
Detecting Android Root Exploits by Learning from Root Providers

Ioannis Gasparis
University of California, Riverside
ioannis.gasparis@email.ucr.edu

Zhiyun Qian
University of California, Riverside

zhiyunq@cs.ucr.edu

Chengyu Song
University of California, Riverside

csong@cs.ucr.edu

Srikanth V. Krishnamurthy
University of California, Riverside

krish@cs.ucr.edu

Abstract

Malware that are capable of rooting Android phones are
arguably, the most dangerous ones. Unfortunately, de-
tecting the presence of root exploits in malware is a very
challenging problem. This is because such malware typ-
ically target specific Android devices and/or OS versions
and simply abort upon detecting that an expected run-
time environment (e.g., specific vulnerable device driver
or preconditions) is not present; thus, emulators such
as Google Bouncer fail in triggering and revealing such
root exploits. In this paper, we build a system RootEx-
plorer, to tackle this problem. The key observation that
drives the design of RootExplorer is that, in addition to
malware, there are legitimate commercial grade Android
apps backed by large companies that facilitate the root-
ing of phones, referred to as root providers or one-click
root apps. By conducting extensive analysis on one-
click root apps, RootExplorer learns the precise precon-
ditions and environmental requirements of root exploits.
It then uses this information to construct proper analysis
environments either in an emulator or on a smartphone
testbed to effectively detect embedded root exploits in
malware. Our extensive experimental evaluations with
RootExplorer show that it is able to detect all malware
samples known to perform root exploits and incurs no
false positives. We have also found an app that is cur-
rently available on the markets, that has an embedded
root exploit.

1 Introduction

Android is currently the most popular mobile operating
system in the world, with 1.4 billion users worldwide and
87.5% of the market share [65]. Google, contrary to Ap-
ple (wrt iPhone), do not have complete control over ei-
ther the hardware or the software of Android phones. On
the positive side, this allows many hardware and other
third-party vendors to build a competitive, customized,

and diverse ecosystem. But on the other hand, the diver-
sity of Android devices also introduces security issues.
First, the OS update process varies from vendor to ven-
dor (some are faster than others). For example, at the
time of writing, only 29.6% of Android devices on the
market have Marshmallow [40], which was introduced
nearly 2 years ago. Second, the vendor customization of
Android often introduces vulnerabilities at different lev-
els of the software stack including application, OS ker-
nel, and drivers [81, 85, 75, 7, 82]. Consequently, mil-
lions of users are exposed to various critical security vul-
nerabilities that plague such customized, typically older
and unpatched devices [19, 27, 68].

Among all vulnerabilities, arguably the most perni-
cious are privilege escalation vulnerabilities that would
allow attackers to obtain the root privilege – the high-
est privilege on Android. Such attacks are usually re-
ferred to as root exploits. Once it has acquired the root
privilege, an attacker/malware can bypass the Android
sandbox, perform many kinds of malicious activities, and
even erase evidence of compromise. For this reason,
malware with embedded root exploits are on the rise. In-
deed, as apparent in recent news, it has become more
and more common that malware found in third party An-
droid markets or even in the official Google Play store,
contain root exploits. For instance, in June 2016, Trend
Micro reported GODLESS [55] , an Android malware
family that uses multiple root exploits to target a variety
of devices, affecting over 850,000 devices that were run-
ning Android 5.1 or earlier, worldwide. One month later
(July), another Android malware dubbed HummingBad
was reported to have infected more than 85 million de-
vices and was found in 46 different applications, 20 of
which were found on Google Play [45]. In September
2016, a Pokemon Go Guide app spotted in Google’s Play
Store, was found to contain root exploits as well [63];
the app had accumulated over 500,000 downloads by the
time it was spotted and taken down. Considering that
Google has already deployed a cloud-based app vetting

service viz.,“Google Bouncer” [39], these repeated in-
stances demonstrate that it is both important and chal-
lenging to detect malware that carry out root exploits.

An even more concerning fact is that the number
of newly discovered privilege escalation vulnerabilities
(e.g.,, kernel vulnerabilities) is also on the rise [2]. Many
of such vulnerabilities, such as DirtyCow [27], can even
be used to root the latest versions of Android. So it is
simply a matter of time before they are leveraged by mal-
ware to attack (potentially a large number of) unpatched
devices.

In this paper, we aim to tackle the challenging prob-
lem of detecting malware that employ a variety of root
exploits. The key observation that drives our approach
is that, in the Android world, it is not just the malware
that carry root exploits. There are legitimate and pop-
ular Android applications, often called root providers
or one-click root apps, that root phones on behalf of
users [81]. Many of these apps are commercial-grade
and backed by large companies such as Tencent, Qihoo,
and Baidu. They are capable of rooting tens of thou-
sands of different Android devices using a hundred or
more root exploits [81]. Note that rooting (as well as jail-
break) is considered legal [21], and users do want to root
their phones to remove bloatware or unlock new features
that were otherwise not available. These root exploits
can serve as valuable resources towards aiding detection
since they are highly customized (towards specific de-
vices), reliable, and more importantly are likely to be
used as is, by malware developers (discussed later). This
means we can take advantage of these exploits to build
a system (RootExplorer) that automatically extracts sig-
natures from root exploits, and use those signatures for
runtime malware detection.

Unfortunately, this seemingly simple strategy is not
easy to realize in practice. The big obstacle is that al-
most all exploits are tailored towards specific Android
devices, models, and/or OS versions. Screening apps
in an emulator is unlikely to trigger and reveal the ex-
ploit, unless the environment matches exactly what the
exploit expects. This in turn means that one may need
tens of thousands of real Android devices to cover just
all known root exploits. To overcome this obstacle, Roo-
tExplorer also learns the environment requirements from
the aforementioned commercial root exploits and uses
this knowledge to create the “expected” runtime environ-
ment so that it is capable of interacting with the exploits
to drive their execution (e.g., by pretending that a partic-
ular vulnerable device exists).

We design, prototype and extensively evaluate Root-
Explorer to detect root exploits present in malware. It
consists of (a) an offline training phase where it extracts
useful information about root exploits from one-click
root apps using behavior analysis, and (b) an online de-

tection phase where it dynamically analyzes apps in spe-
cially tailored environments to detect root exploits. We
test our prototype with a large set of benign apps, known
malware, and apps from third-party app marketplaces.
Our evaluations show that RootExplorer yields an almost
perfect true positive rate with no false positives. RootEx-
plorer also found an app that is currently available on the
markets, that contains root exploits.

In summary, the contributions are as follows:

• We identify and address the fundamental challenge of
detecting Android root exploits that target a diverse
set of Android devices. In particular, we learn from
commercial one-click root apps which have done the
“homework” for us with regards to (a) what environ-
mental features are sought and (b) what pre-conditions
need to be met, for a root exploit to be triggered.

• We design and implement RootExplorer, a fully auto-
mated system that uses the learning from commercial
one-click root apps to detect malware carrying root
exploits. Specifically, in an offline phase, it conducts
extensive static analysis to understand the precise en-
vironment requirements and the attack profile of the
exploits. It then utilizes the learned information to
construct proper analysis environments and detects at-
tempted exploits.

• We evaluate RootExplorer via extensive experiments
and find that it can successfully detect all known mal-
ware that contain root exploits, including very recently
discovered exploits and the ones that are used in other
one-click root apps; RootExplorer results in no false
positives with our test set. Using RootExplorer, we
also find an app which is currently available on an An-
droid market, that contains root exploits.

2 Background & Related Work

2.1 Root Exploits and One-Click Root
Apps

As mentioned, one-click root apps are very popular
among users and they are competing against each other
to be able to root more phones and offer more reliable
results. One of the reasons that companies develop these
apps is that they also develop security apps or app man-
agement tools that also require the root privilege to func-
tion correctly (e.g., antivirus software must have higher
privileges than any malware [13]);

Interestingly, the competition between these one-click
root apps have driven them to include the most com-
prehensive and advanced root exploits. For example, in
2015, it was reported that there are 39 families of di-
rectly usable root exploits that can be found publicly
(with source code or binaries); in contrast, there were

59 families of root exploits found in a popular commer-
cial one-click root apps, including exploits against pub-
licly unknown or zero-day vulnerabilities [81], and ex-
ploits that can bypass advanced defense mechanisms like
SELinux [41], Verified Boot [42], etc. On the contrary,
although researchers have detected several malware fam-
ilies with root exploits, none of them contain previously
unknown exploits [86]. We believe this is because most
malware authors, except the so-called state sponsored,
do not have the capability to develop new root exploits;
hence, they typically only embed exploits that are devel-
oped by others (e.g., one-click root apps).

While detecting malicious behaviors has been the fo-
cus of many prior efforts in the literature, detecting An-
droid root exploits faces unique challenges. One such
challenge is that specific preconditions (e.g., environ-
ment constraints) need to be satisfied in order for such
exploits to be triggered; this is hard because of the highly
fragmented Android hardware and software. Specifi-
cally, not only do different phones have different de-
vice(s) and corresponding driver(s), even with respect
to a universal kernel vulnerability such as the futex
bug [31], the root exploit has to be tailored for differ-
ent phones. This is because the actual kernels on differ-
ent phones are different (e.g., each has a different mem-
ory layout). As a matter of fact, one commercial one-
click root app contains 89 different exploit payloads for
the same underlying futex bug [81]. Consequently, mal-
ware carrying root exploits typically have specific en-
vironment checks to determine (1) what kinds of vul-
nerabilities are available and (2) how the attack should
be launched. Thus, in order to detect a root exploit, an
analysis environment must satisfy the necessary precon-
ditions.

We categorize these preconditions into two corre-
sponding types: (1) environment checks and (2) prepa-
ration checks. Environment checks gather information
with regards to the environment such as the device type,
model, and operating system versions. For instance,
many times a particular malware will check whether it
has a matching exploit for the current environment. If
so, the specific exploit is selected from either a set of lo-
cal exploits or a remote exploit database. This process
is in fact also used by one-click root apps [81]. Prepara-
tion checks verify that the interactions with the underly-
ing operating system are as expected, (e.g., a vulnerable
device file exists on the system and the driver returns ex-
pected results in response to specific commands). The
number of preparation checks can be large, depending
on the nature and complexity of the root exploits. This
makes it difficult to manually prepare the right environ-
ment for each root exploit and detect them.

2.2 Android Malware Analysis

A relatively large chunk of Android related literature, is
on malware analysis and malicious behavior detection.
However, most of this literature focuses on detecting ma-
licious behaviors like leaking/stealing private informa-
tion and financial charging [86]. Unfortunately, no ex-
isting work tackles root exploit detection. We roughly
categorize such work into three types: static analysis, dy-
namic analysis, and hybrid analysis.

Static Analysis: Static analysis is used to analyze an
Android app’s byte code and/or native code without run-
ning it inside an emulator or a real device. To detect
information/privilege leaks, a set of tools [52, 10, 59, 50,
72, 18, 43] has been developed to perform information-
flow analysis. Another popular direction is to model
and detect malicious behaviors that are unique to An-
droid. Pegasus [20] uses “Permission Event Graphs” to
detect sensitive operations performed without the user’s
consent. Apposcopy [29] uses “Inter-Component Call
Graphs” to detect Android malware. AppContext [79]
uses contextual information (UI events and environmen-
tal triggers) to check access to sensitive operations. The
advantage of static analysis is coverage and efficiency; it
may however face problems when analyzing apps with
heavy obfuscation. In fact, it has been shown that sim-
ple obfuscation techniques or transformations applied to
known malware samples can often easily evade static de-
tection by anti-virus software [62].

Dynamic Analysis: Dynamic analysis analyzes an An-
droid app by running it inside an emulator or a real de-
vice. Similar to static analysis, many dynamic malware
analysis systems also focus on information flow analysis
and leak detection [28, 61, 83]. Others use system calls
to model and detect malicious behaviors [17, 25, 78, 66].
Because malware can detect that it is being run in an
instrumented environment such as an Android emula-
tor [60, 46, 69], researchers have also proposed building
sandboxes on real devices [15, 12] for this purpose. Dy-
namic analysis can usually overcome obfuscation tech-
niques employed by malware, but a malicious behavior
can only be detected if it is executed during the analysis.
To overcome this, tools have been developed to system-
atically exercise the functionality of an app in the hope
of triggering its malicious behaviors [11, 74].

Hybrid Analysis: Hybrid analysis can be divided into
two categories. The first category combines static and
dynamic characteristics to detect malicious behaviors
[87, 76, 73]. The other category utilizes static analysis
to guide dynamic analysis [84, 80, 11, 74].

2.3 Attack Modeling and Detection

Previous papers on attack modeling and detection mainly
focus on filtering remote exploits like those launched by
worms [23, 48, 58, 64, 51, 71, 24, 22]. Similar to those
systems, RootExplorer also leverages program analysis
techniques like symbolic execution to extract the attack
signature. However, there are a few differences. First,
due to fragmentation of the Android ecosystem, we do
not always have the targeted device, i.e., we need to de-
rive both the attack signature and the corresponding en-
vironment requirements without the corresponding target
system. Note that in aforementioned systems, in con-
trast, analysis is usually performed over the targeted soft-
ware. Second, for remote attacks, the malicious payload
usually contains shellcode; however, in local privilege
escalation attacks, shellcode is rarely used – ret2usr,
ret2dir, or direct kernel object modification (DKOM)
are more common. Finally, due to polymorphic or meta-
morphic payloads, finding a good balance between false
negatives and false positives is very challenging for net-
work filters. Android root exploits are more difficult to
morph (as shellcode is not part of the payload); more
importantly, even though it is possible to generate poly-
morphic exploits, as previously discussed, most Android
malware authors are not capable of doing so. For these
reason, we decide to pursue our current approach, i.e.,
derive system-call-based signatures purely from known
exploits.

2.4 Other Related Work

Android Emulator Evasion: Recent works have shown
how easy it is for malware authors to evade the Android
emulator. Petsas et al. [60] apply three different detec-
tion heuristics and manage to detect most Android dy-
namic analysis tools. Vidas et al. [69] derive four dif-
ferent techniques based on differences in behavior, per-
formance, hardware and software components and show
how they can easily detect existing malware scanner
tools that are based in emulators. Morpheus [46] is a
system that can create up to 10,000 different detection
heuristics for Android emulators. As a countermeasure,
researchers [56] have begun to use real phones instead of
emulators to analyze malware. We design our solution to
be operable on both real Android devices and emulators,
thereby making this issue orthogonal to our work.
Syscall-based Behavior Modeling: RootExplorer uses
system-call-based behaviors to model and detect root
exploit attempts. Syscall-based behavior modeling has
been widely used to model and detect malicious behav-
iors [49, 14]. Our model is derived from the behavior
graph proposed in [49], with adjustments to fit our sce-
nario.

Offline training
with one-click

root apps

Environment
preparation and
dynamic analysis

Expected behavior
signature

Detection
results

Preconditions /
environment constraints

Figure 1: System overview

3 Threat Model and Problem Scope

The goal of RootExplorer is to detect Android apps that
carry root exploits. Detecting other malicious behaviors
is out-of-scope of this work and has been covered by
many previous papers (§2). We also do not attempt to
understand what the malware will do after acquiring the
root privilege; we defer such an analysis to future work.

We envision our system to operate in the cloud (sim-
ilar to Google Bouncer [39]), and that it will scan apps
by dynamically executing the samples on real Android
devices and/or emulators. For this reason, we restrict the
source of the analyzed apps to be either from the offi-
cial Google Play Store or from third-party marketplaces.
We do not consider malware involved in targeted attacks
such as APTs.

We assume that malware carrying root exploits
can be obfuscated to prevent static analysis, and
may be equipped with common anti-debugging/anti-
virtualization techniques to detect the analysis environ-
ment. They may also download root exploits dynami-
cally from a C&C server only when the desired Android
device is detected. For triggering root exploits, we focus
on understanding and providing the environment expec-
tations. However, we do not handle malware that de-
pends on specific user inputs (e.g., passing a game level)
to trigger the root exploit. We believe generating such
inputs is orthogonal to this work and has been covered
by other projects [11, 74].

Finally, we focus on detecting root exploits against
known vulnerabilities; detecting unknown or zero-day
exploits is out of scope of this work. We believe this
is a reasonable limitation as no malware that has propa-
gated through app marketplace has been found to contain
zero-day exploits.

4 RootExplorer Overview

Figure 1 depicts the operations of RootExplorer. There
are two key phases: (1) an offline training phase (static
analysis) that extracts useful information about root ex-
ploits from one-click root apps and, (2) a detection phase
(dynamic analysis) that dynamically analyzes apps in
specially tailored environments to detect root exploits.

During training, we gather information about as many

different root exploits as possible. Since root exploits
target specific devices, it is not possible to trigger all of
their behaviors without proper environments. We thus
resort to static analysis. For each exploit, we collect
(1) sequence and dependencies of system calls that can
lead to a compromise of the device, i.e., behavior signa-
ture [14, 49], and (2) preconditions for deterministically
triggering the exploit.

The first step of our offline analysis is to identify a
feasible execution path that leads to the success of the
analyzed root exploit. We use guided symbolic execution
to solve this problem. In particular, we symbolize all
external “inputs” to each root exploit (binary) and aim to
find a shortest feasible path from the entry to the marked
successful end point. We build our prototype symbolic
execution engine based on IDA pro, which is capable of
handling all the instructions and libc functions that were
encountered in the training set of exploit binaries.

From the feasible execution path, we extract the se-
quence of system calls and the dependencies across sys-
tem calls from the output of symbolic execution as well.
This information is then used to construct the behav-
ior signature. Since we already collect constraints over
what information needs to be returned from the system
through system calls (i.e., preconditions) during sym-
bolic execution, we just consult an SMT solver to provide
a concrete instance of satisfying preconditions. Both
pieces of information (behavior signature and precon-
ditions) feed directly to the dynamic analysis phase to-
wards preparing the right environment and satisfying
necessary preconditions, to trigger and thereby detect
various root exploits.

For this purpose, besides utilizing root exploits from
one-click root apps, we could in theory utilize the many
exploits with PoC code available on the Internet, but they
all come in different “sizes and shapes”. Some contain
source code but often hard code values in certain vari-
ables; this renders the exploit suitable only for a specific
tested Android device. Some have binaries only, which
are obfuscated to prevent direct reuse. Therefore, We
choose to work with a popular one-click root app for the
purposes of training. The benefits are multi-fold: (1) the
quality of exploits is likely very good, as they are offered
in commercial products (e.g., they don’t contain unnec-
essary steps, and are unlikely to crash the system); (2)
there is a rich variety of exploits available (60 families of
exploits in our evaluation); (3) the exploits packaged in
the same one-click root app are likely to be obfuscated
in similar ways, making it possible to de-obfuscate all
exploits at once and conduct static analysis on them.
Learning the expected behavior signature: The be-
havior signature of an exploit is extracted by analyzing
the de-obfuscated exploit binaries. While there are many
possible models to construct malware signatures in gen-

eral, we favor system call based behavior signatures; this
is because root exploits interact with the operating sys-
tem through system calls in unique ways to exploit vul-
nerabilities. To this end, we build our behavior signature
largely based on prior work on extracting a malware be-
havior signature from system calls [14, 49]. This allows
our dynamic analysis to keep track of the progress of an
exploit and confirm it when all of its steps have been per-
formed. More details are provided in §5.
Learning preconditions: As discussed earlier in §2,
there are two types of preconditions that have to be sat-
isfied with regards to a root exploit in general: environ-
ment related and exploit preparation related. Environ-
ment preconditions dictate whether the underlying An-
droid device model and kernel version match what are
expected by the exploit. After training, our dynamic
analysis environment can provide the expected Android
device information to trigger an exploit. Normally it is
difficult to determine which exploits work against which
Android devices (because one needs to ideally test an ex-
ploit against real devices). Fortunately, one-click root
apps already provide this information to a large degree.
Specifically, the one-click root app we studied down-
loads a different set of exploit binaries depending on
the device information that is reported to its backend
server. By reverse engineering their protocol, we have
effectively built a mapping from a list of more than 20K
Android device types (available from [1]) to their cor-
responding exploits. The assumption is that a one-click
root app has a reasonably good idea of which exploits
can target which device.

For exploit preparation related preconditions, we give
the symbolic constraints collected along the feasible path
and ask the SMT solver to construct a concrete satisfying
instance such that when replayed during dynamic anal-
ysis, can deterministically trigger the analyzed root ex-
ploit. For instance, if an exploit expects to open a vul-
nerable device file successfully, the “input” to the exploit
program is the return value of the open() syscall, which
needs to take a non-negative value according to the sym-
bolic execution. Once we learn such preconditions, our
dynamic analysis environment can provide the same ex-
pected “input”. We will present the detailed design of the
symbolic execution framework in §6.

5 Behavior Graph Analysis

Since Android malware (especially those that contain
root exploits) typically obfuscate their payloads heav-
ily [86], dynamic analysis is the obvious choice over
static analysis, for the purposes of detection. However,
as discussed earlier, dynamic analysis wrt root exploits is
difficult as such exploits target specific Android devices.
Without the right environment, such exploits are likely to

terminate prematurely, thereby preempting detection.
To overcome this hurdle, we leverage de-obfuscated

binaries from a one-click root app from our prior
study [81] to extract the behavior signatures of root ex-
ploits. A behavior signature is constructed by abstracting
the low-level operations into a high-level behavioral rep-
resentation [49, 14]. One can check for malware samples
that exhibit similar behaviors at runtime and thereby de-
tect the presence of the particular exploits. In the case of
root exploits, since they interact with the kernel (or de-
vice drivers) in unique ways to exploit an OS vulnerabil-
ity, we choose to capture behaviors by modeling system
call events. Instead of reinventing the wheel, we borrow
the system call modeling technique from ANUBIS [49]
with slight adjustments. Specifically, we follow the defi-
nition of “behavior graphs” [49] that are used to describe
OS objects, system calls that operate on these objects
and, relationships across system call events (e.g., the re-
sult of one system call is used as a parameter on another
system call).

The behavior graphs are directed acyclic graphs where
the nodes represent objects and system calls, and the
edges encode (1) the dependencies between objects and
system calls, and (2) the dependencies across system
calls. Compared to the traditional model of simply
looking at a sequence of system calls [44], a behavior
graph constrains the order of only dependent operations
through an explicit edge (and never constrains indepen-
dent operations).

While the high-level behavior graph is similar to that
proposed in [49], we highlight the main differences here:
(1) We statically extract the behavior graph instead of ex-
tracting it from a dynamic trace (as is done in ANUBIS).
This leads to different requirements as elaborated later.
(2) Since we target Android, the system calls are mostly
inherited from Linux and are different from Windows.

5.1 Generating Training Behavior Graphs

We now describe how we automatically generate the be-
havior graph statically, by analyzing de-obfuscated ARM
root exploit binaries [81]. The system call invocations,
and their hard-coded arguments are generally easy to
identify. This allows us to know what OS objects are
created (e.g., a file name), and how they are operated
on (e.g., Read-only or Read/Write). The main challenge
that we face is to extract the dependencies across system
calls.

Extracting data dependencies: To extract dependen-
cies across system calls, we look for cases where the ar-
guments for one system call is derived from a previous
system call. Previous work [49] utilized taint analysis
to derive such dependencies. In our system, since we
perform static analysis over de-obfuscated binaries, we

take a slight different approach. Specifically, when we
use symbolic execution to find a feasible success path,
we symbolize all the outputs of system calls. During the
analysis, symbolic values are propagated along the ex-
ecution path. To determine whether a path is feasible,
whenever we meet a conditional branch that depends on
symbolic value, we consult the solver to see if the corre-
sponding path constraints are solvable. If we consider a
symbolic value as tainted, then symbolic execution itself,
already constructs the data dependencies between system
calls, i.e., if the input argument(s) of a system call is a
symbolic value, then it must have a data dependency over
one or more previous system calls. More importantly, the
symbolic formulas of such input arguments also specify
how they are depend on each other. Based on this obser-
vation, we extract the data dependencies between system
calls by simply naming the symbolic values returned by
system calls according to the system call names and their
sequence in the feasible path (e.g., read2 buf).

Extracting control dependencies: Symbolic execu-
tion does not directly provide control dependencies. To
extract such information, we simply conduct a backward
analysis. In particular, when outputting the feasible path
discovered via symbolic execution, we also mark each
control point that directly depends on the symbolic value
with the system calls that introduced that value. Using
the path, we start from the end point and traverse the
trace backwards to look for system call invocations (e.g.,
BL mmap). Once we find a system call invocation, we
can extract its control dependencies over previous sys-
tem calls by searching for the closest “tainted” branch
that precedes this syscall invocation. Alternatively, we
could have used static binary taint analysis to extract both
data and control dependencies.

Modeling of libc functions: The exploit binaries in
our training set do not generally call the system calls di-
rectly (as typical with most native code). Instead, they
call the libc functions (in Android, it is called Bionic).
Fortunately, most are simply wrappers of system calls
and have the same exact semantics. In cases they are not
exactly the same, for example, fopen() vs. open(), we
model the Bionic version fopen() by mapping its ar-
guments and return values to open(). Furthermore, we
leverage function summaries to model most encountered
libc functions that need to be analyzed by symbolic exe-
cution.

5.2 Examples

Device Driver Exploit: To illustrate our behavior graph
analysis, we consider a popular device driver exploit
that targets the vulnerable Qualcomm camera driver,
“camera-isp”. This example is taken directly from our
training data set from a popular one click root app. In

open/dev/camera-isp

open/proc/iomem

fd mmap

readfd

addr

setresuid

control

stat control

Figure 2: Behavior graph for the “camera-isp” exploit.

brief, the vulnerable device driver allows any program to
map any part of the physical address space into the user
space, which can subsequently allow the disabling of the
permission check in setresuid() system call. This al-
lows an attacker to change the running process into a root
process.

Figure 2 represents the behavior graph. The exploit
needs to open two separate files, the vulnerable device
file /dev/camera-isp and the helper file /proc/iomem
which has the information about where the kernel code
is located in the physical address space. Both files are
checked with the open() system call to ensure that they
can be successfully opened. The device file is checked
once more in the beginning, via a stat() system call,
for existence. The exploit then attempts to mmap()

the kernel code region into the user address space with
read/write permissions; however, the exact offset (argu-
ment in mmap()) is retrieved from the read result of the
/proc/iomem. After the mmap() is successful, the ex-
ploit searches for a particular sequence of bytes in the
mapped memory that corresponds to the code blocks for
setresuid(). Upon locating the code block, it patches
the code block by writing to a specific offset, which ef-
fectively eliminates the security check in setresuid()

(the above two steps are invisible in the behavior graph).
Then the exploit simply calls setresuid(0,0,0) to
change the uid of itself to root. Finally, as mentioned
earlier, all exploit binaries in our training set, end the ex-
ecution with a check through getuid() to verify that the
exploit process has obtained root.

Note that due to space constraints, we do not annotate
the graph with the exact arguments (e.g., file open with
a read/write permission or read-only). We also do not
label whether the system call succeeded or not. In most
exploits, all system calls need to be successful in order
to compromise the system and typically the failure of a
system call will immediately result in an abort.

Kernel Exploit: As a second example, we consider
Pingpong root [77], one of the most recent generic root
exploits that can target almost all Android devices re-
leased prior to mid-2015. The case also reflects one
where the exploit creates multiple processes. In par-
ticular, the key exploit logic [35] is conducted in the
main process, including mmap() at a specific address,

and invoking multiple connect() calls on the same
ICMP socket (we omit the complete behavior graph for
brevity). In addition, One or more child processes are
created as helpers to construct as many ICMP sockets as
possible for padding. Since the fork() occurs in a loop
(up to 1024 iterations), it is necessary for symbolic exe-
cution to identify and choose one feasible path. Specifi-
cally, the analysis output is that as long as the loop is ex-
ecuted once, a feasible exploit path can be constructed.
This means that we can simply unroll the loop once and
have a new behavior graph constructed for the child pro-
cess (which is connected to the parent behavior graph via
a fork() edge). Note that unrolling the fork loop more
times is also feasible which will cause identical behav-
ior graphs to be constructed. In this case, all behavior
graphs will need to be matched so that we can claim an
exploit is detected. It is worthwhile mentioning that the
precondition analysis (which will be described in more
detail in the next section) is conducted jointly, and will
ensure that the first fork() will succeed at runtime, thus
causing the exploit to match the behavior graph with one
child process only.

5.3 Using Behavior Graphs in Detection

Once the behavior graphs for different root exploits are
generated offline, we are able to use them for detection in
a scanner (similar to Google Bouncer). More precisely,
by monitoring system call invocations (and arguments),
our dynamic analysis environment determines if the be-
havior of the program under analysis matches any of the
learned behavior graphs. The matching algorithm is sim-
ilar to that in [49]. We only briefly describe the procedure
below and the design decisions that were made.

To find a match in the behavior graph, it is necessary to
ensure the following: (1) The order of system calls con-
forms to the dependencies represented in the learned be-
havior graph. In addition, the dependencies in the behav-
ior graph need to be maintained at runtime as well. This
can be checked using dynamic taint analysis [14, 49]. (2)
The exact values of the arguments for system calls match
(e.g., a file opened with read/write permission). For those
arguments whose values cannot be determined statically
during training, they will simply be considered as wild-
card values that can match any value at runtime. (3) A
system call’s status (either success or failure) matches
with the one in the learned behavior graph.

We observe that the root exploits typically have unique
inputs to the system via system call arguments, which
makes them easy to distinguish from legitimate pro-
grams. We therefore relax requirement (1) by only veri-
fying simple dependencies at runtime (e.g., a file read()
depends on the output of open()). Such cases can be
checked through the OS objects monitored in the ker-

nel, without conducting an expensive taint analysis. For
more complex dependencies such as the values obtained
through read() affecting a system call mmap() as shown
in Figure 2, we only require that the order is the same as
constrained on the graph, i.e., read() happens before
mmap(). We plan to implement the dynamic taint anal-
ysis for stricter dependency enforcement in future work.
Alternatively to improve efficiency, we could also apply
the optimization proposed by Kolbitsch et al. [49].

6 Satisfying Exploit Preconditions

It is crucial to build an environment that can satisfy the
preconditions expected by root exploits. More impor-
tantly, because our behavior graph is constructed over
one successful path, if an analyzed app contains root ex-
ploits, our dynamic analysis environment must determin-
istically coerce the app to follow that path, i.e., the app
must be made to reveal the same set of malicious behav-
iors that match the learned signature. This means that
whenever the exploit asks the environment for certain re-
sults, we must return them as expected.

The problem naturally maps on to the common debug-
ging and testing problem of generating the proper inputs
to a program, so that it will reach a particular target state-
ment [53, 26, 22]. Here the target statement is the end
point of the root exploit, e.g., the getuid() call. The
“inputs” are the system call results, including (1) system
call return values and, (2) other return results through ar-
guments (e.g., a buffer filled in read()). Our solution
to this problem is symbolic execution. Specifically, we
symbolize all the “inputs” from system calls and lever-
age symbolic execution to find the shortest feasible path
that can reach the target instruction from the entry point.
Once we find such a path, we then ask the SMT solver to
generate a concrete instance of the inputs which will be
“replayed” during dynamic analysis.

With respect to the system call return values, we con-
sider two types of system calls: (1) Those that return a
reference to kernel object, e.g., open() and socket()

return a file descriptor; and mmap() returns the address of
the “memory-mapping object”. (2) The remaining ones
(e.g., stat()) that return either 0 (indicating success)
or an error code. For type (1), since file descriptors and
mapped addresses are determined dynamically by the OS
and the constraints are typically simple (just != 0), we
symbolize their return values as a Boolean during anal-
ysis and do not force a specific value during runtime.
Instead, we simply choose to force a success or failure
based on the Boolean and let the OS assign the concrete
return value. To allow expected interactions with the cor-
responding kernel objects, we use “decoy objects” (ex-
plained later) instead of tracking those references. For
type (2), we just symbolize their returned values nor-

fdIo = open("/proc/iomem");
// locate the kernel code offset in physical memory
while ((line = readline(fdIo)) > 0} {
 if((buf = strstr(line, "Kernel code")) != NULL) {
 addr = getAddress(buf);
 break;
 }
}

int getAddress(buf) {
 return atoi[buf-20];
}

Figure 3: Pseudo code of proc/iomem read

mally as bit-vectors and ask the solver to generate a sat-
isfying value.

For system calls that return results through arguments,
they are always pointers passed in user programs (e.g.,
read buffer). We use these input pointers to symbolize
the corresponding memory content. Going back to the
first example exploit in §5.2, after reading from the file
/proc/iomem, the exploit attempts to read the starting
physical address of the kernel code. This procedure is
illustrated in Figure 3. As we can see, the exploit reads
the file line by line to look for the constant string “Ker-
nel code”. Once the line is located, it retrieves the kernel
code base address (through the getAddress() call) at
the -20 offset relative to the returned buffer of strstr().
There are effectively two loops in the program. The first
is the while loop; the second is inside strstr(). In this
particular case, the discovered feasible path says that the
while loop can iterate just once, indicating that we can
return the string containing “Kernel code” when the first
line is retrieved using the read() system call. However,
the feasible path also says that the loop in strstr()

needs to iterate at least 20 times1; in other words, “Ker-
nel code” needs to start at line [20]. This is because the
getAddress() call reads the location at buf-20. If buf
is at the beginning of line, then buf-20 would be reading
something out of bound.

In this case, the address returned from getAddress()

is not further constrained later, which means that
line[0] to line[19] are unconstrained and can take
any value. Therefore, the constraint solver will gener-
ate an output for line with something like “abcdefghi-
jklmnopqrstKernel code”. Further, since the read() sys-
tem call only reads one line, we will place the single line
content into the expected file object. There is a similar
case later on involving a search through the memory for
constants after mmap(), which can be resolved similarly.

Decoy Objects: During dynamic analysis, we can
provide the preconditions we learned by forcing/faking

1In our real implementation, we use function summary to handle all
encountered external library calls.

Android Market

Detection System

Static
analyzer

Dynamic
analyzer

Figure 4: Operational model of the detection system

all syscall results. However, to improve the robustness
of our environment (i.e., making it more real), we de-
cided to use decoy objects to provide expected results
for operations over certain type of kernel objects. Doing
so would allow us to “tolerate” certain operations (e.g.,
stats() that are not observed during our offline learn-
ing phase.

Currently we only support three types of decoy ob-
jects: files, socket, and device drivers. These are created
in two ways. If the target objects (such as a vulnera-
ble device driver) do not exist in our analysis environ-
ment, we simply create decoys. If the objects (such as
/proc/iomem) already exist in our environment, instead
of opening the real file, we “redirect” the file open oper-
ation to the alternative decoy object so that we can return
the expected content.

7 Detecting Root Exploits

Thus far, we have described the training phase, where we
generate both the behavior graph and the environment
constraints. In this section, we provide details about
the components of our detection system (testing phase).
We first present an overview of our system’s operational
model and then describe its components in detail.

7.1 Operational Model

As mentioned earlier, we envision RootExplorer to be
used as an app vetting tool for Android markets. When
a developer submits an app to the market via a web ser-
vice, we envision the market pushing it to RootExplorer,
as depicted in Figure 4. First, we employ a static ana-
lyzer (different from the static analysis during the train-
ing phase), which performs several checks to filter apps
that are unlikely to contain root exploits (details later).
Subsequently, it determines “with which kind of mobile
device(s) or emulator(s),” the dynamic analysis will be
performed. Upon completion of the dynamic analysis,
the detector collects the results and determines if the app
contains a root exploit and if so what exploit it is. If the
app does have root exploits, it informs the Android mar-
ket and saves the hash of the app to the central database;
otherwise the app is moved either to a different malware
scanner (e.g., Bouncer) that is orthogonal to our system

Native code
detector

Known malware DB
and heuristics for

dangerous native code

Device
detector

Device
initiator

Device/OS info

Figure 5: Static analyzer

or for publication in the Android market. The dynamic
analyzer can be run on either real phones or Android em-
ulators (or a mix of both), and can be easily integrated
into various malware analysis environments as needed.

7.2 Static Analyzer

The static analyzer consists of three components as
shown in Figure 5. The first component is the native code
detector. Since almost all root exploits are written in na-
tive code (certainly the case for the one-click root app we
study), it is natural to check whether the apps contain na-
tive code. Specifically, the native code detector does the
following checks to filter apps that are extremely unlikely
to contain root exploits: (1) Whether the app matches
signatures of known malware samples that contain root
exploits. If so, we abort any further analysis and flag
the malware. (2) Whether it has any native code or has
the capability of dynamically loading native code (e.g.,
through the network). If negative, we can safely skip the
analysis of this app. (3) If it contains native code, sim-
ilar to prior work [8], we use a list of custom heuristics
to decide if they can possibly contain root exploits (e.g.,
whether any dangerous system calls are being called). If
negative, we do not analyze the app further.

If the native code detector did not abort the analy-
sis, the app is moved to the device detector. This is re-
sponsible for determining “under which environment the
app should be dynamically analyzed.” The observation is
that since malware can embed different exploits target-
ing different Android devices, they usually contain logic
that detects the type of the Android environment. Thus,
we look for any such logic that performs checks against
hard-coded device types.

The last component is the device initiator, which gen-
erates the Android environment based on the output of
the device detector. We describe the device detector and
the device initiator in more details below.

Device detector: This component parses the de-
compiled bytecode (using androguard [9]) and finds
the methods (A) that contain code that check ei-
ther the Android version that resides in the static
class android.os.Build.VERSION, or the type of

the device that resides in the android.os.Build
class, or the version of the Linux Kernel (e.g., by
Runtime.getRuntime().exec(‘‘uname’’) and
reading the /proc/version file). Furthermore, it finds the
methods (B) that either run an executable native file (e.g.,
Runtime.getRuntime().exec(‘‘/sdcard/foo’’))
or call a function in a native binary (e.g., library files).
If there is a program path from the methods that are
members of (A) to the ones in (B), it finds which con-
ditions should be satisfied and creates the appropriate
Android environment. Similarly, the same procedure is
performed in native code. In the case that the native code
is obfuscated or even downloaded via a C&C server, the
device detector simply picks a few popular candidate
device types randomly, with the view that the malware
will likely target one or more popular devices.

Device initiator: Android stores the device informa-
tion in system files such as /system/build.prop and
default.prop. /system/build.prop contains spe-
cific information about the mobile device such as the
Android OS version, the name and the manufacturer of
the device. In addition, there are also system files such
as /proc/version and /proc/sys/kernel/* inher-
ited from Linux that store information about the Linux
kernel. When the system boots, the Android’s property
system reads the information from these files and caches
them for future use. The device initiator monitors all
such interfaces via which an app can learn about the de-
vice and obtain OS information. Since we have collected
a database of Android devices from the online reposi-
tory [1], we know what values to modify in the system
files or what to return through the proc interfaces.

7.3 Dynamic Analyzer

The dynamic analyzer consists of two parts as illustrated
in Figure 6 viz., a Loadable Kernel Module (LKM) and
a background service process. The LKM hooks every
available system call in the Android Linux Kernel. In ad-
dition, it creates a character device that can be opened by
only the background service (to prevent malware from
tampering with the communication), and with which
a communication link is established between user-land
and kernel-land. The LKM tracks only a specific app
(under analysis) and its child processes at any moment in
time. The background service stores the training models
including behavior graphs and environment constraints,
as well as the state of the current running app (e.g., what
part of a behavior graph has been matched and what en-
vironment constraints are supposed to be returned next).

Once a hooked system call is called by the app un-
der analysis, the execution is directed to our LKM which
then transmits a specially crafted message that contains
the system call names as well as their arguments to the

Figure 6: Dynamic Analyzer.

background service through the character device. Based
on the behavior graph and environment constraints, the
background service is responsible for deciding what ac-
tion is going to be taken, and it returns that action to the
LKM. First, it checks the behavior graph to see if the sys-
tem call in question matches any new node. If not, it does
nothing and simply instructs the LKM to execute the sys-
tem call as is. If a new node is matched, it further checks
if it is an object creation system call such as open() or
socket(). If so, it deploys a decoy object to satisfy the
environment constraints as described in §6. Otherwise,
if it is a system call that operates on an existing object,
the return results will be served from the data prepared
ahead of time for the decoy object (e.g., file content).

Note that deploying decoy objects has to be done care-
fully. As mentioned, Android root exploits often need
to be adapted to work on different devices, even when
they target the same underlying vulnerability. For in-
stance, the device file /dev/camera-isp can be ex-
ploited slightly differently on different Android phones
that all have the vulnerable device driver; this will cause
slightly different behavior graphs and preconditions to
be generated (e.g., the input to a vulnerable device file
will look different), and the expected return results from
a system call may be different. Therefore, once we have
decided to disguise as a particular Android device (e.g.,
Samsung Galaxy S3), we will need to choose the behav-
ior graphs and preconditions accordingly (obtaining such
a Android device to exploit binary mapping is discussed
in §4). Otherwise, the decoy objects we deploy may be
for the wrong Android device which will in fact fail to
detect the exploit.

8 Evaluation

In this section we describe the evaluations of RootEx-
plorer. We focus on its effectiveness wrt the following
aspects: (1) can it detect synthetic and real malware con-
taining root exploits? (2) does it cause false alarms on
benign apps? (3) does it miss malware samples?

8.1 Environment Setup

Training parameters: Our training database contains
168 different root exploits that were designed for differ-
ent devices and were obtained from a commercial one
click root app. The number of devices that we can
successfully emulate currently based on the root exploit
database is 211. We trained with all 60 families of root
exploits.

Testing dataset: We have the following categories of
apps for evaluation:

1. Samples that are known to contain root exploits.
This includes publicly distributed exploit PoCs [38, 36,
34, 33] and GODLESS malware [32], and seven other
one-click root apps (different from the one we trained
with) which also contain many different root exploits.

2. Samples that may contain root exploits. We ob-
tained a list of 1497 malware samples from an antivirus
company, and have crawled 2000 recently uploaded apps
between January and February 2017, from four unoffi-
cial Android app markets: 7723 [3], ANDROID life [4],
MoboMarket [6] and EOEMARKET [5]. We target
third-party markets because they are known to have more
malware than the official Google Play [87].

3. Samples that almost certainly do not contain root
exploits. This includes the top 1000 free apps from
Google play. As they are extremely popular, it is very
unlikely that they contain root exploits. This set is used
to evaluate the false positives (if any) with RootExplorer.

Analysis Testbed: The experiments are performed on
a Lenovo Laptop with a quad core Intel Core i7 2.00GHz
CPU, 16GB of RAM, and a hard drive of 1TB at 5400
rpm. We use an Android emulator for analyzing the mal-
ware2. To make the emulator appear as realistic as pos-
sible, it is loaded with real files, such as music, pictures
and videos. Furthermore, it contains a call log, SMS his-
tory and contacts, as well as various installed apps. We
have modified the binary image of the emulator, in order
to show that it has a real phone number and a real In-
ternational Mobile Equipment Identity (IMEI) number.
Finally, the build.prop file (containing the device in-
formation) is updated appropriately prior to each exper-
iment. Each app is analyzed starting with a clean image
of the emulator in order to avoid any side effects that a
previously tested malware app can have on the emulator.
A simple micro-benchmark on the open() system calls
shows that the system call monitor increases the execu-
tion time of open() by 75%, on average.

Input generator: To achieve as much code coverage
as possible when executing an app (in hope that root ex-
ploits will be triggered), we leverage DroidBot [37], a

2Even though the system runs on real phones, we choose an emu-
lator based approach since it is easier to run a large set of experiments
concurrently.

One-Click App Exploit
O1 /dev/camera-sysram
O2 /dev/graphics/fb5
O3 /dev/exynos-mem
O4 /dev/camera-isp
O5 /dev/camera-isp
O6 /dev/camera-isp
O7 towelroot

Table 1: One-Click apps with the discovered exploits.

lightweight test input generator for Android that gen-
erates pseudo-random streams of user events such as
clicks, as well as a number of system-level events. Droid-
Bot can generate random events on its own, or gener-
ate events based on the manifest file of the app, or can
take as input a file with predefined events. In our exper-
iments, we use randomly generated events (“black-box”
technique) and events based on the manifest file of the
app (“gray-box” technique).

8.2 Effectiveness
We evaluate RootExplorer against all the test datasets
mentioned earlier containing 4497 apps in total. Over-
all, we do not find any false positives, i.e., benign apps
are never mistakenly reported to contain root exploits.
For the known malware samples, we obtain the ground
truth either from the fact that github explicitly states that
it is a root exploit, or via cross-validation with VirusTo-
tal and the antivirus company that we work with. Out of
8 known malware families containing root exploits, we
do not find any false negative. We describe the details
below.

Unit testing: To obtain assurance that the training
phase works as expected, We execute the 60 families
of root exploits (from the training data) in our dynamic
analysis environment and see if they can be detected.
Note that this means that the training and testing data
are exactly the same. If any of these exploits cannot be
detected, it indicates that the behavior graphs or precon-
ditions that were prepared are in fact incorrect. The test-
ing results show that all of the exploits are successfully
detected.

Detecting other one-click root apps: Since we have
not trained RootExplorer with exploits from other one-
click root apps, this test allows us to further confirm that
the system works well. In particular, the exploits from
these apps may or may not be implemented exactly in
the same way as the ones in our training set, being able
to trigger and detect them is a promising sign. Table 1
lists the first exploit that was caught upon running 7 other
one-click root apps on an emulated Samsung Galaxy S3
device. Interestingly, different one-click root apps in
fact choose to launch different exploits against our de-

Exploit VirusTotal RootExplorer
diag 1/57 X

exynos 4/57 X
pingpong 1/57 X
towelroot 3/57 X

Table 2: Detection rate for debug compilation.

Exploit VirusTotal RootExplorer
diag 0/57 X

exynos 1/57 X
pingpong 0/57 X
towelroot 1/57 X

Table 3: Detection rate for obfuscated compilation.

vice. For instance, with O1, we caught an exploit re-
lated to the /dev/camera-sysram driver, while O2 and
O3 triggered exploits against /dev/graphics/fb5 and
/dev/exynos-mem respectively. The results showcase
the effectiveness of RootExplorer in detecting a wide va-
riety of exploits.

Detecting Exploit PoCs from the Internet: We next
take four proof-of-concept root exploits (with source
code) that we can find on github [38, 36, 34, 33], and em-
bed them in a testing Android app we build, that simply
roots a phone upon touching a button. We first check the
effectiveness of current anti-virus programs against the
“malware” we built containing publicly available PoCs.
We scan the app using the virusTotal API [70] which con-
tains 57 anti-virus programs (e.g., Trend Micro) capable
of scanning Android apps . Table 2 shows the detection
rates for the case where we compiled the source code
with all the debug options on and without any obfus-
cation, while Table 3 shows the results when the com-
piled binaries are obfuscated using the O-LLVM obfus-
cator [47] and packed using UPX [67] (both are off-the-
shelf tools).

In brief, without obfuscation, all four exploits can be
detected by at least one antivirus. However, with sim-
ple obfuscation, only exynos (CVE-2012-6422) [30] and
towelroot (CVE-2014-3153) [31] can be successfully de-
tected and that too by only one antivirus. On the other
hand, RootExplorer, by preparing the right preconditions
and observing the exploit behaviors at runtime, can de-
tect every exploit regardless of the obfuscation and pack-
ing methods.

Detecting GODLESS: GODLESS [55] is a family
of malware that employs multiple root exploits, and has
caused havoc in the wild since mid-2016. RootExplorer
is extremely effective in detecting the exploits in the
GODLESS malware family. Its source code is largely
based on the open source repository on github [32].
Specifically, GODLESS checks the device type against a
predefined, populated database of supported exploitable
devices. Depending on which device it is running on,
it invokes a corresponding, appropriate exploit. The pro-
cess is iterative. It begins with exploit acdb and checks if
the device is in the database, and only if so, will continue
with the actual exploit. Upon failure, it moves on to next
exploit which is hdcp, and so on until it has tested the last
exploit viz., diag. We run GODLESS against 5 different
emulated devices to showcase that RootExplorer is effec-

tive in properly stimulating the right exploit for a device.
Table 4 shows the results (with the emulated devices).
The exploits with code name msm camera, put user

and fb mem can be caught using any emulated device;
this is because these exploits affect a large number of de-
vices and seemingly, the author of GODLESS does not
even know the complete list of devices they affect. In-
stead, GODLESS simply always tries to execute them
without checking the actual device type. Of course, if
a target device does not have the vulnerable device file
such as /dev/msm camera, the exploit will simply abort
and the next exploit is attempted. Since RootExplorer is
trained to prepare the preconditions for all the exploits at
all times including msm camera, it deploys the decoy file
/dev/msm camera on demand when GODLESS tries to
open it, and can therefore always trigger and detect its
complete malicious behavior with respect to this exploit.

Detecting Malware in the Antivirus malware
dataset and 3rd-party Android Markets: For each
app from the 1497 malware samples we received from
an anti-virus company and the 2000 apps downloaded
from four third-party Android markets, we apply Roo-
tExplorer for 10 minutes using Droidbot with an emu-
lated Samsung S3 device; the kernel version, build ID,
and the model of the device are set to 3.0.31-1083875,
JZO54K, and GT-I9300 respectively. Upon booting the
emulated device, Droidbot launches the main activity of
each app and generates random touch events and system
events such as BOOT COMPLETED every second. Mean-
while, our tool runs in the background and analyzes all
the system calls that the app uses. To measure the num-
ber of false positives and false negatives, we scan those
apps with VirusTotal. Among all the apps, RootExplorer
detected two true positives (and has no false positive).

The first app is named Wifi Analyzer from
the MoboMarket [6], which was discovered to
contain the pingpong root exploit [77] (md5
ea1118c2c0e81c2d9f4bd0f6bd707538). At the time
of writing, the app is still alive on the market. After
consulting with VirusTotal and an antivirus company, we
confirmed that it is an instance of the rootnik malware
family [57]. We have reported to the market and are
waiting for the app to be removed.

Another detected app is a Flashlight app
from the Antivirus malware dataset, containing
the camera-isp root exploit. It has an md5

of 1365ECD2665D5035F3AB52A4E698052D.

HTC J Butterfly Fujitsu Arrows Z Fujitsu Arrows X Galaxy Note LTE Samsung S3
acdb 3 7 7 7 7

hdcp 7 3 7 7 7

msm camera 3 3 3 3 3

put user 3 3 3 3 3

fb mem 3 3 3 3 3

perf swevent 7 7 3 7 7

diag 7 7 7 3 7

Table 4: Emulated devices and corresponding exploits caught by RootExplorer in GODLESS malware.

Upon starting, the app tries to access the files
/system/xbin/su and /system/bin/su. Root-
Explorer returns the appropriate errors to make the
app believe that it is running on an un-rooted de-
vice. Interestingly, only when DroidBot delivers the
BOOT COMPLETED event to the app, the root exploit is
triggered. In the beginning, it opens and reads the file
/proc/kallsyms four times to retrieve the address of
certain kernel symbols. After that, it opens the vulner-
able /dev/camera-isp device file3. It subsequently
invokes two different ioctl() system calls with request
types 0xC0086B03 and 0xC0186201 that effectively
compromise the driver. As expected, RootExplorer de-
ploys the decoy file /dev/camera-isp which returns a
real file descriptor for open(), and success for ioctl()
(to trick the exploit into believing that it has succeeded).
Finally, the exploit performs a setresuid(0,0,0) to
get root access. At that point, RootExplorer successfully
finds the root exploit and stops the execution of the app.

In addition to the above two malware samples, Virus-
Total also reports three additional malware samples that
carry root exploits. We analyzed these cases manually
and found that they in fact attempt to download the ex-
ploits from a specific URL which is no longer valid. In
other words, the exploits are never executed even though
the malware may have done it in the past.

9 Limitations and Discussion

Although RootExplorer is effective in practice, in the-
ory it has some limitations that would allow attackers to
bypass its detection. One obvious limitation is analysis
environment evasion (e.g., fingerprinting Android emu-
lator or real phones) which was already discussed in §2.
We consider this a general problem for any analysis en-
vironment and that this is orthogonal to our research.

There are other limitations specific to our work. First,
the signatures that we use are extracted from existing ex-
ploits instead of vulnerable code; therefore capable at-
tackers (e.g.,, state-sponsored attackers) may be able to
find alternative attack paths to exploit the same vulner-

3Note that in this case, the exploit targets a different vulnerability
in the same device driver from the example in Section 5.

ability [16]. To address this issue, a different behavior
graph thus needs to be learned.

Second, an attacker with knowledge of RootExplorer
can potentially counter our analysis environment. For
instance, without obtaining an actual copy of a device
driver (e.g., camera), it is impossible to answer all possi-
ble queries from an application. Malware can therefore
potentially tell if they are interacting with a real device
driver or not. However, we argue that it is also challeng-
ing for the malware authors to understand the complete
behaviors of a device driver.

Third, since we use syscall-based signatures to model
the exploits, RootExplorer is also vulnerable to special-
ized evasion techniques. For example, Ma et al. [54]
have demonstrated that by splitting the malicious behav-
iors into pieces that are executed in multiple processes, it
is possible to bypass signatures that target a single pro-
cess. Despite being more difficult, such an attack strat-
egy may also be applicable to certain root exploits and
may thus bypass RootExplorer’s detection.

We plan to further improve RootExplorer’s detection
by addressing these problems in the future.

10 Conclusions

In this paper, we tackle the challenging problem of de-
tecting the presence of embedded root exploits in mal-
ware. We build a system RootExplorer, that learns from
commercial-grade root exploits used for benign reasons
and backed by large companies such as Baidu and Ten-
cent, and detects such embedded root exploits. Specifi-
cally, it carefully analyzes these to determine what envi-
ronments root exploits expect, and what pre-conditions
are to be satisfied in order to trigger them. It uses this in-
formation to construct proper analysis environments for
malware and can effectively detect the presence of root
exploits. Our extensive evaluations shows that it can de-
tect all known malware samples carrying root exploits,
and has no false positives. We are also able to detect a
root exploit in a malware that seems to have bypassed
current vetting procedures, and is available on an An-
droid market.

11 Acknowledgments

This research was partially sponsored by the Army Re-
search Laboratory and was accomplished under Coop-
erative Agreement Number W911NF-13-2-0045 (ARL
Cyber Security CRA). The views and conclusions con-
tained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation here on. The work was also partially supported
by NSF Award 1617481.

References
[1] Android device inventory. https://www.androiddevice.info/.

[2] Android security bulletin — january 2017, 2018.
https://source.android.com/security/bulletin/2017-01-01.html.

[3] 3RD-PARTY ANDROID MARKET. 7723 market, 2017.
https://goo.gl/iMi4Bo.

[4] 3RD-PARTY ANDROID MARKET. Android life, 2017.
https://goo.gl/hAov2G.

[5] 3RD-PARTY ANDROID MARKET. Eoemarket, 2017.
https://goo.gl/FB0ykP.

[6] 3RD-PARTY ANDROID MARKET. Mobomarket, 2017.
https://goo.gl/tzpjY7.

[7] AAFER, Y., ZHANG, X., AND DU, W. Harvesting inconsistent
security configurations in custom android roms via differential
analysis. In USENIX SECURITY (2016).

[8] AFONSO, V., BIANCHI, A., FRATANTONIO, Y., DOUPÉ, A.,
POLINO, M., DE GEUS, P., KRUEGEL, C., AND VIGNA, G.
Going native: Using a large-scale analysis of android apps to cre-
ate a practical native-code sandboxing policy. In Annual Network
and Distributed System Security Symposium (NDSS) (2016).

[9] ANDROGUARD. Androguard, a full python tool to play with an-
droid files, 2017. https://goo.gl/edcClw.

[10] ARZT, S., RASTHOFER, S., FRITZ, C., BODDEN, E., BARTEL,
A., KLEIN, J., LE TRAON, Y., OCTEAU, D., AND MCDANIEL,
P. Flowdroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps. In ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion (PLDI) (2014), ACM.

[11] AZIM, T., AND NEAMTIU, I. Targeted and depth-first explo-
ration for systematic testing of android apps. In Annual ACM
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA) (2013), ACM.

[12] BACKES, M., BUGIEL, S., HAMMER, C., SCHRANZ, O., AND
VON STYP-REKOWSKY, P. Boxify: Full-fledged app sandbox-
ing for stock android. In USENIX Security Symposium (Security)
(2015).

[13] BAIDU. Shoujiweishi, 2017. http://shoujiweishi.baidu.com/.

[14] BAYER, U., COMPARETTI, P. M., HLAUSCHEK, C., KRUEGEL,
C., AND KIRDA, E. Scalable, behavior-based malware cluster-
ing. In Annual Network and Distributed System Security Sympo-
sium (NDSS) (2009).

[15] BIANCHI, A., FRATANTONIO, Y., KRUEGEL, C., AND VIGNA,
G. Njas: Sandboxing unmodified applications in non-rooted de-
vices running stock android. In ACM CCS Workshop on Security
and Privacy in Smartphones and Mobile Devices (SPSM) (2015).

[16] BRUMLEY, D., NEWSOME, J., SONG, D., WANG, H., AND
JHA, S. Towards automatic generation of vulnerability-based sig-
natures. In IEEE Symposium on Security and Privacy (Oakland)
(2006).

[17] BURGUERA, I., ZURUTUZA, U., AND NADJM-TEHRANI, S.
Crowdroid: behavior-based malware detection system for an-
droid. In ACM CCS Workshop on Security and Privacy in Smart-
phones and Mobile Devices (SPSM) (2011).

[18] CAO, Y., FRATANTONIO, Y., BIANCHI, A., EGELE, M.,
KRUEGEL, C., VIGNA, G., AND CHEN, Y. Edgeminer: Au-
tomatically detecting implicit control flow transitions through the
android framework. In Annual Network and Distributed System
Security Symposium (NDSS) (2015).

[19] CHECKPOINT. Quadrooter: New android vulnerabilities in over
900 million devices, 2016. https://goo.gl/GN6ZwW.

[20] CHEN, K. Z., JOHNSON, N. M., D’SILVA, V., DAI, S., MAC-
NAMARA, K., MAGRINO, T. R., WU, E. X., RINARD, M., AND
SONG, D. X. Contextual policy enforcement in android appli-
cations with permission event graphs. In Annual Network and
Distributed System Security Symposium (NDSS) (2013).

[21] COPYRIGHT OFFICE, U. Copyright protection and management
systems, 2017. https://goo.gl/zpeUtK.

[22] COSTA, M., CASTRO, M., ZHOU, L., ZHANG, L., AND
PEINADO, M. Bouncer: Securing software by blocking bad in-
put. In ACM Symposium on Operating Systems Principles (SOSP)
(2007).

[23] CRANDALL, J. R., SU, Z., WU, S. F., AND CHONG, F. T. On
deriving unknown vulnerabilities from zero-day polymorphic and
metamorphic worm exploits. In ACM Conference on Computer
and Communications Security (CCS) (2005).

[24] CUI, W., PEINADO, M., WANG, H. J., AND LOCASTO, M. E.
Shieldgen: Automatic data patch generation for unknown vulner-
abilities with informed probing. In IEEE Symposium on Security
and Privacy (Oakland) (2007).

[25] DIMJAŠEVIC, M., ATZENI, S., UGRINA, I., AND RAKAMARIC,
Z. Android malware detection based on system calls. University
of Utah, Tech. Rep (2015).

[26] DINGES, P., AND AGHA, G. Targeted test input generation us-
ing symbolic-concrete backward execution. In IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE)
(2014).

[27] DIRTYCOW. Cve-2016-5195, 2017. https://goo.gl/K8cWEK.

[28] ENCK, W., GILBERT, P., HAN, S., TENDULKAR, V., CHUN,
B.-G., COX, L. P., JUNG, J., MCDANIEL, P., AND SHETH,
A. N. Taintdroid: an information-flow tracking system for real-
time privacy monitoring on smartphones. ACM Transactions on
Computer Systems (TOCS) 32, 2 (2014), 5.

[29] FENG, Y., ANAND, S., DILLIG, I., AND AIKEN, A. Ap-
poscopy: Semantics-based detection of android malware through
static analysis. In ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE) (2014).

[30] FOR INFORMATION SECURITY VULNERABILITY NAMES, S.
Cve-2012-6422, 2012. https://goo.gl/R7Icm7.

[31] FOR INFORMATION SECURITY VULNERABILITY NAMES, S.
Cve-2014-3153, 2014. https://goo.gl/R7Icm7.

[32] GITHUB. android run root shell (base for godless), 2017.
https://goo.gl/VKSWb6.

[33] GITHUB. Cve-2012-6422, 2017.
https://github.com/dongmu/vulnerability-poc/tree/master/CVE-
2012-6422.

[34] GITHUB. Cve-2014-3153 aka towelroot, 2017.
https://github.com/timwr/CVE-2014-3153.

[35] GITHUB. Cve-2015-3636: Poc code for 32 bit android os, 2017.
https://github.com/fi01/CVE-2015-3636.

[36] GITHUB. Cve-2015-3636: Poc code for 32 bit android os, 2017.
https://github.com/fi01/CVE-2015-3636.

[37] GITHUB. Droidbot, 2017. https://goo.gl/y8ldRA.

[38] GITHUB. exploit for cve-2012-4220 working on zte-open, 2017.
https://github.com/poliva/root-zte-open.

[39] GOOGLE. Android and security, 2012. https://goo.gl/mo29A4.

[40] GOOGLE. Dashboards, 2017. https://goo.gl/6BTWw4.

[41] GOOGLE. Security-enhanced linux in android, 2017.
https://goo.gl/btJ9xb.

[42] GOOGLE. Verified boot, 2017. https://goo.gl/LiQm9E.

[43] GORDON, M. I., KIM, D., PERKINS, J. H., GILHAM, L.,
NGUYEN, N., AND RINARD, M. C. Information flow analy-
sis of android applications in droidsafe. In Annual Network and
Distributed System Security Symposium (NDSS) (2015).

[44] HOFMEYR, S. A., FORREST, S., AND SOMAYAJI, A. Intrusion
detection using sequences of system calls. Journal of computer
security 6, 3 (1998), 151–180.

[45] Hummingbad android malware found
in 20 google play store apps, 2016.
https://www.bleepingcomputer.com/news/security/hummingbad-
android-malware-found-in-20-google-play-store-apps/.

[46] JING, Y., ZHAO, Z., AHN, G.-J., AND HU, H. Morpheus:
automatically generating heuristics to detect android emulators.
In Annual Computer Security Applications Conference (ACSAC)
(2014).

[47] JUNOD, P., RINALDINI, J., WEHRLI, J., AND MICHIELIN,
J. Obfuscator-llvm–software protection for the masses. In
IEEE/ACM International Workshop on Software Protection
(SPRO) (2015).

[48] KIM, H.-A., AND KARP, B. Autograph: Toward automated,
distributed worm signature detection. In USENIX Security Sym-
posium (Security) (2004).

[49] KOLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA,
E., ZHOU, X.-Y., AND WANG, X. Effective and efficient mal-
ware detection at the end host. In USENIX Security Symposium
(Security) (2009).

[50] LI, L., BARTEL, A., BISSYANDÉ, T. F., KLEIN, J., LE TRAON,
Y., ARZT, S., RASTHOFER, S., BODDEN, E., OCTEAU, D.,
AND MCDANIEL, P. Iccta: Detecting inter-component privacy
leaks in android apps. In International Conference on Software
Engineering (ICSE) (2015).

[51] LIANG, Z., AND SEKAR, R. Fast and automated generation
of attack signatures: A basis for building self-protecting servers.
In ACM Conference on Computer and Communications Security
(CCS) (2005).

[52] LU, L., LI, Z., WU, Z., LEE, W., AND JIANG, G. Chex: stat-
ically vetting android apps for component hijacking vulnerabili-
ties. In ACM Conference on Computer and Communications Se-
curity (CCS) (2012).

[53] MA, K.-K., PHANG, K. Y., FOSTER, J. S., AND HICKS, M. Di-
rected symbolic execution. In International Static Analysis Sym-
posium (2011).

[54] MA, W., DUAN, P., LIU, S., GU, G., AND LIU, J.-C. Shadow
attacks: automatically evading system-call-behavior based mal-
ware detection. Journal in Computer Virology 8, 1-2 (2012), 1–
13.

[55] MICRO, T. Godless mobile malware uses multiple exploits to
root devices, 2016. https://goo.gl/qKSCXl.

[56] MUTTI, S., FRATANTONIO, Y., BIANCHI, A., INVERNIZZI, L.,
CORBETTA, J., KIRAT, D., KRUEGEL, C., AND VIGNA, G.
Baredroid: Large-scale analysis of android apps on real devices.
In Annual Computer Security Applications Conference (ACSAC)
(2015).

[57] NETWORKS, P. A. Rootnik android trojan abuses com-
mercial rooting tool and steals private information, 2015.
https://goo.gl/epd1IB5.

[58] NEWSOME, J., KARP, B., AND SONG, D. Polygraph: Auto-
matically generating signatures for polymorphic worms. In IEEE
Symposium on Security and Privacy (Oakland) (2005).

[59] OCTEAU, D., MCDANIEL, P., JHA, S., BARTEL, A., BODDEN,
E., KLEIN, J., AND LE TRAON, Y. Effective inter-component
communication mapping in android with epicc: An essential step
towards holistic security analysis. In USENIX Security Sympo-
sium (Security) (2013).

[60] PETSAS, T., VOYATZIS, G., ATHANASOPOULOS, E., POLY-
CHRONAKIS, M., AND IOANNIDIS, S. Rage against the virtual
machine: hindering dynamic analysis of android malware. In Eu-
ropean Workshop on System Security (EUROSEC) (2014).

[61] QIAN, C., LUO, X., SHAO, Y., AND CHAN, A. T. On track-
ing information flows through jni in android applications. In
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN) (2014).

[62] RASTOGI, V., CHEN, Y., AND JIANG, X. Catch me if you can:
Evaluating android anti-malware against transformation attacks.
IEEE Transactions on Information Forensics and Security 9, 1
(2014), 99–108.

[63] SECURELIST. Rooting pokmons in google play store, 2016.
https://goo.gl/Ry7AUw.

[64] SINGH, S., ESTAN, C., VARGHESE, G., AND SAVAGE, S. Auto-
mated worm fingerprinting. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2004).

[65] SMITH, C. Android statistics, 2016. https://goo.gl/9Pp6I5.

[66] TAM, K., KHAN, S. J., FATTORI, A., AND CAVALLARO, L.
Copperdroid: Automatic reconstruction of android malware be-
haviors. In Annual Network and Distributed System Security Sym-
posium (NDSS) (2015).

[67] Upx, 2017. https://goo.gl/6BkD4i.

[68] VAN DER VEEN, V., FRATANTONIO, Y., LINDORFER, M.,
GRUSS, D., MAURICE, C., VIGNA, G., BOS, H., RAZAVI, K.,
AND GIUFFRIDA, C. Drammer: Deterministic rowhammer at-
tacks on mobile platforms. In ACM Conference on Computer
and Communications Security (CCS) (2016).

[69] VIDAS, T., AND CHRISTIN, N. Evading android runtime anal-
ysis via sandbox detection. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS) (2014).

[70] Virustotal, 2017. https://goo.gl/Fw7yPC.

[71] WANG, H. J., GUO, C., SIMON, D. R., AND ZUGENMAIER, A.
Shield: Vulnerability-driven network filters for preventing known
vulnerability exploits. In ACM SIGCOMM (2004).

[72] WEI, F., ROY, S., OU, X., ET AL. Amandroid: A precise and
general inter-component data flow analysis framework for secu-
rity vetting of android apps. In ACM Conference on Computer
and Communications Security (CCS) (2014).

[73] WEICHSELBAUM, L., NEUGSCHWANDTNER, M., LINDORFER,
M., FRATANTONIO, Y., VAN DER VEEN, V., AND PLATZER,
C. Andrubis: Android malware under the magnifying glass.
Tech. Rep. TRISECLAB-0414, Vienna University of Technol-
ogy, 2014.

[74] WONG, M. Y., AND LIE, D. Intellidroid: A targeted input gen-
erator for the dynamic analysis of android malware. In Annual
Network and Distributed System Security Symposium (NDSS)
(2016).

[75] WU, L., GRACE, M., ZHOU, Y., WU, C., AND JIANG, X. The
impact of vendor customizations on android security. In ACM
Conference on Computer and Communications Security (CCS)
(2013).

[76] XU, L., ZHANG, D., JAYASENA, N., AND CAVAZOS, J. Hadm:
Hybrid analysis for detection of malware. In SAI Intelligent Sys-
tems Conference (IntelliSys) (2016).

[77] XU, W., AND FU, Y. Own your android! yet another universal
root. In USENIX Workshop on Offensive Technologies (WOOT)
(2015).

[78] YAN, L. K., AND YIN, H. Droidscope: seamlessly reconstruct-
ing the os and dalvik semantic views for dynamic android mal-
ware analysis. In USENIX Security Symposium (Security) (2012).

[79] YANG, W., XIAO, X., ANDOW, B., LI, S., XIE, T., AND ENCK,
W. Appcontext: Differentiating malicious and benign mobile app
behaviors using context. In International Conference on Software
Engineering (ICSE) (2015).

[80] YANG, Z., YANG, M., ZHANG, Y., GU, G., NING, P., AND
WANG, X. S. Appintent: Analyzing sensitive data transmission
in android for privacy leakage detection. In ACM Conference on
Computer and Communications Security (CCS) (2013).

[81] ZHANG, H., SHE, D., AND QIAN, Z. Android root and its
providers: A double-edged sword. In ACM Conference on Com-
puter and Communications Security (CCS) (2015).

[82] ZHANG, H., SHE, D., AND QIAN, Z. Android ion hazard: the
curse of customizable memory management system. In ACM
Conference on Computer and Communications Security (CCS)
(2016).

[83] ZHANG, M., AND YIN, H. Efficient, context-aware privacy leak-
age confinement for android applications without firmware mod-
ding. In ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS) (2014).

[84] ZHENG, C., ZHU, S., DAI, S., GU, G., GONG, X., HAN, X.,
AND ZOU, W. Smartdroid: an automatic system for revealing
ui-based trigger conditions in android applications. In ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM) (2012).

[85] ZHOU, X., LEE, Y., ZHANG, N., NAVEED, M., AND WANG,
X. The peril of fragmentation: Security hazards in android de-
vice driver customizations. In IEEE Symposium on Security and
Privacy (Oakland) (2014).

[86] ZHOU, Y., AND JIANG, X. Dissecting android malware: Char-
acterization and evolution. In IEEE Symposium on Security and
Privacy (Oakland) (2012).

[87] ZHOU, Y., WANG, Z., ZHOU, W., AND JIANG, X. Hey, you,
get off of my market: Detecting malicious apps in official and
alternative android markets. In Annual Network and Distributed
System Security Symposium (NDSS) (2012).

	Introduction
	Background & Related Work
	Root Exploits and One-Click Root Apps
	Android Malware Analysis
	Attack Modeling and Detection
	Other Related Work

	Threat Model and Problem Scope
	RootExplorer Overview
	Behavior Graph Analysis
	Generating Training Behavior Graphs
	Examples
	Using Behavior Graphs in Detection

	Satisfying Exploit Preconditions
	Detecting Root Exploits
	Operational Model
	Static Analyzer
	Dynamic Analyzer

	Evaluation
	Environment Setup
	Effectiveness

	Limitations and Discussion
	Conclusions
	Acknowledgments

