if a binary is restored in the
case of Category U zombie apps) prior to the quarantine.
User input: When a user seeks to restore an app, she
visits ZapDroid’s front end, and explicitly removes the
app from the list of apps to be quarantined. This auto-
matically triggers the restoration process.
Restoring “likely to restore” zombie apps: For
Category L zombie apps, the Quarantine Manager in-
vokes the callback function to inform the hooks imple-
mented in BQ and AMS that the zombie app to be re-
stored must be removed from their local records. This
causes BQ and AMS to forward broadcast messages and
intents, respectively, to the restored app. Note that the
user input will automatically launch the app.
Restoring “unlikely to restore” zombie apps: For
Category U zombie apps, ZapDroid checks for connectiv-
ity to both the external store and the Google Play store.
If the check passes, it retrieves the URI associated with
the zombie app from the user file (where it had stored



Figure 8: ZapDroid’s user interface
the information before). The URI is fetched to retrieve
the associated objects. In parallel, the binary is down-
loaded from the Google Play Store and installed. After
the install is complete, the user data is placed in the
appropriate directories (this information was implicitly
recorded during quarantine).

ZAPDROID’S USER INTERFACE
Fig. 8 shows a snapshot of ZapDroid’s user interface (UI).
The candidate zombie apps, and the resources consumed
and permissions accessed by each such app are listed.
The user can choose to quarantine apps by simply click-
ing on appropriate buttons; a pop up allows the user to
classify a zombie app to be either category U or L.
EVALUATION
We have a complete implementation of ZapDroid and
evaluate it along multiple dimensions.
Validating the choice of AIDL to implement IPC:
The Permission Service receives inputs from components
such as the WiFi Service or the Location Manager (see
Figure 7a). IPC (message passing) is used to deliver
these inputs. We use Android’s Binder framework, which
is based on AIDL (the Android Interface Description
Language) for IPC. We demonstrate that our approach
is lightweight (labeled AIDL) by comparing its perfor-
mance with that of the following alternative approaches:
(i) using the Android’s messenger framework (built on
top of the Binder framework) [5] and (ii) using shared
preferences [25], wherein the Permission Service is noti-
fied whenever one of the aforementioned services makes
a change to an underlying shared file (stored on the SD
card). In Figures 9a and 9b we depict the delays incurred
in delivering the message (referred to as “timing delay”),
and the energy overheads with the di↵erent approaches.
We conduct these experiments on the Samsung Galaxy
phones since with these phones, we were able to physi-
cally remove the battery and measure the energy using
a Monsoon power meter [18]. The results demonstrate
that the AIDL approach provides a three orders of mag-
nitude advantage in terms of timing delay, and more than
60% less energy per call, compared to the alternatives.
This is because, with the alternatives, there is either the
overhead of using an abstraction built on top of AIDL
or the overhead of using the shared media (SD card) as
the medium for implementing message passing.

Overheads with ZapDroid: To quantify ZapDroid’s
overhead we compare the timing delay and energy con-
sumed with ZapDroid, built on the Android version

android-4.3 r1, with that in an unmodified install of the
same version. In the following, each experiment was per-
formed 100 times and we ensured consistency.
Detection overhead: First, we examine the overheads due
to notifications sent to the Permission Service. We con-
sider permission access by unused apps, to four di↵erent
services viz., the contact list, the GPS, WiFi and the
notification manager. We see in Figure 10 that the in-
crease in overhead is extremely low (< 4% with regards
to energy and < 1% with regards to timing delay).
Quarantine overhead: Next, we quantify the overhead
due to the modifications made to the BQ and AMS to
enable quarantine. Specifically, (i) we launch an activ-
ity, and separately (ii) send a broadcast with the two
systems. We observe from Figure 11 that the increase
in timing delay and energy is < 1% for both operations.
When quarantining Category U apps, in our implemen-
tation, we ship the user data either to Dropbox or to an
SD card; in the former case, we ship the data when the
user is on a WiFi connection and his device is plugged
into a power outlet to eliminate bandwidth/energy costs.
Restoration overhead: Finally, we examine the overheads
due to the restoration of both Category L and Category
U zombie apps. Specifically, we look at the restoration
delay, and the energy expended due to restoration. The
results are shown in Figures 12a and 12b. We observe
that in comparison with Category U zombie apps, as one
might expect, the overheads with Category L apps are
minuscule; the timing delay is on the order of 5 millisec-
onds, and the energy overhead is about 8.7 mJ (these
bars are almost not visible). With Category U apps,
where this overhead is more pronounced, we consider
three cases. In one case, both the binary and the user
data are retrieved from the device’s external SD card.
In the other two cases, the binary is retrieved from the
Google Play store, while the data is restored from the
user’s Dropbox, via WiFi and LTE, respectively. We ob-
serve that because of network transfers, in comparison
with restoring the zombie app from the SD card, the
overheads are approximately two orders of magnitude
higher. However, even with LTE downloads, the delay
incurred is less than 5 seconds with a binary plus data
size of 40 MB. The energy consumed in the worst case
is below 2.5 Joules (which translates to 0.007% of the
battery capacity on the Samsung Galaxy S4 phone).
Verifying that restoration results in a functional
app: Next, we verify that the restoration of a Cate-
gory U zombie app (after a prolonged period of a month)
does not hamper the app’s ability to execute on a user’s
phone. For this experiment, we choose a random set of
50 apps (among the zombie apps from our large scale
study). We installed these apps on two phones (both
Samsung Galaxy S5) and had the same user data on both
of them. ZapDroid removed all the binaries of the zombie
apps from one device (these were quarantined), while we
let them remain on the other device (there was no quar-
antine of any sort). We ran this experiment for a month
and then tried to restore the zombie apps on the second
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Droid with other solutions.

phone (where quarantine was performed). We found that
19 of these apps were updated (later versions). On the
first phone, we simply allowed these updates. On the sec-
ond phone, ZapDroid downloaded a new binary from the
Google Play store and did a fresh install. Upon launch-
ing these apps, we found that for 4 of them, the data was
changed on the first phone as compared to the original
data. One was due to a database upgrade and the other
3 were just additions to a file (incremental state). The
apps were able to execute with the user’s old informa-
tion. We observed that on the second phone, the same
changes were seen, and the apps were able to execute
seamlessly with the user’s old data. We used Android’s
monkey to examine if a restored app di↵ered from the
quarnatined app in terms of what was displayed on the
screen (positions of objects in animations, elements in
news feeds); while minor di↵erences existed, we found
that they did not a↵ect the functionalties of the apps.
The e↵ectiveness of ZapDroid in constraining
zombie apps from consuming resources: We com-
pare ZapDroid’s performance with that of two popular
apps from the Google play store, viz., Advanced Task
Killer [2] and Juice Defender [16]. These apps are de-
signed to kill undesired background processes. For this
experiment, we choose 5 user profiles from our study
where there is a large variation in the number of unused
apps. We select 4 identical Nexus 4 devices and install:
(a) ZapDroid, (b) an unmodified version of Android with
Advanced Task Killer, (c) an unmodified version of An-
droid with Juice Defender, and (d) a version of Android
with none of the above. The last case is a baseline case
and we compare the performance of (a), (b), and (c)
with this case. We install all the apps from the selected
profiles sequentially on our 4 phone setup. We initialize
all the potential zombie apps with the same state on all
devices. We measure the energy saved by each system
viz., (a), (b) or (c), for a 24-hour period for each profile.
Figure 13 depicts the energy savings in each case. The
number on top of each cluster of bars, indicates the num-

ber of zombie apps in the particular user profile. We see
that ZapDroid saves more than 2X energy compared to
the other solutions for all user profiles. This is primarily
because, with Advanced Task Killer and Juice Defender
(using default settings) the killed background processes
restart fairly often. Then, they resume their activities as
before. In fact, we notice that the savings with both Ad-
vanced Task Killer and Juice Defender are slightly lower
with user profile 4 with 32 zombie apps as compared to
that with user profile 3 with just 14 zombie apps. This
is simply an artifact of the latter’s zombie apps being
more active and resource intensive upon being awake.
ZapDroid essentially prevents these zombie apps from
waking up once quarantined and thus, a much higher
energy savings is achieved. Finally, we point out here
that neither Advanced Task Killer nor Juice Defender
helps in preventing these apps from using undesired per-
missions when they wake up.
Security: We verify that ZapDroid in no case elevated
any other app’s privileges. This is because it imposes
an additional, more restrictive, constraint on the permis-
sions granted to an app; no new permissions are granted.

DISCUSSION
Empowering applications with ZapDroid func-
tions does not yield any benefits: One can con-
ceivably empower certain apps with the features of Za-
pDroid. However, this not only still requires changes to
the Android ecosphere, but also escalates the privileges
of such apps which may lead to unforeseen vulnerabilities
that we seek to avoid. For example, one could conceiv-
ably modify the Launcher app to allow it to quarantine
and restore zombie apps. However, this would require
the app to perform activities such as backing up the
zombie app’s data; such activities will require the app
to be provided with root privileges (we do not provide
a detailed discussion here due to space constraints). A
modified version of Android that enables such privileges
for a Launchermust therefore disallow the users from in-
stalling other third party Launcher apps from the mar-



ket (e.g., [21]) since they would now be able to access
and possibly leak users’ private data.
Coping with delays experienced due to quaran-
tine of interactive apps: Users may install interactive
or social apps like Yahoo! Mail or Skype but seldom use
them. However, such apps consume heavy resources for
the purposes of periodically checking for updates. While
allowing them to run unperturbed continuously could
hurt the smartphone resources (e.g., battery), quarantin-
ing them completely is clearly not the best idea either.
To address this, ZapDroid can be modified to reactivate
such quarantined (possibly Category L) zombie apps pe-
riodically in order to enable them to check for updates.
Thus restored, the app can retrieve updates, notify the
user and remain active for a preset short period. It is
then quarantined again. The frequency of such tempo-
rary restorations can be specified by the user; the lower
this frequency, the higher the resource savings, but also
the higher the latency in getting notifications.

Server side examinations of permissions are in-
su�cient: We are concerned with the permission usage
when the app executes in the background without user
intervention. A server side examination will simply in-
dicate the static permissions requested by an app rather
than the dynamic usage of such permissions. Further,
the determination of the frequency of usage of these per-
missions when the app is not actively used, requires ex-
tensive testing at the server side.

RELATED WORK
There are no papers that share our vision of identifying
zombie apps, quarantining them, and restoring them if
the user desires. However, there are e↵orts related to
some of the modules that we build within ZapDroid.
Profiling applications: Most prior work on profil-
ing Android applications has been either geared towards
helping developers build better apps [46, 47], or detecting
malicious apps [35]. There are approaches for monitoring
app-specific battery consumption [48, 40]; however, they
consume high energy themselves. PowerTutor [49] and
the Android Fuel Gauge [8] use models to estimate the
energy consumed by apps. ZapDroid leverages the infor-
mation with regards to CPU and network provided by
the Android OS. For monitoring battery consumption,
we implement our own tool which functions at a coarse
granularity (unlike PowerTutor). It also accounts for en-
ergy due to UDP tra�c transfers (unlike Fuel Gauge).

E↵orts like [45, 37] conduct studies to characterize app
usage habits. However, they do not focus on infrequently
used apps nor address their e↵ective management.
Managing permissions of applications: Permission
Denied [23] and XPrivacy [34] allow a superuser to
change the permissions granted to apps, but the phone
must be rebooted. In addition, improper user-initiated
revocations can end up crashing the app or the device
(due to revocation of permissions to a system app) [33].
TISSA [50] allows users to dynamically change permis-
sions of apps. To prevent apps from crashing when they

are not given access to a permission, [36] and [42] propose
sending fake information to apps. Blackphone which
runs on PrivatOS [10] forks a version of the Android OS
and modifies it to revoke permissions towards keeping
information private. In all of these e↵orts, the possible
negative consequences from the proposed changes (e.g.,
the app crashing, or error pop ups [33]) has not been
studied in detail. Unlike in these e↵orts, once a zombie
app is chosen for quarantine, we freeze it by revoking
all permissions from the zombie app and by preventing
other apps from communicating with it.
Killing processes: Applications like Advanced Task
Killer [2], BatteryDoctor[9], and Juice Defender[16] are
meant to allow users to kill background processes associ-
ated with either services or apps to save battery. Apart
from the high resources consumed by these apps them-
selves (they are always running and monitoring for op-
portunities when tasks should be killed), killing back-
ground apps using these can have other detrimental ef-
fects [31]. The killed background processes restart due to
either wakeup triggers or timeouts (some start right back
up [7]) and resume consuming resources and/or access-
ing the user’s private information. Since this process of
killing and restarting could happen often with these ap-
plications, even more resources may be consumed; the
restarted processes will each time rebuild their state
prior to being killed [32]. These functions are infrequent
and thus, lightweight with ZapDroid.
Resource management: There are prior e↵orts that
try to reduce resource consumption on smartphones [38,
44, 39]. However, these e↵orts are orthogonal to our
work. We point out that Android kills background apps
under low memory conditions, to reclaim memory; how-
ever, these apps can restart when the situation improves,
by setting the START STICKY bit [6]. ZapDroid’s goal
is not just to kill apps when the memory runs low, but
to curb activities of unused apps throughout.

CONCLUSIONS
Third party apps, installed but infrequently used by
users, execute in the background consuming smartphone
resources and/or accessing private information. We con-
duct an IRB-approved user study that shows the nega-
tive impact of such apps (called zombie apps). As our
main contribution, we design and implement ZapDroid,
which detects zombie apps, and based on user input,
quarantines them to curb these behaviors. If needed,
ZapDroid can later restore a quarantined app quickly
and e�ciently. We prototype ZapDroid and show that
it is lightweight, and can more e�ciently thwart zombie
app activity as compared to state of the art solutions
that target killing undesired background processes.
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