
A Framework for Joint Network Coding and
Transmission Rate Control in Wireless Networks

Tae-Suk Kim∗, Serdar Vural∗, Ioannis Broustis∗,
Dimitris Syrivelis†, Srikanth V. Krishnamurthy∗, Thomas F. La Porta‡

∗University of California, Riverside, †University of Thessaly, ‡Penn State University
{tskim, svural, broustis, krish}@cs.ucr.edu, jsyr@uth.gr, tlp@cse.psu.edu

Abstract—Network coding has been proposed as a technique
that can potentially increase the transport capacity of a wireless
network via processing and mixing of data packets at interme-
diate routers. However, most previous studies either assume a
fixed transmission rate or do not consider the impact of using
diverse rates on the network coding gain. Since in many cases,
network coding implicitly relies on overhearing, the choice of the
transmission rate has a big impact on the achievable gains. The use
of higher rates works in favor of increasing the native throughput;
however, it may in many cases work against effective overhearing.
In other words, there is a tension between the achievable network
coding gain and the inherent rate gain possible on a link. In this
paper1, our goal is to drive the network towards achieving the best
trade-off between these two contradictory effects. Towards this, we
design a distributed framework that (a) facilitates the choice of the
best rate on each link while considering the need for overhearing
and (b) dictates the choice of which decoding recipient will
acknowledge the reception of an encoded packet. We demonstrate
that both of these features contribute significantly towards gains in
throughput. We extensively simulate our framework in a variety of
topological settings. We also fully implement it on real hardware
and demonstrate its applicability and performance gains via proof-
of-concept experiments on our wireless testbed. We show that our
framework yields throughput gains of up to 390% as compared
to what is achieved in a rate-unaware network coding framework.

I. INTRODUCTION

Network coding (NC) brings the promise of providing sig-
nificant throughput improvements in wireless networks [1].
However, in most cases it requires nodes to overhear native
and/or encoded packets. In a wireless network, overhearing is
directly dependent on the channel quality. In particular, more
often than not, there may be a mismatch in the quality of (a) the
link from the transmitter and its intended recipient and, (b) the
link between the transmitter and the neighbor trying to overhear
the packet. This mismatch leads to an inherent tension between
the use of high transmission rates and providing an opportunity
for network coding, as we discuss below.

To aid overhearing, one may simply use the lowest trans-
mission rate that can successfully deliver packets to both the
intended recipient and any overhearing node (or sniffer). While
this can maximize the network coding gain, it may not yield the
best throughput gain. On the other hand, transmitting packets at
high rates may decrease the opportunities for encoding packets.
We illustrate this with a simple example. Let us consider the
topology depicted in Fig. 1; the undirected edges represent

1Prepared partially through collaborative participation in the Communications
and Networks Consortium sponsored by the U. S. Army Research Laboratory
under the Collaborative Technology Alliance Program, Cooperative Agreement
DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright
notation thereon. This work was also partially supported by the US Army
Research Office under the Multi-University Research Initiative (MURI) grant
W911NF-07-1-0318.

the feasible links among the 5 nodes. Jack is an intermediate
router who relays packets from Alice and Bob to Chloe and
Dave, respectively. To begin with, assume that (i) all the nodes
operate in the promiscuous mode (as in [1]), (ii) they use the
basic (or lowest), fixed transmission rate Rf , and (iii) all links
have a Packet Delivery Ratio (PDR) equal to 1 at this rate
Rf . With traditional network coding, Dave is able to overhear
Alice’s packet A sent to Jack. Similarly Chloe can overhear
Bob’s packet B, transmitted to Jack. Jack applies a linear
encoding function on the two packets (e.g. an XOR operation)
to construct the packet A⊕B and transmits it at rate Rf . Using
their overheard packets, Chloe and Dave can decode the packet
A ⊕ B and thus obtain A and B, respectively.

Fig. 1. Selecting high transmission rates may impede the network coding gain.
Here, Alice chooses to use a high transmission rate to send her packet A to
Jack. It is possible that Dave does not overhear packet A, and hence he cannot
decode Jack’s A ⊕ B encoded packet.

Rate adaptation has a direct effect on NC gain: Now
assume that a typical rate adaptation algorithm is used [2], [3],
[4]. With this, Alice may use a rate Rh > Rf , towards achieving
a better performance on the link <Alice→Jack>. However, Rh

may be inappropriate on the link <Alice→Dave>; in such a
case, it is unlikely that Dave successfully overhears packet A.
Thus, although the use of Rh by Alice provides the highest
throughput on the link <Alice→Jack>, it also degrades the
network coding gain in the long term. If Alice decides on a
lower transmission rate Rl (Rf < Rl < Rh) with which Dave
can overhear packet A, then he will be able to decode the A⊕B
packet sent by Jack. Hence, by settling for a lower rate gain,
the network enjoys a higher coding gain; this, however, may
either increase the throughput due to the benefits of coding, or
decrease it due to the use of the lower transmission rate.

The decision on which recipient should acknowledge
an encoded packet affects the total throughput: Jack will
pseudo-broadcast [1] packet A ⊕ B to Chloe and Dave. The
pseudo-broadcast requires Jack to choose a primary receiver
which will send a MAC layer ACK for the encoded packet;
we call this receiver the ACKer. The other node acts as a
secondary receiver that overhears the packet. For simplicity,
assume that (i) Jack sends packet A ⊕ B at rate Rh, (ii) the

2

PDR on link <Jack→Dave> is 1, while the PDR on link
<Jack→Chloe> is 0.1 at rate Rh, (iii) Jack knows that Dave
and Chloe have overheard packets A and B, respectively and,
(iv) using reports sent by Chloe and Dave (as with COPE [1]),
Jack can determine which packets were received correctly by
Chloe and Dave (perhaps after a delay). Intuitively, it would
seem that the right choice is for Jack to choose Chloe to be
the ACKer. With this, Jack would confidently assume that if
Chloe has received the packet, then Dave has, too. In this case,
Jack is expected to send A ⊕ B ten times (since PDR=0.1 on
the link with Chloe). By the time Chloe receives her packet,
Jack would have delivered only 2 packets (A to Chloe and B
to Dave). Let us now consider the case where Jack chooses
Dave to be the ACKer. In this case, Jack just transmits A ⊕ B
once. Later when Jack receives Chloe’s report, he will need
to retransmit A if she did not get the packet with the single
transmission. Jack would then encode packet A again, but with
a different, new packet B2 destined to Dave. Again, on average
Jack will have to perform 10 transmissions of A before Chloe
receives it. Note however, that now Jack is able to deliver a
new packet with each transmission instance to Dave. In other
words, in 10 transmissions, Jack delivers one packet to Chloe
but 10 packets to Dave. Thus, contrary to our initial expectation,
choosing Dave to be the ACKer results in a higher throughput.
This trivial example demonstrates that choosing the ACKer for
the encoded packet intelligently could have a significant impact
on the long-term throughput.

Previous studies on wireless network coding take advantage
of the broadcast nature of the medium, and make use of low bit
rates in order to increase the network coding gain at wireless
routers. However, this approach is conservative; high coding
gains are possible at higher bit rates, as long as the PDRs at
those rates are sufficiently high. In addition, these studies do
not examine clever ACKer selection. Unlike such efforts, in
this paper, we consider the two practical challenges described
above. Our key contributions are the following:

1. We design a framework for adapting the transmission
rate to achieve good trade-offs between coding gain and
rate gain: We design and implement a novel distributed rate
adaptation framework that considers the potential gains due to
network coding. Our framework consists of two modules:
• The local transmission rate selection module: Every trans-
mitter of a native packet (e.g. Alice in our example) chooses the
bit rate such that: (a) a high link-level throughput on the link
to the selected router (e.g. link <Alice→Jack>) is achieved,
and at the same time, (b) the sniffers successfully overhear the
packet with high probability.
• The ACKer selection module: Every router intelligently
selects a bit rate and an ACKer for each encoded packet. The
goal is to to maximize the sum of the expected throughputs at
all the intended recipients. For this, the router takes into account
the probability of successful decoding of the encoded packet for
each intended recipient.

2. We perform extensive evaluations of our framework:
Our goal is to evaluate our framework in comparison with the
popular network coding scheme COPE [1], the design of which
does not consider coding-aware bit rate selection. We implement
our framework in Click, on top of the COPE implementation
[5]. We perform experiments on our wireless testbed, both
indoors and outdoors. We observe that our scheme provides
practical performance benefits: it improves the total network
throughput by up to 270%, as compared to COPE. The primary

limitation of the above experimentation is that it is with 802.11b
(which supports only 4 rates). To examine the benefits of our
approach with 802.11a (with 8 rates) and in larger settings, we
also perform extensive NS-2 simulations. We consider different
node densities and network coding scenarios. Our simulations
demonstrate that with 802.11a, our scheme can outperform
COPE by up to 390%.

Our work in perspective: The design of the framework that
we propose in this paper is built on top of a prior practical
wireless network coding architecture, COPE. However, as we
discuss in Section V, our framework is applicable with other
network coding architectures as well. In addition, in this paper
we focus on local NC topologies; encoded packets traverse at
most one hop. As we discuss in Section V, this has applications
in wireless LANs.

The rest of this paper is structured as follows. In Section II we
discuss previous studies on network coding and differentiate our
work. In Section III we present the design of our framework. In
Section IV we evaluate our framework through simulations and
experiments. In Section V we discuss the scope of our study.
Finally, our conclusions form Section VI.

II. RELATED WORK

In this section, we discuss previous relevant NC studies and
differentiate our work.

Analytical and simulation work on wireless network
coding: Lun et al. [6] show that the problem of minimizing
the communication cost can be formulated as a linear program
and solved in a distributed manner. Chaporkar and Proutiere [7]
show that in multi-rate settings, systems with network coding
may actually have smaller throughputs than without coding.
They argue that unless appropriate scheduling is applied, net-
work coding may lead to performance degradation in many
scenarios. They propose XOR-Sym, a computationally simple
network coding technique that can be applied on symmetric
routes. With XOR-Sym, packets are decoded at destinations
only and not at intermediate nodes along a path. Scheuermann et
al. [8] propose noCoCo, a deterministic scheduling scheme for
network coding to operate on two-way multihop traffic flows.
Seferoglu et al. [9] propose code selection schemes that consider
the properties of video traffic. Le et al. [10] provide an upper
bound on the number of packets that can be coded together, in
any possible coding structure. However, none of these studies
jointly address bit rate selection and network coding towards
improving the long-term performance.

The studies that are mostly relevant to our work are [11] and
[12]. Liu and Xue in [11] consider network coding for two-way
relaying in a three-node network. They analytically characterize
the achievable rate regions for a basic 3-node topology and
find the theoretically optimal end-to-end sum rates. However,
unlike in our study, they consider only a certain topology where
nodes do not need to overhear any packets. Vieira et al. [12]
perform simulations to observe how the combination of network
coding and bit rate diversity affects the performance of practical
broadcasting protocols. They show that it is possible for multi-
rate link layer broadcasts and network coding to jointly increase
the network throughput in multicast applications. However, they
do not propose any bit rate selection algorithm that considers
the benefits due to network coding. Further, they do not perform
experiments in real settings to observe these effects.

Seferoglu and Markopoulou in [13] provide an understanding
of the interplay between application data rate control and

3

network coding. However, they do not consider the effects of
rate adaptation on the network coding efficiency. Seferoglu et
al. [14] extend the work in [13] by comparing the optimal
application data rate adaptation scheme of [13] to the corre-
sponding optimal coding-unaware scheme. However, they also
do not examine the role of bit rate adaptation on coding gain.

Experimental studies on wireless coding: Katti et al. [1]
propose COPE, the first implementation of wireless network
coding. Their design requires each node to inform the relay
about the packets that it has overheard and stored. Since one
of the goals of COPE is to increase the number of encoding
opportunities, low transmission rates as favorable in order
for native packets to be overheard by as many neighbors as
possible. The experiments with COPE on a wireless testbed
show that even with very simple encoding operations, network
coding can provide significant capacity gains. The authors of [1]
also study the interactions of network coding with the routing
and the higher layer protocols. We refer to COPE later in this
paper, since we build our algorithm on top of the design and the
implementation of COPE. Rozner et al. in [15] present ER, a
scheme that adopts the design of COPE and employs network
coding to perform efficient packet retransmissions. With ER,
packets that need to be retransmitted are coded together, such
that one retransmission can recover multiple packet losses. The
authors show that the problem of selecting the optimal set
of packets to code together is NP-hard; they propose a set
of heuristics that can be followed to make coding decisions.
Rayanchu et al. [16] propose CLONE, a suite of algorithms
for NC that take into account the potential losses on wireless
links. Both [15] and [16] follow COPE’s logic regarding the
selection of a transmission rate. MORE [17] is a routing
protocol for static mesh networks, which performs a random
mixing of packets, right before they are forwarded. However,
no decisions on rate selection for native or encoded packets
are made. In MIXIT [18] the idea is to code symbols rather
than packets. As with MORE, batches of packets are coded
together. All of these studies are transmission rate unaware.
Towards maximizing the coding gain, they implicitly assume
that devices use low transmission rates, in order to guarantee
that packets are overheard with a high probability.

Finally, a large body of studies have investigated network
coding for wireline networks [19], [20], [21], [22], [23], [24],
[25], [26]. These studies, although seminal, do not consider the
inherent properties of the wireless medium.

III. DESIGNING OUR FRAMEWORK

In this section, we first provide a simple analysis for estimat-
ing the total throughput with NC for the topology in Fig. 12

We use this analysis to subsequently derive the generic design
of our coding aware rate control framework.

A. Throughput estimation with local network coding

Let us return to the example of Fig. 1, where Alice wishes
to send a packet to Chloe and Bob wants to send a packet to
Dave. To begin with, we make the following assumptions:

1) Alice and Bob use Jack as their only relay to send packets
A and B to Chloe and Dave, respectively.

2This topology represents the simplest case where network coding requires
some form of overhearing. Our analysis can be easily extended to more complex
local scenarios.

2) A rate set R is available for packet transmissions, and
each rate in R has an associated PDR (packet delivery
ratio).

3) A scheduling process is assumed [7], [13], [14], according
to which packets A and B arrive at Jack before the latter
transmits any of these two packets.

Preliminaries: For the purposes of our analysis we define the
following notation:

• P rAlice

Alice,Jack is the PDR on the link <Alice→Jack>, at bit
rate rAlice.

• P rACK

Jack,Alice is the PDR for ACK packets sent in the reverse
direction <Jack→Alice>.

• P rAlice

{Alice,Jack},Dave is the probability that Dave overhears
Alice’s packet towards Jack (at rate rAlice).

• NrAlice

Alice,Jack is the expected number of transmissions
needed for successful reception of packet A from Alice
to Jack sent at rate rAlice.

• LAlice is the length of the packet that Alice sends, in bits.
• T rAlice

LAlice
is the transmission time of the packet with length

LAlice, transmitted at bit rate rAlice.
The probability that a transmission from Alice is successfully

received and acknowledged by Jack is P rAlice

Alice,Jack ·P rACK

Jack,Alice.
The successful transmission of a packet follows a Bernoulli
process. Given this, the expected number of transmissions of a
packet sent by Alice is3:

NrAlice

Alice,Jack =
1

P rAlice

Alice,Jack · P rACK

Jack,Alice

.

As shown in Fig. 1, Dave has a link to Alice. The probability
that Dave overhears packet A is given by:

P rAlice

{Alice,Jack},Dave =

∞∑

i=1

{(1−P rAlice

Alice,Jack ·P rACK

Jack,Alice)
i−1 ·P rAlice

Alice,Jack ·P rACK

Jack,Alice

·
i∑

j=1

(1 − P rAlice

Alice,Dave)
j−1 · P rAlice

Alice,Dave}, (1)

where
∑i

j=1(1−P rAlice

Alice,Dave)
j−1 ·P rAlice

Alice,Dave is the probability
that Dave successfully overhears a packet from Alice, when the
latter performs exactly i transmissions. The expected number of
bits delivered together to Chloe and Dave is:

Lt = P rJack

〈Jack,ACKer〉,Chloe · P rBob

{Bob,Jack},Chloe · LAlice

+ P rJack

〈Jack,ACKer〉,Dave · P rAlice

{Alice,Jack},Dave · LBob ,

where P rx

〈x,ACKer〉,y =
∑∞

i=1(1−P rx
x,y ·P rACK

y,x)i−1·P rx
x,y ·P rACK

y,x

if node y is ACKer, and P rx

〈x,ACKer〉,y = P rx

{x,z},y if node
z is ACKer. The above expression is obtained based on the
requirement that LAlice bits are delivered to Chloe only if she
can overhear Bob’s packet; similarly, LBob bits are delivered to
Dave only if he can overhear Alice’s packet. The total expected
duration for delivering the packets from the sources to the
destinations (from the point of inception until Jack receives an
ACK from ACKer) is:

Dt = NrAlice

Alice,Jack · T rAlice

LAlice
+ NrBob

Bob,Jack · T rBob

LBob

3We assume that Alice continues to retransmit the packet until an acknowl-
edgment is received from Jack.

4

+ NrJack

Jack,ACKer · T rJack

max(LAlice,LBob)
.

Then, the expected throughput with network coding enabled is:

ΘNC =
Lt

Dt
. (2)

Our objective: We wish to (a) determine the bit rates at
the transmitters (Alice, Bob and Jack) and (b) the choice of
the ACKer, such that the expected throughput, computed as
in Eq. (2), is maximized. Computing the throughput for the
more general case where, n transmitters all use the same relay
(Jack) is a challenge. This is because, in such a scenario the
candidate rate set is |R|n; it is evident that this rate set grows
exponentially with n. In addition, since one can only use rates
from among a discrete set, maximizing the expected throughput
given our objectives, is an integer programming problem, which
in turn is known to be NP-Hard [27].

We also wish to point out that the calculation of Eq. (2)
requires each node to have an omniscient view of the state of
traffic in the network. In practice however, individual nodes
(Alice and Bob) cannot a priori have such a view. In other
words, when Alice is about to transmit packet A, she has no
idea on whether or not Bob has a packet to send. In cases
where Jack only has Alice’s packets, he may not wait for Bob’s
packets to perform network coding; stated otherwise, in such
cases, network coding does not take place.

Given these complexities, we instead design a simple dis-
tributed heuristic-based rate and ACKer selection algorithm
(described below).

B. Our proposed approach

We build our framework on top of a previous, popular coding
architecture, COPE. We employ the core coding functionalities
of COPE; in particular we leverage reception reports and in-
formation exchange among nodes that allow each node to learn
about its neighbor states [1] (we provide implementation details
in Section IV). Unlike with COPE however, with our proposed
framework, each transmitter of native packets, accounts for
the quality of the links to potential sniffers while choosing
the transmission rate. Stated otherwise, the transmission rate
is chosen such that there is a high probability of successful
overhearing at the sniffers. The framework is fully distributed
and requires each node to only be aware of local information4.

Composition of our framework: Our proposed framework
consists of two component modules.

The local transmission rate selection module: The first
module is a local transmission rate selection module which
primarily operates on native packets. Alice identifies all her
one-hop neighbors that are also neighbors of Jack (see Fig. 1);
these neighbors are the sniffers. Then, Alice selects the rate
that maximizes the expected throughput to Jack, such that the
probability of successful overhearing of her packet A, at each
of the common neighbors, is greater than a threshold β.

In order to illustrate how this threshold β is determined let us
consider the general case where 2N nodes share a single relay.
These 2N nodes can overhear each other when the basic rate
is used; at the other rates, this may not necessarily be the case.
Let there exist n(≤ N) native packets that are to be exchanged
among n distinct pairs of nodes. We denote each source by Si

4Note that in the rest of the paper we relax our assumption 3, in Section
III-A as per which, a scheduling process is assumed.

and its corresponding destination by Di (1 ≤ i ≤ n). Given
the topology, there is an opportunity for the relay to perform
network coding. In our simple example, N = 2 and Jack is the
relay. Alice and Bob can be mapped to S1 and S2 and Chloe and
Dave to D1 and D2. With our notation for packet overhearing
probability in Section III-A, the probability that Di overhears
a packet sent by Sj , with rate rSj

(to Dj) is P
rSj

{Sj ,Dj},Di
. In

order for Di to successfully decode its own packet, it should
overhear the packets transmitted by each such source Sj . Since
the probability that Di overhears Sj is independent of whether
or not it overhears Sl (for l �= i, j), the probability that Di can
successfully decode a received encoded packet to retrieve its
own packet, Pdec(Di) is given by:

Pdec(Di) = P
rS1
{S1,Dj},Di

× · · · × P
rSi−1

{Si−1,Dj},Di

× P
rSi+1

{Si+1,Dj},Di
× · · · × P

rSn

{Sn,Dj},Di
. (3)

Existing network coding systems including COPE, generally
allow the encoding of native packets only if the decoding
probability at a destination (say Di) is higher than a certain
pre-specified threshold ϑ (0.8 for COPE). In the same spirit,
our goal is then to select a transmission rate for each native
packet such that the decoding probability at each destination of
an encoded packet is greater than or equal to ϑ. However, as
one can readily see, one will need to consider all possible rates
(beginning with the highest) to determine the best set of rates
which satisfy the requirement that this decoding probability
requirement is met at all the destinations. This determination
takes an exponential number of steps since the product has to
be computed for all combinations of rates.

Our approach towards simplifying this requirement is driven
by a simple observation. Pdec(Di) is no greater than the mini-
mum of the probabilities P

rSj

{Sj ,Dj},Di
, 1 ≤ j �= i ≤ n. Thus, we

require that each probability is higher than a certain threshold
i.e., we try to maximize this minimum probability. Hence, we
set ϑ = βn and require that each term in the product be at least
β. To explain the intuition behind this choice, assume that the
probability of Di correctly overhearing a packet from a source
Sj is β. If the overhearing probability from a different source
Sl is lower than β then the first condition does not help in the
long term; the likelihood of correct decoding is dictated by the
ability to decode on the poorer link (between Sl and Di).

With this requirement, each source (for example Alice) at-
tempts to select the rate that maximizes the expected throughput
on the link to the relay (Jack). For our simple example, this
translates to the following optimization problem:

max
rAlice∈R

LAlice

NrAlice

Alice,Jack · T rAlice

LAlice

(4)

s.t P rAlice

{Alice,Jack},Dave ≥ β

P rAlice

{Alice,Jack},Bob ≥ β.

The ACKer Selection Module: Once Jack obtains the packets
from Alice and Bob, he encodes the packets and pseudo-
broadcasts the encoded packet to Chloe and Dave. The pseudo-
broadcast requires Jack to choose a primary receiver who will
transmit a MAC layer acknowledgment for the packet; the other
(secondary) receiver simply overhears the transmission. In order
to increase the possibility that both Chloe and Dave receive

5

the encoded packet, Jack has to choose his primary receiver
intelligently. Towards this, he performs the following steps.

First, Jack will have to determine if Chloe and Dave have
indeed overheard the transmissions of the native packets from
Bob and Alice. Towards this, we utilize a functionality that
is similar to that with COPE. Chloe and Dave periodically
send reception reports wherein they explicitly indicate if they
have in fact overheard packets from Alice and Bob. If such
reports are unavailable, our system simply tries to estimate the
probability that Dave and Chloe have overheard the requisite
packets; this can be done if Alice and Bob indicate the prob-
abilities of successful reception on the links <Alice→Dave>
and <Bob→Chloe> for the transmission rates that they have
chosen. With this, Jack can compute the decoding probabilities
at both Chloe and Dave. If these decoding probabilities are
greater than or equal to ϑ, Jack decides to encode the two
native packets from Alice and Bob. Note that at some high
rates this requirement may not hold; if that is the case, Jack
simply forwards the native packets.

Second, Jack unicasts the packet to a primary receiver
(say Dave), expecting the other receiver (Chloe) to overhear
the transmission. The primary receiver (ACKer) will send a
MAC layer ACK to Jack upon the successful reception of the
encoded packet; if the ACK is not received, Jack performs
retransmission(s). As discussed in Section I, the choice of the
primary receiver can have a significant impact on the achievable
throughput. Soliciting an ACK from the receiver to which
Jack has a poorer link may increase the chances that all other
recipients have received the encoded packet. However, as seen
with our earlier example (Section I), such a decision may not
provide high throughput benefits. In that simple example, it was
advantageous for Jack to choose the receiver with the better
link to be the ACKer. However in more complex settings, the
choice may not be as simple. The high level goal of Jack is
to maximize the sum of the expected throughput on Chloe and
Dave. Thus, Jack finds the solution to the following problem:

max
rJack∈R

ACKer∈{Chloe,Dave}

L′
t

D′
t

(5)

where L′
t = P rJack

〈Jack,ACKer〉,Chloe · P rBob

Bob,Chloe · LAlice

+ P rJack

〈Jack,ACKer〉,Dave · P rAlice

Alice,Dave · LBob

and D′
t = NrJack

Jack,ACKerT
rJack

max(LAlice,LBob)
.

Stated otherwise, Jack finds whether the throughput is max-
imized when Chloe is chosen to be the primary receiver (or
ACKer as we call this node) or when it is Dave instead; it then
chooses either the appropriate recipient to be the ACKer.

Complexity considerations: Even though the problems de-
fined above (with the two modules of our framework) are
discrete optimization problems, the solution space is small. For
problem (4) the dimension of the solution space5 is |R| and
for the problem defined in (5) the dimension is |R| × 2. These
claims are easily verified by simply examining the structure of
the formulated problems. In the first case, one simply needs to
examine the throughput with each available rate. In the second
case, one needs to examine the throughput with each rate, for
each potential node that can be the ACKer.

5For example, |R| is 4 for 802.11b, 8 for 802.11a, and 12 for 802.11g.

In the general case, where there are n source-destination
pairs, the dimensionality of the first problem is still |R| and
that of the second problem is essentially |R| ×n. If there is no
feasible solution for the problem defined in (4), the basic rate
is selected.

We summarize the two components of our framework to-
gether, as pseudo-code in Algorithm 1.

Initialization: tx rate ← basic rate and max thr ← 0;1

At each node p;2
if a native packet for transmission then3

if MAC dst q is not the same as final dst then4
Search for the common neighbor set Φ with q;5
for j ← 1 to |R| do6

if rj satisfies P
rj

{p,q},π ≥ β, ∀π ∈ Φ then7

Calculate tmp thr = Lp/N
rj
p,qT

rj

Lp
;8

if tmp thr > max thr then9
tx rate ← rj ;10

else11
for j ← 1 to |R| do12

Calculate tmp thr = Lp/N
rj
p,qT

rj

Lp
;13

if tmp thr > max thr then14
tx rate ← rj ;15

else16
// p has an encoded packet to transmit17
Find the set Ω of MAC destinations of packets XORed;18
for j ← 1 to |R| do19

for i← 1 to |Ω| do20
Calculate tmp thr =21 ∑

i P
rj

〈p,ACKer〉,i · P r1
1,i · · ·P ri−1

i−1,i ·
P

ri+1
i+1,i · · ·P

r|Ω|
|Ω|,i · Li/N

rj

p,iT
rj

max(L1,··· ,L|Ω|)
;

if tmp thr > max thr then22
tx rate ← rj ;23
ACKer ← i;24

Algorithm 1: Algorithmic representation of our framework.

IV. EVALUATING OUR FRAMEWORK

In this section, we assess the efficiency of our framework
via simulations and proof-of-concept experiments, in various
topologies and with diverse traffic characteristics.

A. Simulations

We simulate both COPE and our framework with the NS-2
simulator [28].

Simulation design and set-up: We create topologies of
various densities and node populations. We consider 802.11a,
which supports 8 bit rates (6, 9, 12, 18, 24, 36, 48 and 54
Mbps). We set a fixed transmission power of 18 dBm at every
node; the ambient noise is fixed at 1.5e-10 mW. The signal
attenuation is modeled by the 2-ray ground propagation model.
All simulations consider statically placed nodes. We use fully
saturated UDP traffic, where the packet size is set to 1500 bytes.
We repeat each experiment 40 times. The exchange of RTS/CTS
messages is disabled as with COPE [1].

The efficiency of our framework in small-scale topologies:
First, we wish to assess the performance benefits with our
framework in topologies with very diverse link qualities. We
perform simulations on an ‘X’ topology, as in Fig. 1, where the
link <Jack→Chloe> varies, but is always poorer than the link

6

Fig. 2. Our framework provides
the highest throughput gains in
topologies with diverse link qual-
ities.

Fig. 3. The coding gain is
maintained at high levels with our
coding-aware rate selection mod-
ule.

Fig. 4. Our framework enables
the router to code of many native
packets into every new encoded
packet.

Fig. 5. Our framework achieves
a lower end-to-end delay in
multi-hop, multi-rate, large-scale
topologies.

<Jack→Dave>. We consider the following cases: (i) COPE-
basic where, COPE operates at the basic transmission rate (6
Mbps), (ii) our framework with and without our rate adaptation
module enabled, and (iii) COPE-amrr, where COPE operates
in conjunction with the AMRR rate adaptation algorithm [3].
The total network throughput results are plotted in Fig. 2. A
direct observation is that our framework provides up to 305%
throughput improvement as compared to COPE-amrr and up to
390% as compared to COPE-basic, depending on the quality of
the link <Jack→Chloe>. More specifically:

1. In cases with very poor link qualities, rate unawareness
can severely impact the performance: Towards increasing the
total throughput, whenever there is a large difference in the PDR
among the candidate ACKers, it is better to select an ACKer
with good link quality (as discussed earlier). We observe that
even if our framework selects the basic rate, the throughput
improvements due to selecting the appropriate ACKer is sig-
nificant: our framework at the basic rate outperforms COPE by
390% (Fig. 2) in terms of the average throughput. The use of
AMRR by COPE does not improve performance significantly,
since AMRR is coding unaware; it only targets improvements
in the local link throughput. This interacts poorly with the
random selection of the ACKer with COPE. In our example,
whenever COPE picks Dave as the ACKer, Jack selects a
high transmission rate (as per AMRR); with this, Chloe cannot
receive the encoded packet.

2. High link qualities also favor our framework: In Fig. 2,
we observe that when the PDR on all links is high (e.g. 0.8
or higher), our rate selection module boosts the total network
throughput, by as much as 75% and 30%, compared to COPE-
basic and COPE-amrr, respectively. We also observe that in
such cases, the ACKer selection does not significantly impact
throughput; this is because with good links, COPE also selects
a good ACKer. Unlike COPE however, our framework provides
high rate gains on the high quality links; high coding gains are
maintained with intelligent rate selection. As a consequence, our
framework outperforms COPE-basic and COPE-amrr by 75%
and by 30%, respectively.

The case for dense, “wheel” topologies: Next, we simulate
wheel topologies, where larger sets of nodes share a com-
mon router. A wheel topology is an extended ‘X’ topology
with more transmitters. As per [10], the maximum number
of packets encoded together typically cannot be more than 5
with COPE. Thus, here we simulate topologies with up to 6
source-destination flows and with randomly set link qualities.
Our goal here is to evaluate our framework in terms of the
achieved encoding ratio, i.e., the ratio of the encoded packets
at the output of the router to the total number of packets sent by

the router. Our simulation results are depicted in Fig. 3. First,
we wish to point out that COPE-basic is expected to provide the
best encoding ratio, since its design is geared towards achieving
high coding gain. In Fig. 3, we observe the following:

1. Our framework provides encoding ratios similar to that
with COPE: We observe that our framework, when operating
at the basic rate, provides the same ratio as COPE in all the
considered scenarios. This is somewhat expected, since the use
of a low bit rate aids coding opportunities. We observe that
when our rate selection module is enabled, our framework
still maintains an encoding ratio that is very close to that of
COPE. We verify this finding in a real setting and discuss the
observation in the following subsection.

2. COPE-amrr performs poorly in terms of the encoding
ratio with few flows: We observe that with few active flows,
the combination of COPE and AMRR leads to poor encoding
ratios. This accentuates our earlier observations with the ‘X’
topology, with regards to COPE-amrr; again, this is due to the
fact that AMRR is coding unaware. Clearly, one may expect
the same behavior with other rate adaptation algorithms [2],
[4] that do not consider network coding.

3. Our framework favors the inclusion of more packets into
an encoded packet as compared to COPE-amrr: As seen in
Fig. 3, with a larger number of flows COPE-amrr provides
high encoding ratios. However, the ratio itself is agnostic to the
population of native packets that are embedded into an encoded
packet. Fig. 4 shows the average number of native packets
combined together to form an encoded packet for the 6-flow
scenario of Fig. 3. We observe that our framework enables the
router to code nearly as many packets as COPE encodes at the
basic rate6. In contrast, COPE-amrr does not allow the router
to code as many packets together.

The potency of our framework in large-scale multi-hop
settings: Finally, we perform extensive simulations on two
large-scale, multihop topologies, which consist of 100 and 200
nodes respectively. The nodes are randomly and uniformly
distributed across a 1000×1000 m2 square region. We want to
evaluate the efficacy of our framework in scenarios with many
interfering nodes, and with flows that span a large number of
intermediate hops. Throughout these simulations we randomly
select source-destination pairs and we initiate fully-saturated
UDP flows. Paths are established using the DSR protocol [29].

Our simulation results are plotted in Fig 5. We observe that
the application of our framework leads to a significant reduction
in the average end-to-end delay, i.e., by as much as 90%

6Recall that this observation is aligned with the findings in [10] with regards
to the maximum number of native packets that can be combined together with
COPE.

7

compared to COPE. This is due to the combined functionalities
of our rate and ACKer selection modules. From Fig. 5 we make
the following observations:

1. Our rate selection module provides a dramatic delay
reduction in sparser topologies: In such topologies, the levels
of interference are not that high; this allows the use of higher
transmission rates with our framework. As a result, packets
travel faster towards their destinations, thereby suffering lower
end-to-end delays as compared to COPE.

2. Our ACKer selection module is mostly beneficial in dense
topologies: With increased node density (e.g. the 200-node
topology in Fig. 5), the levels of interference are higher. This
reduces the probability of successful packet overhearing and re-
ception, thereby incurring lower, diverse delivery probabilities.
As we observe in Fig. 5, the strategy “Ours + basic”, which
has only the ACKer selection, drastically decreases the delay
by itself; this demonstrates that the ACKer selection module
reduces the delay to a larger extent with the 200-node topology
(as compared to the 100-node topology).

B. Implementation and experiments

Next we describe the proof-of-concept implementation of
our framework on real hardware. Subsequently we discuss the
experiments with our implementation on our wireless testbed.

Testbed description and experimental set-up: We conduct
our experiments on a 22-node wireless testbed deployed on the
3rd floor of the Engineering Building Unit II, at UC Riverside.
A unique characteristic of the testbed is that it has both indoor
and outdoor links; a pictorial representation is shown in Fig.
6. The nodes are based on the Soekris net5501 hardware
configuration [30], and run a Debian Linux distribution with
kernel v2.6.16.19 over NFS. Each node is equipped with a 500
MHz CPU, 512 Mbytes of memory, and a WN-CM9 wireless
mini-PCI card, which carries AR5213 Atheros as the main chip.
Every card is connected to a 5 dBi gain external omnidirectional
antenna. As discussed in Section V, we repeat a part of our
measurements with different hardware in order to validate our
findings. We conduct experiments with groups of nodes that
form two kinds of topologies: (a) the “cross topology” [1] and
(b) the ‘X’ topology (as in Fig. 1). The relative locations of the
nodes with both topologies are shown in Fig. 1; note that in the
cross-topology experiments, both nodes of a session exchange
packets (i.e., Chloe both sends packets to and receives packets
from Alice; Dave similarly exchanges packets with Bob). We
experiment with the 802.11b mode of operation, which supports
4 bit rates (1, 2, 5.5 and 11 Mbps); we elaborate on this choice
in Section V. Our experiments are performed late at night in
order to avoid interference from the collocated campus WLANs.
All devices set their transmission powers to 10 dBm. We use
fully saturated UDP traffic, where the default data packet size
is 1500 bytes. We have disabled RTS/CTS messages, as in [1].

The implementation of our framework: We implement
our framework in Click v.1.4.2 [31], as in [5]; this allows us
to have a fair comparison against COPE in terms of software
efficiency. We use the Madwifi-2005 wireless driver, which is
fully compatible with the COPE implementation7. We build our
framework on top of the publicly available COPE implementa-
tion [5]. Note that with this implementation, COPE by default
operates at the basic rate of 1 Mbps. We adopt all the Click

7Our framework can be easily modified to be compatible with the latest Click
version (v1.7.0rcl) and the latest Madwifi driver (v0.94).

network coding elements of COPE, which realize the encoding
and decoding engines, the construction of an additional packet
header, and the functionality that handles the transmission of
periodic reception reports. We also use the probing mechanism
of the Roofnet routing protocol, SRCR [2]. However, since our
framework requires information regarding the PDR at every
bit rate, we leverage the ETT framework (instead of ETX
as with COPE [1]) for routing [32]. In particular, each node
periodically transmits 1500-byte probes and 60-byte probes at
every rate. Nodes gather link quality information from each of
their neighbors with regards to the PDR on every link (the ratio
of probes that were received in both the forward and reverse
directions). This PDR information is used by our framework
(see Section III) to determine the bit rate and the ACKer that
locally maximize the expected total throughput.

Scenario 1: Experiments with the ‘X’ topology with
high quality links: First, we perform experiments on a 5-
node ‘X’ topology, where the PDR on any of the links is
above 70% at any transmission rate. As discussed earlier,
routers in the ‘X’ topology can encode up to 2 native packets
together. This topology consists of nodes 12, 20, 24, 26, 28.
The nodes all have line-of-sight links to each other (as seen
in Fig. 6). Our experiments consider different combinations of
source-destination pairs and different routers. Our goal here
is to quantify the efficiency of our framework in a realistic
“good-channel” environment, relative to COPE. For this, we
perform 30 experiments, alternating between the use of COPE
and our framework. Fig. 7 depicts the throughput gains with
our framework as compared to COPE. We observe that our
framework outperforms COPE by 186% on average, and by as
much as 250%. This is attributed to the fact that our framework
efficiently exploits the good channel conditions by utilizing
high transmission rates. Recall from our discussion in Section
II that COPE targets the maximization of the network coding
gain; therefore it typically employs low bit rates. However, with
our framework, transmitters of native packets jointly consider
the transmission rate and the potential network coding gain
(by measuring the PDR of neighbor sniffer links at every
rate); hence, while the coding gain is still kept at high levels,
the transmission rate is aggressively increased to the extent
possible. In Fig. 8, we plot the CDF of the ratio of the number
of encoded packets at the relay to the total number of packets
that were transmitted through the duration of each experiment.
We observe that this ratio is almost the same as with COPE. On
the other hand, as one observes in Fig. 9, high bit rates are used
with our framework as inherently possible by the supported high
PDR values in the considered topology.

Scenario 2: Experimenting with the cross topology with
high quality links: Next, we consider the same set of nodes
as in the previous scenario; however, our measurements now
involve bi-directional traffic flows between sources and desti-
nations. Hence, in contrast with the ‘X’ topology, the cross-
topology routers can encode up to 4 native packets. This can
potentially provide a higher coding gain. As observed in Fig.
7, our framework boosts the aggregate throughput of all end
users by 209% on average, and by as much as 272%, relative
to COPE. Note here that in this set of experiments we again
observe that both COPE and our framework project a very
similar behavior in terms of the CDF of the ratio encoded/total
packets, as in scenario 1 above. However, by comparing the
performance of our framework in the two scenarios, we observe
that there is approximately a 20% improvement in throughput,

8

Fig. 6. The deployment of
our wireless testbed; nodes are
represented by dots along with
their IDs.

Fig. 7. Our framework outper-
forms COPE in all considered sce-
narios in terms of achieved through-
put gain.

Fig. 8. Our framework achieves
a very similar network coding gain
as COPE, albeit the use of high bit
rates.

Fig. 9. With our framework,
routers exploit the good channel
conditions thereby using high bit
rates whenever possible.

in scenario 2. This is due to the use of high transmission
rates used by the router with our framework (shown in Fig. 9).
A higher transmission rate (in the presence of fully saturated
traffic) in these topologies results in a larger volume of packets
traversing the router in a unit of time. As a consequence, the
number of encoding opportunities at the router is higher for the
duration of each experiment, and this provides an overall higher
long-term throughput.

Scenario 3: Experiments with an ‘X’ topology comprised
of low quality links: Further, we wish to assess the efficacy
of our framework in topologies where not all links are of high
quality. We consider ‘X’ topologies (Fig. 1) wherein one of
the end receivers, e.g. Chloe, has a poor quality link with
Jack and with Dave, although her link with Bob is of high
quality. For this, we experiment with various ‘X’ topologies
where the PDR on the link <Jack→Chloe> is poorer than
that of the other links. A sample topology consists of nodes
12 (Alice), 28 (Dave), 26 (Jack), 19 (Bob) and 15 (Chloe)
in Fig. 6. Here the PDR on the link <Jack→Chloe> is 0.45,
while the PDR on the link <Bob→Chloe> is 0.75. We apply
fully saturated traffic towards nodes 15 and 28. In Fig. 7,
we observe that our framework provides significant throughput
benefits even when the router maintains poor quality links
with a receiver. Specifically, we observe that our framework
outperforms COPE by at least 100% and by as much as 189%.
However, note that in this case our framework does not perform
as well as in scenarios 1 and 2. This is attributed to the fact
that, in contrast to the previous scenarios, the router is now
(for most of the time) coerced into using low transmission
rates, to increase the probability of reception of the encoded
packet by Chloe. Indeed, as observed in Fig. 9, Jack uses
rates of 1 and 2 Mbps for most of the time. As expected, this
affects the long-term throughput to some extent (although our
framework still offers significant gains compared to COPE).
We wish to point out here that in these experiments, we
observed that Jack selected Chloe to be the ACKer in many
cases. This somewhat contradicts our discussion in Section I.
Note however that the difference in PDR between the links
<Jack→Chloe> and <Jack→Dave> is not too high. Thus,
with our framework in this case, Jack does not sacrifice the
performance on the link to Chloe for the sake of increased
total throughput. However, as we observe in our simulations
(Section IV-A), routers follow the trend of selecting an ACKer
to which they have high quality links, as long as this quality
is much higher than the quality of the link(s) with the other
candidate receiver(s). Moreover, throughout these experiments
we observed that the ACKer selection module alone does not
contribute to the throughput gain as much as the rate selection
module. This is due to the small number of intended recipients;

with such a limited set of receivers, it is highly likely that
the random ACKer selection with COPE finds the appropriate
ACKer. As we observe in our simulations, though, in dense
network settings with many intended recipients, our ACKer
selection module significantly contributes towards improving
network performance (See Fig. 5).

Scenario 4: Experiments with the cross topology and
low quality links: Finally, we examine cross topology sce-
narios with poor links. In particular, we consider the same
physical node locations as in scenario 3. However now we
have bidirectional flows, as in scenario 2. Note that the link
<Chloe↔Dave> is also poor. As with scenario 3, we observe
that the router typically prefers the use of low rates and with
this, our framework does not perform as well as in scenario 2. In
fact, from Fig. 7 we observe that the throughput gain with our
framework is even lower than in scenario 3. This is in contrast
with the expectation that due to the possibility of encoding 4
packets together, the gain would be improved. This is directly
because of the poor PDR on the link <Chloe→Jack>, which
in the sample topology of scenario 3 is 0.4. This forces Chloe
into using a low bit rate on the link to Jack. As a consequence,
the coding gain is not as high as in scenario 2. In addition,
since the link <Dave→Chloe> is also poor, Dave prefers to use
lower rates so as to increase the probability of overhearing at
Chloe. Hence, Jack receives fewer packets from Chloe and Dave
and thus, he does not encode 4 packets together as frequently.
In conjunction with Jack using low bit rates, this causes the
throughput gains with our framework to be lower than that
in the other scenarios. However, note that the gains are still
significant relative to COPE.

V. DISCUSSION

The applicability of our framework with other network
coding architectures: Our framework was designed and built
on top of COPE. The main reason for this decision was that
COPE imbibes utilities that facilitate the practical implementa-
tion of NC; examples include the exchange of reception reports
and the estimation of the link quality though periodic probing.
Our framework relies on two functions only: (a) In a generic
local NC setting, routers should either explicitly know, or be
able to predict whether certain neighbors have sniffed key
packets; and (b) Transmitters of native packets need to estimate
the quality of each link with their neighbors [2]. Given that such
functionalities are typical requirements for any practical NC
implementation, we believe that our framework can be applied
in conjunction with other NC architectures (such as [16]) with
minor modifications.

On the implementation overhead: As discussed in Section
IV, we have implemented our framework using the original

9

COPE Linux implementation [5]. Hence, any practical imple-
mentation overheads imposed, as a result of various design
decisions with COPE, are inherited by our implementation.
More specifically, COPE requires certain packet processing
operations in practice; these include packet storage and retrieval,
packet padding and encoding/decoding. Such functionalities
necessitate the employment of frequent memory copying opera-
tions, which are overhead intensive in terms of processing [33].
Indeed, through the course of our experiments, we observe that
when the encoding engine (of either COPE or of our framework)
was enabled, the CPU utilization with our Soekris boxes was
at 97% with 802.11b, at a bit rate of 11 Mbps. We repeated
a large part of our experiments with faster hardware (desktop
PCs, which carry 1-GHz CPUs and 1-GB RAM, and run a
local Fedora Linux installation); we observed that the CPU
utilization dropped only by 8% on average. We also performed
a small set of experiments with 802.11a; we observed that the
desktop PCs could not process sufficiently large numbers of
packets transmitted at bit rates higher than 12 Mbps to yield
throughputs that commensurate with the applied rate. This is
why at this point our experimental evaluation involves proof-
of-concept experiments with 802.11b; this inherently supports
low bit rates as compared to 802.11a or 802.11g. We expect that
future, “lighter” NC implementations, such as [34], will allow
the use of high bit rates and will showcase the performance
benefits with our framework even more.

On the online computation of PDR: Towards calculating
the PDR on every link, our implementation relies on the
periodic transmission of probe packets. COPE uses this method
as well; we selected this probe-based method for the sake of a
fair comparison against COPE. Clearly, however, our framework
is compatible with any PDR computation mechanism.

On the usability of our framework: In this paper, we focus
on local network coding, where an encoded packet travels at
most 1 hop away from its sender. Such scenarios are prominent
in WLAN deployments [15], where a client sends and receives
data through its associated access point (AP) only. In such cases,
where the AP essentially plays the role of the router between
the client and the rest of the network, access points may
employ local NC thereby encoding packets exchanged among
their clients. The application of our framework is expected to
boost the performance of such networks, especially with delay-
sensitive applications, such as real-time video streaming and
online gaming [9], [13]. In our future work we plan to consider
scenarios where encoded packets traverse multiple hops (such
as in the butterfly topology [35]).

VI. CONCLUSIONS

Carefully-designed network coding mechanisms can provide
significant multi-faceted advantages at various stages of network
design. In this paper, we design a transmission rate and ACKer
selection framework for extracting the potential benefits from
local network coding. Our framework is composed of two
modules. With the rate selection module, transmitters adapt the
bit rate rate taking into consideration that their packets will
be overheard by neighbors. With the ACKer selection module,
relays intelligently decide on which from among the intended
recipients should acknowledge the reception of an encoded
packet. Such a decision is largely based on the the probability
of successful decoding for each intended recipient. We evaluate
our framework via extensive simulations as well as via a proof-
of-concept implementation. Our evaluation demonstrates that

our framework provides significant performance benefits, by
increasing the total throughput by as much as 390% compared
to COPE, in diverse traffic and topological settings.

REFERENCES

[1] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft. XORs
in The Air: Practical Wireless Network Coding. In ACM SIGCOMM,
2006.

[2] J. Bicket et al. Architecture and Evaluation of an Unplanned 802.11b
Mesh Network. In ACM MOBICOM, 2005.

[3] S. Pal, S. R. Kundu, K. Basu, and S. K. Das. IEEE 802.11 Rate
Control Algorithms: Experimentation and Performance Evaluation in
Infrastructure Mode. In PAM, 2006.

[4] Onoe Rate Control. http://madwifi.org/browser/trunk/ath rate/onoe.
[5] COPE WiKi. http://piper.csail.mit.edu/dokuwiki/doku.php?id=cope.
[6] D. S. Lun et al. Minimum-Cost Multicast over Coded Packet Networks.

In IEEE Trans. Inform. Theory, 52(6):931-938, 2006.
[7] P. Chaporkar and A. Proutiere. Adaptive Network Coding and Scheduling

for Maximizing Throughput in Wireless Networks. In MOBICOM, 2007.
[8] B. Scheuermann, W. Hu, and J. Crowcroft. Near-Optimal Co-ordinated

Coding in Wireless Multihop Networks. In ACM CONEXT, 2007.
[9] H. Seferoglu and A. Markopoulou. Opportunistic Network Coding for

Video Streaming over Wireless. In Packet Video, 2007.
[10] J. Le et al. How Many Packets Can we Encode? - An Analysis of Practical

Wireless Network Coding. In IEEE INFOCOM, 2008.
[11] C. H. Liu and F. Xue. Network Coding for Two-Way Relaying: Rate

Region, Sum Rate and Opportunistic Scheduling. In IEEE ICC, 2008.
[12] L. F. M. Vieira, A. Misra, and M. Gerla. Performance of Network Coding

in Multi-Rate Wireless Environments for Multicast Applications. In IEEE
GLOBECOM, 2007.

[13] H. Seferoglu and A. Markopoulou. Distributed Rate Control for Video
Streaming over Wireless Networks with Intersession Network Coding. In
Packet Video, 2009.

[14] H. Seferoglu, A. Markopoulou, and U. Kozat. Network coding-aware rate
control and scheduling in wireless networks. In ICME, 2009.

[15] E. Rozner et al. ER: Efficient Retransmission Scheme for Wireless LANs.
In ACM CONEXT, 2007.

[16] S. Rayanchu, S. Sen, J. Wu, S. Banerjee, and S. Sengupta. Loss-Aware
Network Coding for Unicast Wireless Sessions: Design, Implementation,
and Performance Evaluation. In ACM SIGMETRICS, 2008.

[17] S. Chachulski et al. Trading Structure for Randomness in Wireless
Opportunistic Routing. In ACM SIGCOMM, 2007.

[18] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard. Symbol-Level
Network Coding for Wireless Mesh Networks. In ACM SIGCOMM, 2008.

[19] R. Ahlswede, N. Cai, S-Y. R.Li, and R. W. Yeung. Network information
flow. In IEEE Trans. Inform. Theory, pp. 1204-1216, July 2000.

[20] S. R. Li, R. W. Yeung, and N. Cai. Linear network coding. In IEEE
Trans. Inform. Theory, 2003.

[21] C. Gkantsidis and P. Rodriguez. Network Coding for Large Scale Content
Distribution. In IEEE INFOCOM, 2005.

[22] R. Koetter and M. Medard. An Algebraic Approach to Network Coding.
In IEEE/ACM Trans. on Networking, 2003.

[23] T. Ho, M. Medard, M. Effros, and D. Karger. On Randomized Network
Coding. In Allerton Conf. on Commun., Control and Computing, 2003.

[24] T. Ho and R. Koetter. Online Incremental Network Coding for Multiple
Unicasts. In DIMACS Working Group on Network Coding, 2005.

[25] Y. Wu, P. A. Chou, and S. Y. Kung. Information Exchange in Wire-
less Networks with Network Coding and Physical-layer Broadcast. In
Microsoft-TR-2004-78, 2004.

[26] Z. Li and B. Li. Network coding: The Case for Multiple Unicast Sessions.
In Allerton Conference on Communications, 2004.

[27] C. Papadimtriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[28] The Network Simulator 2. http://www.isi.edu/nsnam/ns/.
[29] D. B. Johnson et al. DSR: The Dynamic Source Routing Protocol for

Multi-Hop Wireless Ad Hoc Networks. In Ad Hoc Networking, 2001.
[30] UCR Wireless Testbed. http://networks.cs.ucr.edu/testbed.
[31] Click Modular Router. http://read.cs.ucla.edu/click/.
[32] R. Draves, J. Padhye, and B. Zill. Routing in Multi-Radio, Multi-Hop

Wireless Mesh Networks. In ACM MOBICOM, 2004.
[33] J. Kim et al. A Memory Copy Reduction Scheme for Networked

Multimedia Service in Linux Kernel. In EurAsia-ICT, LNCS 2510, pp.
188195, 2002.

[34] COPE on the Nokia N800 Phones. http://blogs.forum.nokia.com/blog/
frank-fitzeks-forum-nokia-blog/2008/10/06/network-coding.

[35] C. Fragouli, J. Widmer, and J. Y. Le Boudec. Network Coding: an Instant
Primer. In ACM SIGCOMM CCR, vol. 36, pp. 63-68, Jan. 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

