
Breaking edge shackles: Infrastructure-free collaborative mobile
augmented reality

Kittipat Apicharttrisorn
∗

kapic001@ucr.edu

University of California, Riverside

Riverside, CA, USA

Jiasi Chen

jiasi@cs.ucr.edu

University of California, Riverside

Riverside, CA, USA

Vyas Sekar

vsekar@andrew.cmu.edu

Carnegie Mellon University

Pittsburgh, PA, USA

Anthony Rowe

agr@andrew.cmu.edu

Carnegie Mellon University

Pittsburgh, PA, USA

Srikanth V. Krishnamurthy

krish@cs.ucr.edu

University of California, Riverside

Riverside, CA, USA

Abstract
Collaborative AR applications are gaining popularity, but have

heavy computing requirements for identifying and tracking AR de-

vices and objects in the ecosystem. Prior AR frameworks typically

rely on edge infrastructure to offload AR’s compute-heavy tasks.

However, such infrastructure may not always be available, and

continuously running AR computations on user devices can rapidly

drain battery and impact application longevity. In this work, we

enable infrastructure-free mobile AR with a low energy footprint,

by using collaborative time slicing to distribute compute-heavy AR

tasks across user devices. Realizing this idea is challenging because

distributed execution can result in inconsistent synchronization of

the AR virtual overlays. Our framework, FreeAR, tackles this with
novel lightweight techniques for tightly synchronized virtual over-

lay placements across user views, and low latency recovery upon

disruptions. We prototype FreeAR on Android and show that it can

improve the virtual overlay positioning accuracy (with respect to

the IOU metric) by up to 78%, relative to state-of-the-art collabora-

tive AR systems, while also reducing power by up to 60% relative

to a direct application of those prior solutions.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools.

Keywords
Mobile Augmented Reality, Energy Efficiency, Object Detection and

Tracking, Simultaneous Localization and Mapping

ACM Reference Format:
Kittipat Apicharttrisorn, Jiasi Chen, Vyas Sekar, Anthony Rowe, and Srikanth

V. Krishnamurthy. 2022. Breaking edge shackles: Infrastructure-free collabo-

rative mobile augmented reality. InACMConference on Embedded Networked

∗
The corresponding author is currently a postdoctoral researcher at CyLab, Carnegie

Mellon University, PA, USA, and can also be reached at kapichar@andrew.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SenSys ’22, November 6–9, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9886-2/22/11.

https://doi.org/10.1145/3560905.3568546

Sensor Systems (SenSys ’22), November 6–9, 2022, Boston, MA, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3560905.3568546

1 Introduction
Collaborative or multi-user AR experiences are on the rise, with

examples including Pokemon Go’s Buddy Adventures mode [51],

Google’s Just a Line virtual graffiti drawing app [22], and Meta-AR-

App for education [64]. While many multi-user AR apps rely on

cloud/edge infrastructure for heavy computations and sharing of

information across devices, such infrastructure may be unavailable

in many cases (e.g., a search-and-rescue in a disaster zone or an

ad-hoc AR game at a beach). In the first example, AR users may

need to see virtual overlays around people needing rescue. In the

second, users may interact with virtual coins hidden behind real-

world objects (e.g., palm tree) in a hide-and-seek game. In both cases,

the virtual overlays (highlight around person, virtual coins) should

be viewed in the correct locations with respect to the real-world

objects by all the users; otherwise, a person might not be correctly

identified, or the virtual coin might not be hidden.

Realizing these types of collaborative AR apps requires several

steps. Step 1: An AR device must determine where to place a virtual

overlay, based on an analysis of the real world scene; Step 2:While

moving, the AR device must track its own pose (i.e., position and

orientation) and the pose of the virtual overlay, so that the overlay

is at the correct location on the display; Step 3: The AR devices

must communicate about the virtual overlays with each other, so

that the overlays appear at consistent locations on all their displays.

For Steps 1 and 2, today’s AR entails two sources of high-power

computation that can drain a device’s battery. For Step 1, deep

neural networks (DNNs) are used by recent AR work [7, 37, 38]

to correctly detect and classify objects with high accuracy (e.g., to
avoid cases like Fig. 1b where the virtual overlays are drawn over

the wrong real world objects due to incorrect detection).

For Step 2, simultaneous localization and mapping (SLAM) is

commonly used in AR [21, 33, 50] to allow a device to determine its

pose in the real world. While these computations work well when

executed on edge infrastructure, as shown in prior work [9, 13, 36]

and seen in our measurements, their high power consumption

makes them unsuitable for a direct application in infrastructure-

free settings. For example, SLAM [33, 42] consumes roughly 1.01

- 1.85 watts, while a DNN execution consumes 0.98 watts on a

Google Pixel 4 (comparable to or even higher than what is incurred

https://doi.org/10.1145/3560905.3568546
https://doi.org/10.1145/3560905.3568546

SenSys ’22, November 6–9, 2022, Boston, MA, USA K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

(a) Desired case (b) Undesired case
Figure 1: Virtual overlays are (a) correctly placed, (b) mis-
placed due to poor synchronization or inaccurate object de-
tection. The purple arrows point at the person of interest.

with video streaming [62, 71]). Although hardware offloading may

reduce power consumption of these computations, we focus on

software solutions that work on heterogeneous devices without

requiring hardware accelerators (e.g., GPU) [40, 55, 65].
A key observation we make is that many of the critical/high

energy computations are redundant across devices in collaborative

AR settings, unlike when each device operates independently. This

is because 1) AR devices detect and track a common set of physical

objects, and so only some (not all) of the devices need to re-detect

the objects using DNNs, and 2) AR devices move around a common

space, and so in principle, only some of them need to perform

localization independently using SLAM. Thus, having all battery-

operated AR devices perform these computations all the time is not

only expensive but also wasteful in terms of energy consumption.

To enable long-lived (power efficient) AR experiences when there

is no infrastructure support, we envision employing collaborative
time slicing, wherein not every device continuously runs all heavy

computations (DNNs and SLAM). Rather, such computations per-

formed by a primary device are re-purposed by others (secondary

devices); the role of the primary can be rotated as needed to distrib-

ute the energy drain. While seemingly a simple idea, it is very hard

to realize collaborative time slicing in practice, such that the AR ex-

perience (in terms of virtual overlay placement accuracy) is similar

to when all devices perform their own computations, expending

high power. Specifically, we encounter the following challenges.

Synchronizing moving AR devices in new areas. To place virtual

overlays with consistent positions and orientations in their views,

AR devices need to synchronize their 3D coordinate systems. This

is very difficult for two reasons. First, users can launch AR apps

from different locations, and thus the devices do not share a com-

mon initial reference point for synchronization. Second, AR devices

move independently and see the same scene from different view-

points at different times, so it is difficult to determine a common

coordinate system that all devices agree on. To address these chal-

lenges, we rely on spatiotemporal, repeat observations of the scene

from different viewpoints to try to estimate a shared coordinate

system [15–17, 39]. Our key observation is that when the users

view a scene, matters as much as what they view. In other words,

to construct the common coordinate system, two viewpoints that

are recent but less similar in appearance might be preferable to two

viewpoints that are older but more similar, since the scene may

have changed over time (see Fig. 3). Prior approaches [13, 15, 17, 39]

neglect this time factor, i.e., they assume a static real world.

Recovering from failures due to abrupt motion. After synchroniza-
tion, a tenet of collaborative time slicing is that the secondary AR

devices keep track of their own poses in the agreed-upon coordi-

nate system in a lightweight way. However, challenges in tracking

arise if there are changes in the appearance of an object in the FoV

or in an AR user’s pose. To cope with such disruptions, we design

triple-layered repair mechanisms, viz. view-based and location-

based local repairs, and primary-assisted collaborative repair. The

main idea is for a secondary to search for the object in view based

on its previously saved appearances; or failing that, to display the

virtual overlay at the object’s previous locations; or if all else fails,

to obtain updated object locations from the primary (tracking them

using the heavy computations) and map them to its own view.

Representing virtual overlays in 3D coordinates. As an AR device

moves around a 3D world, because the viewpoint (e.g., relative
distance and angle) from the device to the virtual overlay may

have changed, the pose of a virtual overlay needs to be updated

in 3D. This is challenging since the virtual overlay is not a real

3D object. We solve this problem, in a nutshell, as follows. The

2D object coordinates of the virtual overlay, provided by the DNN,

are mapped onto the 3D coordinates from SLAM on the primary.

These 3D coordinates are then shared with the secondary devices

so that they can consistently project the coordinates to the devices

according to their viewpoints. We believe that we are the first to

harmonize the usage of DNNs and SLAM to correctly maintain

virtual overlay poses as multiple devices move.

Contributions and Roadmap: In summary, our work makes the

following contributions:

• We identify fundamental challenges in existing systems to sup-

port infrastructure-free AR (§ 2).

• We design, arguably, the first infrastructure-free AR system

FreeAR (§ 3), which incorporates novel components to realize

robust coordinate system synchronization and virtual overlay

consistency. FreeAR’s lightweight mechanisms save power yet

ensure overlay placement accuracy across AR devices.

• We implement an end-to-end prototype on Android (§ 4), work-

ing on multiple smartphones without needing root access. Our

implementation adds more than 10,000 lines of code to the code

base [43]. Our code is available at the FreeAR website [6].

• We perform extensive experiments (§ 5) to evaluate and compare

FreeAR’s performance with two state of the art approaches, MAR-

VEL [13] which uses edge infrastructure, and MARLIN [7] which

performs power efficient on-device computations (no edge is in-

volved). Our evaluations in various representative scenarios show

that on average (i) FreeAR reduces power by 46% and improves the

object detection accuracy by 43% in terms of IOU, compared to

MARLIN, and (ii) FreeAR improves the object detection accuracy

by 78% in terms of IOU with an 18% increase in power, compared

to MARVEL (which benefits from edge infrastructure).

Ethics. This paper does not raise ethical concerns; human vol-

unteer experiments were performed with IRB approval.

2 Motivation and AR landscape
In this section, we provide a detailed example use case, current AR

methods, and energy measurements to motivate FreeAR’s approach.
Example: Consider a scenario (Fig. 1a) where AR-equipped

firefighters navigate a building to search and rescue trapped people.

When the lead firefighter (left AR device) finds a person, her AR

device automatically detects and highlights the person on its display

Breaking edge shackles: Infrastructure-free collaborative mobile AR SenSys '22, November 6�9, 2022, Boston, MA, USA

Features
System AR-

Core
[21]

AVR
[48]

Liu et
al. [37]

Edge-
SLAM

[9]

SPAR
[50]

MAR-
LIN [7]

MAR-
VEL
[13]

FreeAR

Energy e�cient 3 3 3

No edge infrastructure 3 3 3

Multiple users 3 3 3 3

Pose tracking 3 3 3 3 3 3

Object detection 3 3 3

Table 1: Comparison of FreeARand related work

Operation Power (W) Operation Power (W)

OS+Camera+Screen 3.016� 0.239 Optical Flow (OF)
object tracking [10]

0.319� 0.072

IMU-based Tracking
(Ÿ 3.3)

0.361� 0.151 Image-based Local-
ization (Ÿ 3.3)

0.994� 0.438

WiFi P2P Send 0.166� 0.033 SLAM [33] 1.208� 0.164
WiFi P2P Receive 0.085� 0.027 DNN [58] 1.225� 0.308
Local Repair (Ÿ 3.4.1) 0.650� 0.105 SLAM+DNN+OF 2.424� 0.402

Table 2: Energy expenditures for key operations in FreeAR.
Averaged measurements with Google Pixel 4, Google Pixel
4a 5G, Google Pixel 5, and Samsung S21.

with a red rectangular overlay and a purple virtual arrow. When a
supporting �re�ghter (right AR device) arrives, the person is also
highlighted on his display. If the person or a �re�ghter moves, these
overlays must be updated on the appropriate AR displays. Realizing
this requires the three computation steps listed in Ÿ 1; however,
these steps are done without communication infrastructure that
may be damaged, so the �re�ghters need to form an infrastructure-
free network among themselves to coordinate their activities.

Current AR landscape: Current AR systems fall short in the
above infrastructure-free scenario and cannot run solely on a light-
weight mobile device, where energy is of paramount importance.
This is because (a) they require infrastructure support (cloud/edge)
to provide consistent overlays [13, 21, 38], (b) they are unconcerned
with device energy because they can o�oad heavyweight compute
to the cloud/edge [9, 37, 48, 49], and/or (c) they do not allow for real
time coordination between multiple AR devices [9, 13, 37, 38, 49].

Canonical AR solutions: Google ARCore [21] allows for co-
ordination across devices, but requires access to the Google Cloud
Platform, which synchronizes di�erent user views. Similarly, Liu
et al. [37] require edge support, o�oading camera frames in order
to perform heavyweight computations (DNNs) to detect the per-
son in view. MARVEL [13] utilizes edge infrastructure, and unlike
FreeAR, requires specialized hardware (depth camera or LiDAR) to
generate an o�ine map for localization. MARLIN [7] focuses on
power e�cient object detection with DNNs, and SPAR [50] enables
multi-user AR through SLAM without energy concerns. Related
work is summarized in Table 1 and Ÿ 6. In this work, we investigate
whether such computations and coordination can be done without
infrastructure on the devices with low power.

Energy costs: A seemingly natural way of enabling infrastruc-
ture free AR would be to have AR devices operate independently
and run DNNs (for step 1 in Ÿ 1, to detect the person) and SLAM (step
2, to keep track of the person and devices' poses). Prior work, such
as [7, 37], run DNNs while the others [21, 33] run SLAM on nearly
every frame. We empirically measure the energy consumption of
such a strategy. We perform measurements on several smartphones
(Google Pixel 4/4a/5 and Samsung S21), using VINS-AR [33] as
the SLAM implementation, and E�cientDet [58] on Tensor�ow
Lite as the DNN. As shown in Table 2, the energy expenditure of
running SLAM alone is 1.2 W, DNNs alone is 1.2 W, and SLAM

Figure 2: FreeAR's work�ow: (red) synchronization phase,
(green) steady-state (low-power) phase.

with DNNs and object tracking simultaneously is 2.4 W (averaging
across the four di�erent phone models mentioned above). The latter
case has both SLAM and DNNs running simultaneously to keep
track of existing virtual overlays and device poses, and to provide
new virtual overlays, respectively. Note that this is the average
energy consumed by a single device; with# users would consume
approximately� 2”4 � # W of power.

A case for sharing: We thus observe a natural opportunity
for energy savings � sharing common information about the vir-
tual overlays' poses, and avoiding redundant computations as men-
tioned in Ÿ 1. Returning to the example (Fig. 1a), the lead �re�ghter's
AR device (left) could initially detect the trapped persons and high-
light the one needing immediate attention (with a virtual purple
arrow). It can then share this information to supporting �re�ghters,
having recently arrived, so that they do not have to repeat the
computations already done by the lead's device. As the lead and
supporting devices move around in a common area with overlap-
ping viewpoints, they can share this information to each other and
re-purpose their computations to save overall energy. If one device
takes care of heavy computations for too long and drains signi�cant
energy, it can hand over these tasks to another device.

Our goal is to design a system that is able to overcome the
practical challenges stated in Ÿ 1, but we cannot trivially apply
prior methods because of the absence of supporting infrastructure,
devices' continuous mobility, and low-power requirements for the
longevity of the AR experience.

3 Design of FreeAR
As discussed,FreeARuses collaborative time slicing to divide heavy-
weight computations across collaborating AR devices. In Fig. 2, we
depict the high level work�ow ofFreeAR's functions and operations.
At the beginning of a slice,FreeARincorporates a novel coordinate
system synchronization phase (or sync phase), where all devices
converge to a common coordinate system (Ÿ 3.1), and make the
virtual overlays' 3D poses consistent across all the devices (Ÿ 3.2).
Thereafter, a chosen primary device runs SLAM and DNNs and
is able to update the device pose, physical object locations, and
the 3D virtual overlays as in traditional AR systems. On the other
hand, the secondaries transition to a low-power mode, and will
now track their locations in the converged coordinate system with
lightweight methods (IMU/image-based tracking), and render the
virtual overlays appropriately based on their own motion dynamics
(Ÿ 3.3). If a secondary experiences abrupt scene changes, the virtual
overlays may be lost; then,FreeAR's local repair kicks in for rapid
recovery (Ÿ 3.4.1, 3.4.2). If local repair fails,FreeAR's collaborative
repair is attempted (Ÿ 3.4.3).FreeARtransitions to the next time
slice either when the repair repeatedly fails, or when the primary's

SenSys '22, November 6�9, 2022, Boston, MA, USA K. Apichar�risorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

Figure 3: Performing coordinate system synchronization, the primary, choosing frames with (a) partial view or (b) misplaced
chair, places the virtual cube at a wrong location. (c) considering the full view of table and chair and the current chair location
leads to successful synchronization; hence, the virtual cube is placed correctly (on top right of the table).

energy drops, and it now chooses a new primary (Ÿ 3.5). Next, we
provide a more in-depth view ofFreeAR's key components.

3.1 Coordinate system synchronization
The primary must be able to describe the 3D location and 3D ori-
entation (i.e.,pose) of a physical object (and its associated virtual
overlay) to a secondary, for the latter to locate the same object in
space, and draw the virtual overlay at proper positions. Towards
this, the primary and secondary need a common coordinate system
to represent the poses of the virtual overlays, objects, and devices.

Prior methods: Centralized collaborative SLAM systems [28,
52, 70] allow multiple agents to coordinate in a common space by
establishing a common coordinate system at a central server, which
performs most of the heavy computations. On the other hand, de-
centralized systems [39] assume a pre-built map (database) of a
location that allows distributed agents to work together. Finally,
recent SLAM systems [16, 17] do not assume a central server or of-
�ine maps, but assume that the agents observe common landmarks
at the same time to synchronize the coordinate systems.

Challenges: All the above systems fail to meet the requirements
we have. (1) Infrastructure-free settings must not assume a central
server, (2) impromptu operations (e.g.,emergency response) cannot
assume pre-built o�ine maps, and (3) even if such an o�ine map
is available, the actual scene may already have changed (e.g.,an
object has been moved), making the visual features in an AR device's
view di�er from the features stored in the map, thus causing the
coordinate system synchronization to fail. (4) Finally, AR users may
not observe the same scene at the same time (e.g.,two �re�ghters
are looking for trapped people at di�erent corners of the room).

Key ideas: We observe that to converge to a common coordinate
system, what we need is a common point with spatial and temporal
proximity in terms of the views of the primary and secondary.
That is, if we can �nd recent time instances where the primary
and the secondary had similar views, those views can be used
to synchronize them. Visual similarity between the primary and
secondary is important because the more the visual features that
are used to estimate the mapping (or homographic transformation
[45]) between coordinate systems, the more accurate the estimation
becomes [32, 66]. Fig. 3 shows an example where the primary and
the secondary have di�erent views; the virtual cube originally in
the secondary's coordinate system is transformed to that in the
primary's coordinate system using the synchronization output. The
left frame is from a secondary. In Fig. 3a where the primary has
a partial view of the table and chair, only some of the objects'
visual features can be used to map to the secondary's frame, which
has a full view of both objects. This mapping mismatch leads to
a large synchronization error; hence, the virtual cube is rendered
incorrectly in the primary's view (e.g.,to the left of the table). Thus,

this well-known technique for synchronizing multiple SLAM agents
[16, 17] does not work well when both (primary, secondary) are in
motion unless pre-coordination is enabled to ensure similar views.

In addition to visual similarity, temporal freshness is also im-
portant since it increases the likelihood that the physical objects
observed by the primary and secondary will be at nearly the same
positions (not moved or moved very little). Recent systems [15�
17, 39] ignore this temporal aspect by unrealistically assuming that
(1) no objects in the scene have moved [15, 39] or (2) agents fully
observe the same objects (e.g.,table and chair) at the same time
[16, 17]. In Fig. 3b, the primary has a full view of the table and chair;
however, a comparison between the frames from the primary and
secondary should consider not onlywhat features are in the frames
(e.g.,those of table and chair), but alsowherethey are (e.g.,chair
features are on the right side of the frames). Without this, the frame
in Fig. 3b where the chair is on the left side of the frame results in
poor synchronization, and thus causes a virtual cube to be rendered
incorrectly in the primary's view.

In sum, only when both visual similarity and temporal freshness
are considered together is the synchronization very likely to be
successful, leading to the correct rendering of the virtual cubes in
both views. As an example in Fig. 3c, the primary is able to identify a
key frame that (1) has a full view of table and chair (visual similarity)
and (2) was captured not too long ago (temporal freshness), that
matches with a secondary's frame. Using this match, it correctly
renders the virtual cube on top right of the table due to a tight
synchronization of the two coordinate systems.

Practical realization: Given this intuition, the secondary can
send its recent (to be discussed) camera view to the primary which
then searches through the history of its trajectory to �nd a set of
reference frames for synchronization. The primary then checks
the spatial correlation (visual) between the two sets of frames. It
then chooses the pair (one from each set) that provides the best
match to synchronize the coordinate systems of the two entities
(i.e.,knowing their poses at those times, it creates a mapping).

To elaborate on the details of the above in practice, we leverage
a well known technique for homographic transformation called
Perspective-n-Point (PnP) method [32] (also used in [33, 39, 50])
as the underpinning of our synchronization method due to its low
latency and acceptable power consumption. As input to a basic PnP
operation (details to follow),(1) FreeARchooses frames from the pri-
mary that are (a) similar in appearance and are (b) close in time to
an input frame sent by the secondary. We call this selection of suit-
able input framesimproper frame avoidance. (2) If there are multiple
primary frames that are similar in space and time,FreeARchecks,
for each of these frames, how many feature correspondences �t
with the secondary's frame; the more features that �t, the better

Breaking edge shackles: Infrastructure-free collaborative mobile AR SenSys '22, November 6�9, 2022, Boston, MA, USA

the synchronization. We call thisvariance suppression. Below, we
describe these two components in more detail.

Step 1: Improper Frame Avoidance.Coordinate system synchro-
nization is fairly heavyweight, so it takes place on the primary.
FreeAR's primary has access to its own entire frame history, but
only to the most recent frame from a secondary; hence, it needs to
search for the best matches from its history to establish a mapping
with the secondary's frame, so it computes two scores:

� A visual similarity score,E»8¼, where8is the index associated with
the primary's candidate frame. The similarity is based on work
in [19] where dictionaries of BRIEF visual features are matched
between the primary's frame8and the secondary's frame. Note
that FreeARuses selected key frames (e.g.,those in which many
features are detected) for coordinate system synchronization
because they are less prone for visual distortion (e.g.,less blurri-
ness), and the synchronization more likely succeeds. However,
even in the case of failure,FreeARwill attempt another iteration of
synchronization in the next time period (more details to follow).

� A time score that downweighs old frames,0”99¹C� C8º•B, whereC
is the current time,C8 is the timestamp associated with frame8,
andBis a normalization factor.

We then combine the visual and time scores to de�ne theframe
proximity score (ps)for primary's frame8as

?B»8¼= E»8¼ �0”99¹C� C8º•B (1)

and rank the frame indices8in a descending order of this score.
Finally, we select the primary'stop-k frames that maximize?B»8¼.
We choose the top: frames to increase the pool of candidates for
high-quality matches, with further �ltering below in Step 3.

Step 2: PnP synchronization method.The previous step returns
: candidate frames from the primary's frame history for aiding
synchronization, given a secondary's input frame. However, we still
need to estimate the homographic transformations [45] (estimated
spatial relations) between the coordinate systems of the primary
and the secondary. PnP is a well-known technique [57] to do this,
and so we only brie�y summarize its usage here. First, it takes as
inputs the primary frame (5? , determined by Step 1), the secondary
frame (5B), and the pose at5B() 5B! B) with respect to the secondary's
coordinate system (B). Second, it uses the intersection of the visual
features in5? and 5B to compute the pose of the secondary's frame
with respect to the primary's coordinate system (?), using PnP,
as) 5B! ? . Finally, it estimates a 4x4 homogeneous transformation
matrix � ?! B = ¹) 5B! ?º� 1 � ¹) 5B! Bº, which is used to transform the
3D coordinates of an object from? to Bas>B = � ?! B�>? , where>?
and>B are the 3D vector coordinates of the object in the primary
and secondary's coordinate systems, respectively. Details about
how we obtain>? are discussed in Ÿ 3.2.

Estimation of synchronization quality:The PnP solver �ts a linear
model (� ?! B) from the 3D world points to visual features from
the 2D camera frame inputs. More of the visual features �tting
the linear model means that the linear model can consistently ex-
plain the observed data; thus, the synchronization is more likely
to be accurate. In other words,� ?! B more likely represents the
unknown ground truth transformation between the two coordinate
systems. To use this information,FreeARcounts the number of vi-
sual feature correspondences that �ts the linear model (within a

tolerance threshold); this is callednumInliers [57]. Recent work
on PnP solvers [30, 32, 69] reports that the more inliers there are,
the smaller the translation and rotation estimation errors become.

The primary runs the PnP solver for all the: frames from Step
1 and returns the largest foundnumInliers value, along with the
corresponding� ?! B, to the secondary. The value of: drives a
tradeo� between higher-quality synchronization and the compute
latency (� : � 70<B). Guided experimentally, we choose: = 3.

Step 3: Variance Suppression.Upon receiving� ?! BandnumInliers ,
the secondary usesnumInliers to determine whether to accept
the proposed synchronization. It only does so only ifnumInliers
is greater than in the previous synchronization attempts. If this is
true, it records both (a)� ?! B for transforming 3D points in the
primary's coordinates (?) to those in its own coordinates (B), and (b)
numInliers for comparison in the next synchronization iteration.

Finally,FreeARchecksnumInliers > threshold for all the secon-
daries; if so, their coordinate systems are synchronized with that
of the primary. We choose threshold= 5 because it is the minimum
number for PnP to be successful [32].

3.2 Consistent virtual overlay placement
A key requirement of AR is that all users have a consistent view
of a virtual overlay (in terms of its location, size, and orientation
in the 3D world). For example, an overlay should appear larger on
the display of a user closer to it, than of another who is further
away. Thus, after coordinate system synchronization, the primary
needs to share information about the physical objects in its view
(whose locations are �xed in the 3D world), along with the relative
positions of the virtual overlays with respect to these objects, with
all the secondaries, so that all users will have consistent views.

Prior methods: Virtual overlays given by DNNs are in 2D, and
AR users may observe the objects from di�erent angles or distances,
and so the same objects appear di�erently in terms of sizes, shapes,
and orientations in di�erent FoVs. Therefore, 2D virtual overlays
directly shared by the primary can easily be mis-represented at a
secondary's view (e.g.,as in Fig. 1b). SLAM generates key points in
3D, but cannot determine the locations for the virtual overlays from
their 2D representation. Current AR systems focus on either DNNs
[7, 37] or SLAM [9, 13, 50], but not both; others [23, 36] require
edge infrastructure to compute the location of the virtual overlay
on each user's view. Objectron [2, 20], detecting objects in 3D on
mobile devices without edge infrastructure, in theory allows the
user devices to utilize the 3D object coordinates to determine the
correct placement of the virtual overlays, but it only works for a
single user, without any virtual overlay sharing mechanism.

Challenges: Unfortunately, prior systems do not meetFreeAR's
requirements. First, there is no edge infrastructure to coordinate vir-
tual overlay placement. Second, we need a mechanism to represent
these virtual overlays in 3D, and then perform a transformation to
the 2D display of a di�erent (secondary) user.

Key ideas and realization: Our vision is to harmonize the
outputs of the DNN with that of SLAM in order to ensure the con-
sistency of virtual overlay placement across primary and secondary
devices. During the synchronization phase, AR devices run both
DNNs and SLAM. DNNs provide information regarding physical
objects in the environment by extracting features in an image view

SenSys '22, November 6�9, 2022, Boston, MA, USA K. Apichar�risorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

Figure 4: SLAM and DNNs cooperation maps 2D features of
interest into 3D space allowing another AR user to view a
consistent virtual overlay (virtual cube).
and returning 2D locations (D• E) where objects of interest (e.g.,per-
son) likely appear. SLAM also extracts features of the environment,
but instead of looking at a single image, it tracks those features
in 3D continuously over time. By bundling information of feature
movement (from frame to frame) and estimates of device pose
changes using IMU, SLAM can estimate these features in the 3D
world (G•~• I). For each (G•~• I) in the FoV observing the 3D world,
we can project it to the 2D display as follows.

�
D• E•1

�) =
�

� �
' jC

� �
G•~• I•1

�) (2)

where is an intrinsic camera parameter matrix (from a camera
calibration), and' andCrepresent an estimated camera pose (rota-
tion and translation, respectively) [29]. To harmonize the DNN and
SLAM outputs, we consume a set of 3D points¹G•~• Iº output by
SLAM, and map them to their corresponding projected 2D points
¹D• Eº in the current view. Then, we �lter the¹D• Eº by whether they
lie within the 2D coordinates of a virtual overlay output by DNNs
(e.g.,a bounding box). The 3D coordinates¹G•~• Iº corresponding
to the �ltered ¹D• Eº are considered the 3D coordinates of the object.

FreeARexploits this association as illustrated in Fig. 4. The pri-
mary device (user A) has the 2D coordinates of the chair from
DNNs, which allows it to determine the 2D coordinates of the �blue
cube� virtual overlay relative to the chair. Then,FreeARconverts the
coordinates of the chair into 3D coordinates using SLAM and Eq. 2;
subsequently from this, we are able to estimate the 3D coordinates
of the virtual overlay, which are then conveyed to the secondaries.
Each secondary then maps the virtual overlay's 3D coordinates
onto its own 2D view again using Eq. 2 with its own' andC, and
thus is able to place the virtual overlays properly on its display
(on the table). Speci�cally, with changes in FoVs (or pose changes),
¹G•~• Iº in Eq. 2 are �xed while' andCare updated; thus,D• Eis
projected into the view with proper sizing and orientation.

3.3 Lightweight device localization
Once the AR devices synchronize their coordinate systems and
display virtual overlays consistently across devices, a steady state
has been reached within the collaborative time slice. At this point,
the secondary devices turn o� SLAM and DNNs to save power.
However, every secondary needs to continuously update its pose
relative to its own coordinate system because when the primary
shares new object information, the secondary will need to map it on
to its view (which has changed) correctly. Note that it is relatively
easy for the primary, which runs SLAM, to track its pose changes.

Prior methods: Previous systems [13, 53, 54] use an IMU to
estimate pose changes in the 3D world (referred to as IMU-based
tracking). However, this can accumulate drift and become inaccu-
rate over time (10-20 s) [31] and result in displacements of virtual
overlays from their correct positions. Recent systems such as [36]
use image-based methods without considering IMUs (referred to

Figure 5: IMU-based and image-based localization results in
high accuracy and low power updates of AR device poses.

as image-based localization) wherein a device uses a recent image
frame (8) to search for a correspondence (a similar frame9) in its
own trajectory history. Using these two frames (8and 9), the device
can compute a homographic transformation from the known pose
at 9to the current unknown pose at8. This transformation is used
to update the device pose, and is re-computed as the device moves
around. However, our measurements on di�erent device models
(Table 2) indicate that image-based localization consumes 0.99 W,
which is 2.75� higher power than IMU-based tracking (0.36 W);
utilizing the former continuously can cause undesired power drain.
Prior work [36] does not consider power e�ciency as we do in
FreeAR. However, a recent AR system [13] reduces power consump-
tion on AR devices by o�oading image-based localization to an
edge infrastructure, not existing in our infrastructure-free settings.

Challenges: Unlike prior systems' assumptions, we do not have
edge infrastructure and our solution has to be power e�cient. Yet,
we need to have high accuracy,i.e.,if a large drift occurs,FreeAR
needs to recover from that drift and correctly place the virtual
overlay in the view again. This process should incur low latency to
update the pose of an AR device, in motion, almost in real time.

Key ideas: From the above, we make the observations that since
image-based localization is relatively power heavy, we should use
it sparingly if at all. Thus, we seek to use the IMU-based tracking
to the extent possible. To increase its usability, we incorporate the
impact of gravity to help improve the accuracy of basic IMU-based
tracking. This is inspired by a prior work [53] that uses gravity
estimation to improve tracking of a wrist watch with an arm model.
We signi�cantly build upon this to improve tracking of an AR device
in free space where the user may move an arm or walk around in
the space. We only trigger image-based localization upon need.
Speci�cally, we �nd that while our modi�ed IMU tracking is very
robust to rotation and minor translation (also shown in [53, 54]), its
error accumulation increases over larger translations. Thus, if the
IMUs indicate signi�cant translation (> 20cm), we trigger image-
based localization to ameliorate the error.

A simple example in Fig. 5 showcases the bene�ts of integrat-
ing IMU and visual tracking withFreeAR. The upper row shows
IMU-based tracking alone, and the lower row shows image-based
tracking alone. An AR device atC0 observes a physical cup, on top
of which a virtual cube is rendered. As the device moves (without
SLAM), the cube should remain �xed if the device pose is being
tracked correctly. AtC1, the device rotates to the right (e.g.,right
edge of the device moves closer to the user); here,FreeARuses IMU
to track its pose correctly (using the image-based method results
in pose estimation error,i.e.,the cube shrinks and drops down a

Breaking edge shackles: Infrastructure-free collaborative mobile AR SenSys '22, November 6�9, 2022, Boston, MA, USA

Figure 6: FreeAR's lightweight localization work�ow; �� [47]
bit). At C2, the device experiences limited translation to the left
and both IMU and image-based methods result in consistent device
tracking; however, because IMU consumes less power,FreeARuses
it to update the device pose at this time. Finally atC3, when the
device is moved to the right with signi�cant translation, IMU-based
tracking results in a very large error and causes the cube to go
further away from the cup to the far right of the frame.FreeAR's
choice of image-based localization, however, helps regain the pose
and thus, the cube placement on top of the cup. Next, we provide
some details ofFreeAR's combined IMU and image-based tracking.

Augmenting IMU Tracking with Gravity Estimates.We �rst inte-
grated several publicly available IMU-based tracking methods [4,
27] into FreeAR, but found they did not perform well (e.g.,�xed
virtual cube is displaced as the device moves). Hence, as mentioned,
we develop our custom IMU-based tracker, inspired by two prior
e�orts, viz., Shen et al. [53] removing gravity from accelerometers
under arm motion, and Solin et al. [54] tracking devices with legged
or wheeled motion. Neither ful�ls our need to track the device in 3D,
with the user both moving her arm while holding the AR device and
walking. Thus, we combine and build on these ideas to signi�cantly
improve tracking accuracy as follows:(1)When the device is mostly
motionless (acceleration¹0G• 0~• 0I º Ÿ 0”2< •B2), we estimate the
gravitational forces in the three dimensions viz.,¹6G•6~•6I º. (2)
When the user starts moving the device, we estimate the linear
accelerations as;0G = 0G � 6G• ;0~ = 0~ � 6~•and;0I = 0I � 6I . (3)
Using standard physics kinematic equations [31], we estimate the
translation every� C= 10ms.

We �nd that this simple method works well under the assumption
that the user moves and stops occasionally (which provides a chance
to re-estimate gravity). Since prior methods for rotation tracking
work reasonably well, we incorporate the one from [47] into FreeAR.

Augmenting IMU Tracking with Visual Information.When IMU
tracking indicates signi�cant translation, the secondary device cap-
tures the recent camera frame and uses it to recover the pose within
its own coordinate system. Setting this translation threshold too
high can cause pose estimation to be o� and virtual overlays to
drift away; setting it too low will cause frequent invocations of
the image-based approach, and thus induce high energy. Based on
experiments with our smartphones, we set the threshold to 20 cm.

The image-based localization withinFreeARis similar to its coor-
dinate system synchronization method. The key di�erence is that
instead of comparing the secondary's most recent frame with the
primary's history of frames (Eq. 1), the comparison is made between
the secondary's most recent frame and its own historical frames.
Fig. 6 summarizesFreeAR's work�ow for device pose tracking.

3.4 Recovery upon abrupt motion
While the above modules (Ÿ 3.1-3.3) enableFreeARto cope with
gradual motion, they cannot fully handle a user's abrupt motion
(e.g., a quick turn). Here, a secondary can lose track of an object

Figure 7: View-based Local Repair (VLR): a secondary uses
collected templates to recover the lost virtual overlay.

and its virtual overlay can disappear. Abrupt pose changes also
cause a loss in synchronization with the primary. A naive way
to recover from such a loss is to trigger SLAM and DNNs for a
reset; however, this consumes high power and importantly, induces
long delays for the system to return to a steady state. Thus, we
desire power thrifty, low latency repair mechanisms, to allow the
secondary device (not running SLAM or DNNs) to (a) recover object
locations in the device's 2D view correctly, and (b) place virtual
overlays that are consistent with those in other AR users' views.
3.4.1 View-based local repair (VLR):Intuitively, if we know what
object was lost, and can remember what it looked like, we can try
to �nd it on our display in a lightweight way. Speci�cally, we can
look for the lost object in historical frames, extract its features, and
try to �nd the part of the display which has the same features.

Prior methods: There are many possible candidates from the
literature for performing view-based local repair on the above basis.
(1)Template matching[46] �nds the location of a template image (of
the physical object) in the current view. It slides the template over a
template sized window (or patch) of the input image and compares
the template and the patch (see (3) in Fig. 7). Then, if the patch
with minimum di�erence to the template di�ers by lower than a
threshold, it is considered to be the recovered 2D location of that
object (see (4) in Fig. 7). (2)DNN [61]: detects and classi�es physical
objects in the current view. (3) Acascade classi�er[44] uses Haar
features to train a classi�er to determine the location of a physical
object (if present). Our experiments (on a Pixel 4 phone) indicate
that template matching consumes the lowest power (0.56 W) with
the smallest latency (20 ms), while the DNN (cascade classi�er)
consumes 0.98 (1.91) W with 250 (120) ms latency, as one might
expect since they are considered heavyweight [7, 25].

Challenges: We cannot simply plug in template matching into
FreeARbecause there are too many templates (e.g.,3600 templates
in 2 mins), so blindly matching the current frame with all of these
can induce large delays in recovery.

Key ideas: Our approach is to collect templates of the objects
of interest (with which the AR virtual overlays are associated)
during the sync phase. A secondary then uses those templates to
re-locate lost objects and re-draw the virtual overlays. We �lter
out redundant templates and use fast template matching to recover
multiple physical objects simultaneously (details to follow). Since
both the template and candidate match were captured under similar
conditions by the same device, VLR is very likely to succeed. We
next describe VLR's two main components that accomplish this.

Intelligent template collection:When the DNN (during the sync
phase) and the accelerometer indicate that a device is mostly mo-
tionless, candidate object templates from the camera frames are

SenSys '22, November 6�9, 2022, Boston, MA, USA K. Apichar�risorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

Figure 8: Location-based Local Repair (LLR): a secondary uses
object locations and current pose to recover a virtual overlay.

obtained, as illustrated in step (1) in Fig. 7. To enable future local re-
pairs,FreeARneeds to collect a diverse, yet compact set of templates
for each object. It uses a color moment hash [59], a compressed
representation of the image that is quick to compute (10ms) and
compare (< 1ms), to determine if it should store a new template. It
stores a new template based on two criteria: (1) the minimum hash
distance compared to all previous templates must be greater than a
thresholdor (2) the minimum di�erence between a new template's
width and height and all previous templates' widths and heights,
is greater than a threshold. In a representative experiment in Fig.
7, we �nd that FreeARstores four representative object templates
(green boxed) for an object out of� 3,000 frames.

Fast template matching:When a secondary loses an object due to
abrupt motion,FreeAR�rst retrieves the templates associated with
that object. It then waits for the device to be relatively motionless to
ensure that a non-blurry camera frame is captured, appropriate for
template matching, which is then performed (as described earlier
in this subsection) and repeated for each template. The patch with
the lowest sum of square di�erences (also lower than a threshold)
is chosen as the recovered object location. Fig. 7 shows that the
right most template in the green box matches the current frame and
successfully places the bounding box in step (4). Our experiments
show that template matching takes� 60ms with high-precision
object recovery (e.g.,IOU� 0”7 � 0”8).
3.4.2 Location-based local repair (LLR):An object's appearance
may change from how the secondary remembers it; in other words,
visual features of the templates can deviate from the object features
in the current view (e.g.,when viewing an object from a di�erent
angle). In such cases, VLR may fail, and to handle such cases, we
imbibe a second layer of local repair. Here, we rememberwherethe
objects were before they were lost. With this location information,
we can then recover the virtual overlays.

Straw-man methods: An AR device can use DNNs to recover
the object locations. However, DNN executions drain signi�cant
energy from AR devices (see Table 2); hence, this method fails to
serve as a good candidate for location based local repair.

Key ideas: During the sync phase, a secondary device not only
collects templates for VLR, but also registers and updates an ob-
ject's location in its own coordinate system. LeveragingFreeAR's
SLAM and DNN cooperation method (Ÿ 3.2), these registered ob-
ject locations are in the 3D world, which is stationary. If VLR fails,
FreeARtriggers LLR by projecting the last known 3D object location
¹G•~• Iº to the secondary's view, making corrections based on the
device pose ('• C) (discussed in Ÿ 3.3) and Eq. 2. Fig. 8 illustrates this
simple, yet e�ective process in recovering a virtual overlay (orange
bounding box). Note thatFreeARwill not draw the virtual overlay
if the object is not within the secondary's current view (Eq. 2).

Figure 9: Primary-assisted Collaborative Repair (PCR): the
primary shares object information with a secondary which
can recover the position of the virtual overlay in its view.

3.4.3 Primary-assisted collaborative repair (PCR):In a few cases,
LLR may also fail (e.g.,if the object has been moved) and we provide
a third repair layer to try to prevent SLAM and DNNs executions
on the secondaries. We observe that the primary, which still runs
SLAM and DNNs, can share object (and virtual overlay) information
with a secondary experiencing object loss; the latter can then use
the information to recover the virtual overlays in the local view.

Prior methods: MARVEL [13] determines object locations of-
�ine and registers them on an edge infrastructure which shares
these locations with AR devices to aid recovery of virtual overlays.
EdgeSharing [36] uses DNNs running on an edge to determine
object locations, and shares them with the user devices.

Challenges: We cannot directly apply these methods because
of the lack of o�ine surveys and edge infrastructure. The primary
is in motion (along with the secondaries), and thus cannot directly
play the role of the �xed edge assumed in the prior systems.

Key ideas: The primary device, using SLAM and DNNs coop-
eration, estimates an object's 3D locations (G?•~?• I?) and shares
them with a secondary that has lost track of the object. The latter
uses� ?! B (from Ÿ3.1) to transform the 3D points into its own
coordinate system (GB•~B• IB). It then uses its recent device pose'• C
(updated by Ÿ 3.3) and Eq. 2 to project the 3D points onto its 2D
view and draw the virtual overlay. Fig. 9 illustrates PCR's processes.

3.5 Fast and seamless global fallback
In extremely rare cases, all of the repair methods may fail, and here
FreeARwill start a new time slice and fallback to the synchronization
phase,i.e.,all devices will execute SLAM and DNNs again. This
is outside normal invocations of this phase either periodically or
when the primary's battery drops by a certain threshold.

Challenges: Re-initializing SLAM naively can either cause it
to reset, or to fail to reconnect with its previous state and crash.
Resetting SLAM from a cold state clearly misses on opportunities to
leverage previously stored data, and incurs high latency. However,
naively attempting to merge with SLAM's previous state usually
fails because SLAM expects a continuous stream of data from the
camera and IMUs, and the secondary device has not been running
SLAM during a steady-state phase.

Key ideas: We use an existing technique in SLAM, called loop
closure [33,42] in FreeAR, to �trick� SLAM into merging the informa-
tion from the current and previous synchronization phases. Loop
closure is normally used to determine when a user re-visits a previ-
ously seen area (e.g.,by walking in a loop). We exploit loop closure
to give SLAM the impression that the device was simply lost for

	Abstract
	1 Introduction
	2 Motivation and AR landscape
	3 Design of FreeAR
	3.1 Coordinate system synchronization
	3.2 Consistent virtual overlay placement
	3.3 Lightweight device localization
	3.4 Recovery upon abrupt motion
	3.5 Fast and seamless global fallback

	4 Implementation
	5 Evaluation
	5.1 Evaluation metrics
	5.2 End-to-end evaluations of FreeAR
	5.3 Component-wise benchmarks

	6 Related work
	7 Discussion and future work
	8 Conclusions
	Acknowledgments
	References

