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Abstract—Streaming video content over cellular connectivity
impacts the battery consumption of a client (e.g., a smartphone).
The problem is exacerbated when the channel quality is poor
because of a large number of retransmissions; moreover, stream-
ing high quality video in such cases can negatively impact user
experience (e.g., due to stalling). In this paper, we develop an
analytical framework which can provide the user with an estimate
of “how much” energy she can save by choosing to view a lower
quality stream of the video she wishes to view. The framework
takes as input the network conditions (in terms of packet error
rate or PER) and a coarse characterization of the video to be
viewed (slow versus fast motion, resolution), and yields as output
the energy savings with different resolutions of the video to
be viewed. Thus empowered, the user can then make a quick,
educated decision on the version of the video to view. We validate
that our framework is extremely accurate in estimating the
energy consumption via both simulations, and experiments on
smartphones (within ~ 5% of real measurements). We find that
switching to a lower resolution video can potentially lead to ~ 418
mW (23.2%) decrease in the consumed power for slow motion
video, and ~ 480 mW (26 %) for fast motion video in bad channel
conditions. This translates to an energy savings of 376.2 J and
432 ] respectively, for video clips that are 15 minutes long.

I. INTRODUCTION

Current reports indicate that video streaming to smart-
phones is experiencing an unprecedented growth [1]. The
emergence of LTE (Long Term Evolution standard) [2], which
offers significantly higher throughput compared to the previous
generations of cellular networks, has fostered this growth.
Streaming video over a cellular network however impacts the
battery consumption of a client device. While User Equipment
(UE) and specifically smartphones, have grown in complexity
with better displays and faster CPUs, the battery technology
has not been able to keep up. LTE, due to its ability to
sustain significantly higher user throughput compared to 3G,
exacerbates the battery problem during video downloads, since
the higher downlink/uplink data rate translates to higher energy
consumption [3]. It has been shown that the radio interface is
a significant power consuming resource [3].

Today, adaptive bit rate streaming has become a common
practice for streaming video [4]; by detecting the user’s band-
width, the quality (resolution/bit rate) of the video stream is
adjusted so as to improve the user’s quality of experience.
However, to the best of our knowledge, changing the quality
of the video to lower the energy consumption on the user’s
smartphone has not been previously studied. In particular, a
user may choose a lower quality video stream, even when
bandwidth/CPU resources are adequate, to reduce her battery
drain. We seek to explore this dimension in this work.
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As one might expect, a user can decrease the energy
consumed on her smartphone when downloading a video, by
downloading a lower quality version of the same video. In
some cases (poor channel conditions), downloading a lowered
quality video could even improve user experience (prevent
stalls); in fact, there has already recent work that advocate
the use of lowered video quality (albeit in a wireline setting)
to enhance user experience during downloads [5]. However,
today there do not exist any tools that allow the user to get an
estimate of how much energy she can save by choosing a lower
quality video for downloads over cellular connectivity. Such an
estimation is intricately hard because of the following reasons:
(i) The estimation has to be made without downloading any
of the versions of the video; in other words, it has to be
based on a set of parameters that characterize the video to
be downloaded; (ii) The savings from downloading a lower
quality version would depend on how the UE state transitions
(described later) [2] are affected by the arriving video traffic.
This in turn would depend on the channel conditions perceived
by the user at that time. These challenges essentially require
that any framework must be holistic and tie in the interactions
between the video flow characterization, the LTE scheduler
and the energy transitions due to traffic arriving at the UE.

Goal and Vision: In this paper, we seek to develop an ana-
lytical framework which takes as inputs, factors that influence
energy transitions at the UE (i.e., video characteristics, channel
conditions) and yields as output an estimate of the energy
savings possible with a lowered quality video download of a
given stream. A pictorial representation of how our framework
can be applied is shown in Fig. 1. Either the UE or the video
server can perform a small set of calibration measurements to
estimate the channel quality in terms of PER. Alternatively,
a model that maps the signal strength to PER could be used
to estimate the PER at the UE side. The video server would
provide metadata [6] from the video clip chosen for download



in the form of resolution, a coarse characterization of slow
versus fast video (using tools such as AForge [7]) and the
duration of the video. The UE will also locally estimate the
energy required to process the received video frames for the
different versions of the video. Our model yields as output an
estimate of the energy consumed on the network interface with
the different resolutions of the video, the user seeks to view.
This combined with the the processing power provides the user
with an estimate of the total energy with the different versions.
She can then make an educated decision on the version of the
video to download from the server.

Contributions: As our primary contribution we build a
mathematical framework to capture the interactions between
video traffic, the LTE scheduler, and the energy state machine
at the UE. In addition to being useful for near real-time
estimation of energy savings from choosing lowered quality
videos for downloads, it provides a fundamental understanding
of how and why different input factors influence energy
consumption. In essence, the framework considers a general
model of video traffic, and characterizes the arrival process of
video packets at a client device (UE) after they traverse an
LTE-based wireless link. The arrival process in turn calibrates
the transitions between the different energy states in which the
UE can reside, and the likelihood of being in each of those
states. We validate our framework via extensive simulations
and through experiments on a real smartphone in a variety of
scenarios, thereby demonstrating its accuracy (the results are
within ~ 5 % of the real measured values) as well as generality.

Some interesting insights arising from our work are:

e Choosing a lower quality video stream incurs a small penalty
in terms of the video PSNR (Peak Signal to Noise Ratio) but
results in significant energy savings; specifically, a PSNR
reduction of 10.1% can fetch energy savings of the order
of 375 ] for a video of duration 15 minutes. When a user
views videos over extended periods, the energy savings can
therefore be significant.

o While as expected, streaming higher resolution videos result
in higher energy, the increase depends on whether it is
fast or slow motion video. For example, in good channel
conditions, moving to a lower resolution from a higher
resolution results in a 480 mW (= 26 %) reduction in power
(energy consumed per unit time) for fast motion video, but
a 418 mW increase (~ 23 %) for slow motion video.

e In poor channel conditions, moving to a lower resolution
results almost in identical power savings for slow and fast
motion video (~ a 19.5 % decrease in power). However, the
savings in milliwatts is higher for fast motion video.

¢ For typical video transmissions, one observes that the time
spent in some of the LTE energy states is insignificant
regardless of the resolution.

Scope: Our framework primarily accounts for the energy
consumed by the network interface on the UE. In addition,
there is a processing energy consumed on a device for pro-
cessing/playing back the video frames; this energy is device
dependent and we use empirical results that are driven by
experiments (this can be measured locally on any device).

For validation, we assume that videos are streamed using

fixed bit rates. However, our framework can be applied to adap-
tive bit rate streaming as discussed in Section VI. We employ
video resolution and PSNR as the metrics for quantifying video
quality. It has been shown that the perceived video quality
on mobile devices is affected by the size of the screen, user
mobility, and ambient light [8]. Accounting for these factors
is beyond the scope of this work and will be considered in the
future. For analytical tractability, we also assume that the user
is stationary during the course of video streaming.

While we validate our framework via simulations and
experiments, we do not implement the complete system shown
in Fig. 1. To implement such a system, we will need to make
changes to the video server so as to deliver the appropriate
metadata to the client UE, and also have a dynamic PER
estimation tool for the LTE link; these are beyond the scope
of this paper and will be considered in future work.

II. RELEVANT BACKGROUND

In this section, we describe aspects of LTE that we seek
to capture in our analytical framework.

The Radio Resource Control (RRC) State Machine: The
LTE RRC state machine captures the different energy states
that a UE can be in and has two primary states: rrc_idle
and rrc_connected. The latter has three modes as shown
on the right side of Fig. 2. If the UE is in rrc_idle, then
any data exchange (even corrupted) triggers a transition to
the rrc_connected state. The UE then enters the continuous
reception mode and monitors the physical downlink control
channel (PDCCH), on which control information is delivered
from the base station (referred to as enB in LTE jargon [2]). At
this time, the UE also starts its continuous reception timer, T..
If no packets are received before the expiry of this timer i.e.,
in T., the UE enters the Short DRX mode. In this mode the UE
alternates between ON and OFF periods (called DRX cycles)
to save energy. If during any ON period, the UE receives data
or has data to send, it returns to the continuous reception mode.

Upon entering the Short DRX mode, a different timer, 7,
is set. If there is no data transfer (received or sent) prior to the
expiry of this timer, the UE enters the Long DRX mode. The
Long DRX mode is similar to the Short DRX except that it
has longer DRX cycles and a bigger timer value (7;) associated
with the time prior to exiting this state. Thus, T, = Te+Ts+T;
represents time for which no packets should be either received
or sent in order to return to the rrc_idle state, and is referred
to as the LTE tail period.

Packet transfers in LTE: The transitions between the
states in the LTE RRC state machine are dictated primarily
by packet receptions during video streaming. This in turn is
handled at the MAC (and the PHY) layer of the LTE protocol
stack. Our focus in this work is on the MAC layer, and we
abstract the PHY in terms of packet error probabilities. Thus,
we describe this layer in some detail below. A more detailed
description of all the layers of LTE can be found in [2].

MAC and Physical Layers: The MAC layer implements
a Hybrid Automatic Repeat reQuest (HARQ) protocol for
reliable packet transfers. It also dynamically selects the Modu-

) lation and Coding Scheme (MCS) to be used at the PHY, based



on the channel conditions. Transmissions in LTE are organized
into frames that are 10 ms long. Each frame is divided into
ten 1 ms subframes. The LTE transmission time interval (TTI)
specifies the granularity at which packets are scheduled and
this is done once every subframe (TTI = 1 ms).

The HARQ process: The HARQ process is different from a
regular ARQ process in how it sends data and retransmissions.
In LTE, incremental redundancy and chase combining are both
supported. With these approaches retransmissions add required
redundancies and are combined with prior transmissions to
increase the likelihood of packet success.

LTE uses multiple HARQ processes simultaneously. The
number of these processes, N, are chosen such that it is greater
than the round trip time (RTT) of a single HARQ process (in
time slots). The multiple processes transmit packets one after
the other (round-robin), as a continuous stream without waiting
for acknowledgments (ACKs) or negative acknowledgments
(NACKSs). Each process will have received an ACK or a NACK
by the time it is its turn to transmit again. The number of
HARQ processes for FDD (frequency division duplexed) LTE
is 8 (the RTT with LTE is typically < 8 ms [2]). The number
of transmission attempts that a single HARQ process makes
before dropping the packet is generally 5, i.e., it makes 1
transmission and 4 retransmission attempts.

III. OUR ANALYTICAL FRAMEWORK

In this section, we build our mathematical framework for
understanding the trade-offs between video quality and the
battery consumption at the UE. As expected, the UE energy
consumed will decrease if one were to lower the quality of the
video that is downloaded. However, the savings will depend
both on the type of video (resolution, slow versus fast video) as
well as the channel conditions (poor versus good link quality).

To reiterate, we envision our framework to be used as
depicted in Fig. 1. Prior to sending a video stream, the
sender characterizes the video in terms of its type (slow or
fast motion) and resolution. The sender and the receiver also
perform a set of calibration measurements to estimate the link
quality in terms of the PER. These parameters are then input
to our framework, which then outputs the expected energy
consumption at the UE for a download of a particular duration.

We first model the video input process. Subsequently we
characterize how these video packets are processed by the LTE
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Fig. 2: A depiction of the system considered in our framework.
Module A represents the LTE scheduler and Module B represents the
UE RRC machine. The output of Module A, which is the probability
of a packet being sent in a TTI, p, is the input for Module B.

Parameter | Description

7mpp Steady sate vector of the 2-MMPP video process

R Infinitesimal generator for the 2-MMPP video process

A Rate Matrix of the 2-MMPP process

P The probability of receiving something in a given TTI

Np The number of HARQ processes

r Maximum number of transmission attempts of a single HARQ process
mhara The steady vector of a single HARQ process

e The Steady state vector of RRC state machine Markov Chain

TABLE I: Key parameters in our mathematical framework
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scheduler and thereby affect the transitions between the energy
states at the UE. The notation used is summarized in Table I.

A. Video Input

The input process characterizes the arrival of video packets
into the LTE buffer. We assume that the video is composed of
I, P and B frames !. A segment corresponding to an I frame is
typically much larger than the MTU (maximum transmission
unit) of the network and must be fragmented into multiple
packets. The I frames are also less frequent than the much
smaller P or B frames. The P and B frames are typically
smaller than the MTU supported by the network. Since in
terms of size, P and B frames are similar, we do not distinguish
them in our model. In essence, we seek to capture two different
phases of arrival which correspond to that of I frames and P/B
frames, respectively. A natural choice for such a setup is the
Markov modulated Poisson process (MMPP), which represents
a doubly stochastic Poisson process [10]. The first state of the
MMPP represents the arrival of I frames and the second, the
arrival of P/B frames. The rate of transition from state 1 to 2 is
r1 and that from state 2 to 1 is 2. When the process is in state
1, packets that are generated due to I frames arrive at a rate
A1; in state 2, packets generated due to P/B frames arrive at
a rate \2. The process can be represented by the infinitesimal
generator R and the rate matrix A, given by:

_ | T1 _ )\1 0
ol RO B (AR I
The steady state vector =™™PP ( which represents the proba-
bility of being in state i, € {1,2} ) is given by
1

r1+r2

™= (m1,m2) = (r2,71) (2)
The expected arrival rate of the 2-MMPP process, Mqug, 1S
given by =, where X is the column vector with the diagonal
elements in A, i.e., A = A.e, where, e = (1,1)7.

1For details on video representations please see [9].



Parameterizing video quality: In order to use the above
representation we need to map the given video quality to the
parameter \q.4 (this parameter influences the energy consumed
as we will see later). Videos can be categorized as fast or
slow motion videos [7]. Fast motion video is characterized by
successive video frames that have little in common while slow
motion video is characterized by successive frames that have a
lot in common. Accordingly, fast-motion videos consume more
bits in encoding than slow-motion videos. If the effective bit

rate is known (Bitrate), Aavg ~ %.

If the video server can provide information with regards
to the bit rates associated with different versions of the video
clip as metadata, \,,, can be readily computed. One can also
empirically compute A\,., from the resolution and the category
of the video (slow or fast motion) if the bit rate is not readily
available as follows.

The resolution of a video stream is essentially a function
of the number of pixels per frame; the higher this number,
the higher the resolution. To map the resolution to the bit
rate, we perform measurements across 5 video streams for
each type of video (fast or slow). We find that the bit rate
is directly proportional to the resolution of the stream as
shown in (shown in Fig. 3). The proportionality index depends
only on whether the video is of fast or slow motion. With
such a characterization (fast versus slow), we find that the
prediction error is < 5%. Thus, given a certain video type
and its resolution, the server can determine the average arrival
rate of packets to the MMPP process (using these offline
measurements). Stated otherwise, the quality of the video in
terms of its resolution can be used to characterize its arrival
process to the LTE scheduler.

Fig. 3 demonstrates this relationship for each type of video.
From the figure we can directly infer the decrease in A,y When
the resolution is changed.

B. Modeling LTE effects

Next, we characterize the behavior of the RRC state
machine at the UE given (i) the type of video being streamed
and its resolution, and (ii) the state of the channel. The system
has two distinct parts as shown in Fig. 2. The first part (Module
A) reflects the process of transfer of the video traffic over LTE
to a specific UE. The second part (Module B) characterizes the
RRC state machine at the UE. The overall objective here is to
determine the expected time spent in each of the RRC states.
Module B essentially takes as input p, which represents the
probability of receiving a packet (either a decodable packet or a
corrupted packet) in a TTI. This probability essentially depends
on the arrival process of the video flow, the functionality of
the LTE scheduler (Module A) and the channel quality of the
wireless link.

Assumptions: We make the following assumptions for
analytical tractability. First, we assume that the UE is relatively
stationary and thus, the channel conditions do not change (slow
fading) for the duration of a transmission. However, we assume
that they can vary between transmissions due to fading, and
thus the likelihood of a packet succeeding in a transmission
attempt is independent of what happens in other attempts.
Second, we ignore synchronization issues. Note that we are
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Fig. 4: Markov Chain representing a single process hybrid-arq. Each
state i,7 € {1,2...r} represents the transmission attempt and 7 is the
maximum number of transmissions allowed.

only interested in the average energy due to the UE being in
a state and not the transient energy behaviors while in a state
(e.g., we only account for the average energy because of being
in the Short DRX state).

To begin with we assume that the UE in question is
scheduled every TTI. We relax this later to account for the
possibility that it gets scheduled once every N, TTIs, on
average.

Packet processing at the LTE transmitter: The packet
processing at the LTE transmitter consists of two parts. First,
we have an MMPP/G/1 queue to which the video packets
arrive. The server of this queue essentially acts as a distributor
and places the packets in one of N, HARQ processes. Note
that in order for the distributor to place a packet, at least
one of the HARQ processes must be empty. Next, the HARQ
process delivers the packet to the UE. First, we determine the
service time distribution for our MMPP/G/1 queue and thereby
compute its utilization. We later discuss how we map this to
the probability of Module B receiving a packet in a TTI.

Characterizing the service time: The service time is
influenced by the functions of the LTE HARQ processes. We
denote it by S, which is essentially the time it takes for a
packet to be assigned to a HARQ process by the distributor. We
first describe how a single HARQ process functions and then
discuss how we determine the distribution of S considering the
N, processes together.

Model of a HARQ process: We model a single HARQ
process as a finite state discrete time Markov chain as shown in
Fig. 4. The number of states, r, corresponds to the maximum
number of transmission attempts allowed (after which the
packet is dropped). The initial state (state 1) refers to a state
wherein the HARQ process receives a new packet from the
distributor. p; is the probability of a packet being received by
the UE in error, while in state i. A successful transmission
while in state i, occurs with probability 1 — p;, and results in
a transition to the initial state (state 1) and the process gets
the next new packet. Because of additional FEC or change
to a lower MCS (this is how HARQ functions), later re-
transmissions have a greater chance of success, i.e., p; > p;+1 >
It is easy to see that the transition probability matrix for the

2In the NS3 LTE simulator we use [11], we see that all the p;s are nearly
equal although this relation holds in general.
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Markov chain, P, is thus:

1-p1 pr O --- 0
l—p2 0 p2 -+ 0

P=| : ) 3)
: 0 0 - pra
1 0 o .- 0

The steady state probability vector, w"e"4 = (71,72,..m), 1S
then computed by solving the equations w"*77.P = P and
>, 7T = 1. Specifically,

k—1

harq __ 1 harqg _ _harq 4

T = e T T =™ [ o (4)
1+30, H;’:l bi i=1

Joint consideration of the HARQ processes: To derive the
service time distribution, we need to characterize how the N,
HARQ processes function together as a whole. To recap, the
N, processes are served in a round robin fashion. In every
TTI, there is only one HARQ process that is scheduled for
transmission. Since N, > the RTT of in terms of TTI’s, each
transmitting process will receive an ACK or NACK by the
time it is its turn to transmit again.

Deriving S: The distributor assigns the packet at the head
of the queue to next available HARQ process. The time taken
for this assignment, S, is essentially the time it takes for the
distributor to find a free HARQ process.

Consider a packet, k, that is to be next assigned to one
of the HARQ processes. For k to experience the “maximum
assignment time”, S™a*, all the HARQ processes must be
occupied for the maximum possible duration i.e., each process
must perform the maximum number of (re)transmission at-
tempts after k reaches the distributor. Sy.az, is then, the sum of
(i) one TTI for the initial transmission of packet k—1 and (2) the
r — 1 transmission attempts made by each of the N, processes
subsequently (each of these processes must be occupied by
a packet and must have at least performed one unsuccessful
attempt already; else at least one would be empty and packet
k can be assigned). It is easy to see that S™e® is thus given
by: §ma% = (r — 1) Np + 1.

To aid the discussion on the calculation of S, we refer
to Fig. 5. The rows in the figure correspond to the HARQ
processes, while the columns correspond to time in terms of
TTIs. Without loss of generality, assume that the prior packet
that was assigned by the distributor, was assigned to the last

HARQ process viz., process Np; in the figure this preceding 5

packet (relative to a tagged packet that we consider) is assigned
to the black TTI (we refer to each block in the figure as a
“slot” from here on). At this point, the tagged packet enters
the distributor.

Let us assume that the tagged packet is assigned to a HARQ
process, jN, + k slots later (j € {0, — 1}, k € {1, Np}). This
corresponds to the shaded slot in the figure. For this to happen,
the following must hold true: (i) The processes from 1 to k—1,
must be occupied for j + 1 slots; (ii) The processes from &+ 1
to N —p must be occupied for j slots; and, (iii) The process &
must be occupied for j slots and must be free in the (5 + 1)t
slot. The probability of the tagged packet assigned as above
is given by Equation 5; in the following, we elaborate on how
we arrive at this result. For simplicity, we simply refer to 7,**"9
(recall Equation 4) as .

Let us first consider the simple case wherein j; = 0. If
the process to which the packet is assigned (process k) is
one of the first (v, — 1) processes (not the one to which the
previous packet was assigned to), the conditions that must be
satisfied are (i) the preceding k& — 1 processes must have been
occupied and the k*" process is free. The likelihood of this
is (1 —m)*=Dry. If the process in question is the last (Vi)
process, the requirement is that all the previous processes were
occupied and the previous packet (transmitted in the black slot)
was successful. The likelihood of this is (1 — 1) =1 (1 — py).

Next, let us consider the case where j; # 0. To begin
with let ¥ # N,. The probability of the first condition in
the aforementioned list holding true for each of these pro-
cesses, is essentially: mo.po.ps...pjt241 + T3P3-pa ... Pjts+1 +
s W)= (j+1) P(r—1)—(j+1) - - - Pr—1. Using Equation 4 it
can be shown that this long expression is simply >3;_; .5, m.
Together, for the k¥ — 1 processes (assuming that they are
independent because of varying channel conditions between
transmissions from these processes, due to fading), the proba-
bility of the first event is (327, 5, m)*~ 1.

Similarly, (37_; o m)®Ne=5=D) [T/ _ pm gives us the
probability of the second event. The last term corresponds to
process N, to which the packet preceding the tagged packet
was assigned. For this packet, it is known that a transmission
attempt was made in the black slot, and the last term accounts
for this.

Finally, let us consider the the last required event. Since,
process k is one of the first (N, — 1) processes, this event
occurs with a probability Z{;jl 42 m(L=py) 7. This essentially
corresponds to failed attempts in the first j slots followed by
either a packet success or a packet drop for that process (k) in

the jt* slot.

If £ = N,, things are slightly different since we know when
the previous packet was scheduled. Thus, the likelihood of this
process being free for the first time at the j** TTI is simply
H{flpl(l —p;) foro<j<r-—1.

Determining the likelihood of a packet reception in a TTI:
Having characterized the arrival and the service processes, we
next determine the likelihood of a packet reception (either
decodable or corrupted) in a TTI at the UE. A reception either
transitions the UE to the active state or keeps it in one of the
composite modes in that state.
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The UE receives a packet in a TTI if the corresponding
process has a packet to send. If not, there is no reception.
Here, we make the following approximations. If the queue is
non-empty it is unlikely that any of the N, processes is empty
and thus, the UE will receive a packet in each TTIL If the
queue is empty and N of the N, processes are occupied, the
likelihood of the UE receiving a packet in a TTI is:

Np N
8= NZ:1 N—PP(NO of Pkts in System = N). 6)
The probability of the MMPP/G/1 queue being non empty is
simply given by:
p = Aavg B(S) ©)

Thus, the probability of the UE receiving a packet in a TTI is
given by:
p=p+(1-p)B. 8)

If p is high, the second term in Equation 8 tends to zero.
On the other hand, if p is small, the value of N and thus, 3 is
even smaller (meaning that if the queue is empty, the likelihood
that some of the processes are occupied is very small). Thus,
we ignore the second part and approximate p ~ p. We later
validate that this approximation is reasonable via simulations
(where we don’t make this assumption).

C. Impact on the LTE RRC State Machine

Next, we seek to capture the impact of p on the LTE RRC
finite state machine (FSM). We model the state machine as a
finite-state discrete-time Markov chain parametrized by p, the
probability of receiving a packet at a given TTI. The Markov
chain is shown in Fig. 6. Initially the chain is in the idle state.
A packet reception (with probability p), results in a transition
to the continuous reception state (consisting of states 1 through
T.). A state transition from a higher RRC power state to lower
state occurs if no packet is received (with probability 1 — p)
for T;, where T; reflects the timer value associated with the
currently occupied RRC state. Any packet reception triggers
a timer reset and the machine transitions to the continuous
reception state if in any other occupied state. The transition
probability matrix for this FSM, P, is given by

1-p »p 0 0
0 p l1l—p 0 0
P p 0 1—-p O 0 )
: 0
0 p 0 1—p
1 p 0 0

Short DRX Long DRX

Fig. 6: Markov chain representing the LTE RRC state machine.
State O corresponds to the Idle state. States 1 through 7. represent
the continuous reception state. Dotted and solid arrows represent
transitions with probability p and 1 — p, respectively.

The steady state probabilities «7"¢ of being in each sub-
state depicted in the figure is then computed using:

a’rep = p

rre _
E m, - =
2

To calculate the probability of each individual RRC state
we can simply sum the probabilities of being in any of the
component sub-states of that state (i.e., #7"’s that correspond
to sub-states ¢ within that state). From equations 10 one can
compute the following:

(10a)
(10b)

TipLe = (1 —p)Ttait (11a)

TRRC_Connected = 1 — TIDLE (11b)
TOontinousReception = 1 — (1 — p)Te (11¢)
Tehoreprx = —(1—=p)"((1—p)™ = 1) (11d)
TLongDRX = (1 — p)TetTs — (1 — p)Trait (11e)

where T, = T.+Ts+T;. Given the expected energy consumed
in each TTI when being in each of the states of the RRC state
machine, and the specifications of a video stream (resolution,
slow versus fast) and its duration, one can now compute
the expected energy consumed by network interface from the
download.

Energy due to packet receptions: We wish to point out
that while being in each of the RRC_CONNECTED states
results in a baseline energy expenditure, there is additional
energy consumed when packets are received [3]. This increase
is directly proportional to the rate at which packets are
received while in that state. This is especially important for
the continuous state, since increased rate of packet receptions
leads to this state almost inevitably. In such conditions, since
p linearly increases with rate, the increase in energy is linearly

6 proportional to p.



Resolution Types
Streaming server
Encoding Protocol
Wireless Device

EGA, CGA, HD, FHD
Darwin

MPEG4

Samsung Galaxy s5

TABLE II: Experimental Setup
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D. Impact of LTE Scheduling

Thus far, we assumed that the tagged UE is scheduled
every TTI. However, depending on the number of users and the
provider’s policy, this may not be true. In between transmission
attempts, there maybe TTIs where the UE is not scheduled, and
this results in an additional service time component, viz., a
waiting time wherein, no process is active and the distributor
is simply in a wait mode. If the UE is scheduled every W
slots (W is a random variable) and if we assume that this
is independent of the service time rendered to a packet?, the
expected service time is scaled up by a factor E(W) due to
this scheduling policy. Thus, the probability that the queue is
non-empty is now p = pE(W).

The likelihood of the UE receiving a packet in a TTI
depends on whether or not the UE was scheduled in that TTI;
the probability of the UE being scheduled in a TTI is ¢ = ﬁ
(we assume that in general E(W) is small; if not, the UE is
not scheduled for long durations and the queue may become
unstable). If scheduled, a packet is received with probability
p. Thus, the probability of receiving a packet in any arbitrarily
chosen TTI is p.g = p. Thus, in essence, our prior analysis
applies in this more general case as well. We have validated
this via simulations.

E. Power consumption due to processing

The power consumed at the UE includes the power due to
the processing of the received frames (decoding and playing
the video) in addition to the power consumed on the (LTE)
network interface. Our model only explicitly accounts for the
latter. Higher resolution videos are typically larger in size
and thus require higher processing/computing resources (and
therefore power) at the UE.

The power consumed for processing is device dependent
(i.e., it depends on the CPU and battery of the device). If the
bit rate of the video stream is known (can be provided by the

3This is reasonable since the external load is independent of what the UE
is attempting to download.

Type | Protocol | Resolution | Fast Motion (Kb/s) | Slow Motion (Kb/s)
CGA | h.264 320x200 293 111

EGA | h.264 640x350 802 236

HD h.264 1280x720 | 2433 619

FHD | h.264 1920x1080 | 4656 1174

TABLE III: Details of types of videos used
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video server), the UE can locally estimate the processing power
that will be consumed in addition to the LTE interface power
discussed thus far. To show the viability of this approach,
we experimentally profile the CPU power consumption for 3
different smartphones (Samsung Galaxy S5, HTC One M7 and
LG G Flex) for downloading videos with different bit rates
using the PowerTutor tool [12]. The results from our experi-
ments are plotted in Fig. 7. We see that, for each phone, the
power consumed due to CPU activities (processing/playback)
increases (roughly) in a linear fashion with the bit rate; thus,
the local device can easily estimate this power for different bit
rate video clips once it does an initial calibration with a few
video downloads.

Combining this CPU power with the estimated power
consumed on the network interface (obtained using our model),
we are able to get a estimate of the total power consumed by
different versions of a video stream.

IV. EVALUATIONS

In this section, we validate our analytical framework via
simulations and experiments. We consider different types of
video, and vary channel conditions to understand how video
downloads affect the UE energy consumption. We first describe
our simulation and experimental setups, discuss how we com-

7 pute energy with our model, and later discuss our results.



A. Configurations

Simulation settings: We use NS3 [13] in combination with
the LTE module developed by the LENA Project [11]. We use
the default channel model used in this project. Details can
be found in [11]. Since we are only interested in the energy
consumed at the UE, we set up a simple LTE topology with
one enB serving a single UE. We log all the PHY packets that
the radio processes (including packets that are in error). We
vary the channel conditions. We use 8 different video clips
each of which is about 60 seconds long. Videos are tagged
and processed using the EvalVid [14] tool and then passed on
to the enB to be transmitted to the UE. For each experiment,
we perform 20 simulation runs.

Experimental Setup: Our experiments are on a Samsung
Galaxy S5 LTE phone over the AT & T LTE Network (we did
experiments with other models and T-Mobile and the results
were similar). We connect our LTE phone to a Monsoon Power
Monitor [15] and measure the power when different types of
video (discussed next) are being downloaded from a Darwin
server. We collect power traces for each resolution of fast and
slow motion videos 10 times and estimate the average power.
The details of our experimental set up are in Table II.

Video: We use four popularly used video resolutions listed
in Table III. For each video, we translate the resolution into a
bitrate, and estimate \.., as discussed in Section III.

Parameters for our analytical framework: To compute
the power consumed, we use our analytical model in conjunc-
tion with the results in [3]. Specifically, from [3], we use the
following: (a) In the idle state a constant power of 594 mW
is consumed (594 mJ of energy is consumed in 1 second).
In the continuous state, power = an + 8. Where a = 51.97
(power/Mbps), 3 is the baseline power in this state and is equal
to 1288.04. n is the rate of reception in Mbps (and can be
computed from p). For the Short DRX and Long DRX states,
the power alternates between the power in the idle state and
an active power; this active power is approximately 1680mW
(note that this is larger than the continuous reception baseline
power due to the power due to switching states). For the Short
DRX state the switch from idle to active periods happens
every 20 ms and for the long DRX state it happens every
40ms. We also use the results from [3] for the timer values
that dictate the RRC state machine transitions. Specifically,
T. =100 ms,Ts =20 ms,T; = 11450 ms. We also set the value
of all the p;s to be the same as p; as we observed in our
simulations that these did not change by much from p;.

Processing power at UE: The power consumed at the UE
includes the power due to the processing of the received frames
in addition to the power consumed on the network interface.
Our model only explicitly accounts for the latter i.e., the
power consumed due to the LTE interface. Higher resolution
videos are typically larger in size and thus require higher
processing/computing resources (and therefore power) at the
UE. To estimate the energy consumption due to processing,
instead of reinventing the wheel, we simply use the powerTutor
tool [12]. This allows us to profile and estimate the power
consumed by the CPU for the purposes and rendering the
video. Combining this estimate with the estimated power
consumed on the network interface (obtained with our model),
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we are able to get a estimate of the total power consumed by
different versions of a video stream.

B. Results and Inferences

Slow motion video: In Figs. 8 and 9, we present both the
analytical and simulation results for slow motion videos of
the lowest and highest resolutions. We see that the analytical
results match well with those from simulations. We notice that
at low packet error rates (PER), there is about a 280 mW (16.9
%) decrease in power when we switch from the high resolution
video to low resolution video*. As the PER increases, the
decrease is more pronounced (19.1 %, 340mW). This is
because at high PERs, there are increased retransmissions,
which essentially increase the probability of being in one of
the active states. Furthermore, the increase in receptions trigger
power increases even when in the continuous mode due to
packets in error.

Fast motion video: Figs. 10 and 11 present analogous
results with fast motion video. First, again, the analytical
results match well with simulation results. We notice that with
fast motion video, transitioning to a lower resolution results
in about a 318mW (17.8 %) reduction in the consumed power
in good channel conditions. In bad channel conditions we see
a 384 mW (19.8 %) decrease in power consumption. This is
because, with this type of video at high resolutions the packet
arrival rate is as is high; the retransmissions further increase the
energy consumed. We observe here that the UE is mostly in the
continuous state regardless of whether the channel condition
is good or bad. Note here that at p; > 0.3, the queue became
unstable and we could not gather meaningful results with the
simulations.

4To lower the video resolution, we switch from FHD to EGA.



Decrease in PSNR Bad Channel
10.11% 376.2J
14.5% 432J

Good Channel
301.5J
364.5J

Slow-Motion
Fast-Motion

TABLE 1V: The energy saved as resolution is changed from high
to low with the corresponding decrease in PSNR

Probability of reception in a TTI with slow and fast
motion videos: In Figs. 12 and 13, we depict the probability
of receiving a packet (decodable or corrupted) at the UE, in a
TTI. As one might expect, the probability increases as the PER
increases since there will be a higher number of retransmission
attempts. Further, also as expected, this probability is higher
for fast motion video, and for higher resolution videos, since
the bit rates are higher. Most importantly, we see a close
match between the simulation and analytical results; this shows
that the assumptions made for analytical tractability do not
influence the results by much.

Comparing analytical results with experimental results:
In Fig. 14, we compare the results obtained using our frame-
work, with that from real experiments on our Samsung Galaxy
S5 LTE phone. First, we consider good channel conditions (4-
5 bar coverage). Since we do not have access to the LTE PHY
interface, we simply map the coverage level (5 bar) to a rough
empirical characterization of the PER. Specifically, in this case,
we set the PER to be 0.1 as a conservative estimate. The total
power with our approach is the sum of the LTE interface power
and the CPU processing power as discussed in Section III-E.
We observe that the results derived from our approach are
fairly good estimates of the total energy consumed in reality
(within 5 % of the measured energy savings). We see that the
power savings are significant with both fast and slow motion
video when the user chooses a lower quality version. The
savings are higher with fast motion video since, there is a
bigger reduction in the video bit rate (=~ 405 mW) as compared
to slow motion video (=~ 335 mW).

In Fig. 15, we plot the results with bad channel conditions
(1 bar coverage). Here we empirically choose the highest PER
that we could tolerate (in our simulations) without the queue
becoming unstable (0.39) when we use our model. The total
power saved is the sum of what is saved on the network
interface and due to processing. We observe again that our
results once again match very well with the results from
the experiments (within 5% of the experimental results). We
find that the savings increase to ~ 480 mW and ~ 418 mW
respectively, for fast and slow motion video, potentially due
to a decrease in the number of retransmissions.

Finally, in Table IV, we show the decrease in PSNR that
comes with a corresponding decrease in energy for 15 minute
long videos. Interestingly, a small decrease in PSNR (49.5
dB to 44.5 dB for slow motion and 48 dB to 41.5 dB for
fast motion, which corresponds to 10.11 % and 14.4 % in
the two cases, respectively) results in considerable energy
savings (e.g., 376 J for slow motion video and 432 J for fast
motion video in bad channel conditions). The reason for only
a slight reduction is that the PSNR decreases only due to a
reduction in resolution; due to TCP there are no losses that
degrade quality on the channel itself. Thus, by lowering the
video quality slightly, the user can conceivably gain significant
energy savings.

Impact of LTE scheduling: In Fig. 16, we show the impact
of scheduling the UE once every W TTI on average. W is
chosen as per a uniform distribution between 1 and twice the
average value. We observe that the power consumed does not
change by much with varying W. This validates our analysis
in Section III-D.

Times spent in each of the LTE states: In Fig. 17 we
show the probability of being in each LTE energy state. We
see that if \,., increases beyond an extremely low value, the
UE is almost never in the IDLE state. As one might expect, as
Aavg increases the likelihood of being in the continuous mode
increases, while the likelihood of being in the Long DRX state
decreases. To begin, the likelihood of being in the short DRX
state increases; here the time is shared between this state and
the continuous state. But after a certain point, the probability
of being in this state decreases and the UE is almost always
in the continuous state.

Power consumption decreases with resolution: For com-
pleteness, we present a plot wherein we show the variations in
the consumed power with fast and slow motion video as we
vary the quality in terms of resolution. We assume p; = 0.1.
The difference in power consumption between FHD and CGA
are as reported earlier. Interim resolutions offer different trade-
offs between power and video resolution.

V. RELATED WORK

Almost all of the power models for LTE are empirically
derived. In [3], the authors empirically derive a power model
based on an experimental study of LTE performance. However,
the work is mainly intended for developers and does not pro-
vide an understanding of how the energy consumption varies
with different types of downloads, or in varying channel con-
ditions. In [16], the authors experimentally characterize how
variations in signal strength can affect UE power consumption.
They develop an approach to schedule communications during
periods of strong signal strength. However, they do not account
for traffic characteristics (video) on RRC state transitions.
The authors in [17] study the impact of signal strength on
battery drain and evaluate various energy saving schemes for
3G networks; however, the impact of traffic patterns is not
considered.

The authors in [18] present a model of the LTE radio
interface. In [19], the authors optimize the LTE timers to save
energy. Zhou et al., [20] investigate the trade off between
saving power and wake up delay. In [21] the authors investigate
the effects of varying the LTE parameters on user experience.
However, none of these efforts are focused on video, nor do
they capture the interactions between the video characteristics
and the LTE energy states. In [22], the authors model the
LTE HARQ process as a Markov chain to evaluate the energy
implications of the HARQ process but the model does not
capture the characteristics of video traffic or how the LTE
scheduler influences transmissions.

Some of the work that looks specifically at energy con-
sumption due to video transfers over LTE (e.g., [23]), target
the optimization of the LTE timer values to reduce energy;
they cannot be directly applied to determine energy savings
due to lowered video quality. In [24], the authors study how
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YouTube traffic affects energy. He et. al. present a model for
saving energy for videos streamed over a wireless link in [25];
however, their work focuses on video encoding and does not
address radio power. Lu et.al [26] try to minimize transmission
power based on the state of the wireless channel. Mohapatra et.
al. [27] identified several architectural techniques which can be
coupled with OS level approaches to save CPU and memory
energy while streaming video. In [28] the authors model the
interdependence between different video packets to determine
the optimal retransmission scheme for HARQ processes but
do not consider the energy implications.

There is other work, where video delivery is optimized for
quality (e.g., [29] and citations therein). These efforts do not
explicitly consider energy due to video streaming.

VI. DISCUSSION

Adaptive bit rate video: Current adaptive bit rate stream-
ing technologies such as Adobe and Silverlight (used by
Youtube and Netflix, respectively) are relatively simple. They
work as follows. The server stores different bit rate versions
of the same video. When the client requests a video, the server
sends the client a list of different bit rate videos it has in its
storage. The client then makes decisions on what bit rate video
it wants to download on a per chunk basis, where a chunk is
simply a small portion of the video [30]-[32]. Chunk sizes (in
terms of viewing time) can range anywhere from 2 seconds to
10 seconds. The default bit rate is applied to the first chunk
and usually corresponds to the maximum available bandwidth.
Clients select the highest bit rate that is supported by their
bandwidth [33]. This bandwidth is estimated by looking at the
time it takes to download a chunk and the size of that chunk
[33]. Current adaptive bit rate clients try to maximize bit rate
given this single constraint on bandwidth. We argue that energy
is a concern for clients and our model allows this factor to be
taken into perspective.

Our experiments show that transferring a high-resolution
video over a channel with high PER results in very high energy
consumption. Bandwidth aware clients could still request this
video because it can still be transmitted over the channel
(bandwidth suffices). However, the user may not want to spend
that much energy. Further, while PER affects the bandwidth
of the link, other factors such as load or how busy the enB is
at that time, could be arguably more important in determining
the bandwidth available for a session as shown in [34].

occupancy with Agug
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power consumption with dif-
ferent resolution types.

Our model applies to adaptive bit rate videos; the discus-
sion was focused on fixed bit rate videos for the purposes
of clarity. Some of the experiments compute energy savings
assuming a fixed bit rate video, again for the purposes of
making things clear. We point out that our results, in particular
Figs. 8 to 11, demonstrate the effectiveness of our model in
predicting power consumed at short time scales. The same
experiments also demonstrate the accuracy of our model across
different bit rates. Recall that two primary inputs to our model
are PER and video bit rate. Power estimates can be made as
often as necessary whenever one of the inputs changes.

An energy aware adaptive bit-rate scheme would make sim-
ilar chunk wise decisions as its non-energy aware counterpart.
The client now has an added constraint, namely power. The
UE can estimate the power consumption with any bit rate
video given the state of the channel using our model. The
client would now estimate (a) the highest bit rate video given
its bandwidth constraints (say Bitrateg and (b) the highest
bit rate video given an energy constraint (Bitrateg). It would
choose the bit rate that satisfies both these constraints i.e.,
min(Bitratep, Bitrateg).

Buffered Videos: Our model does not make assumptions
about buffering. In fact, the streaming client used in our
experiments does an initial buffering (approximately for 2
seconds).

Studies have shown that major video streaming services
(e.g., Youtube and Netflix) do not buffer too much. The buffer-
ing is often limited to a couple of seconds [30]. Since Clients
often terminate videos prematurely, the service providers are
concerned with wasted bandwidth and for this reason never
buffer more than what is necessary. Netflix clients sometimes
buffer up to 2 minutes because Netflix hosts videos that are
often hours long and some extra buffering is supported in case
clients want to skip ahead.

Our model applies in cases where there is no buffering, any
level of buffering or in the extreme case where a client buffers
the entire video prior to playback. The video in question will
still have to be transferred over an error prone wireless channel
(which will result in queuing and retransmissions). If a client
is allowed to buffer the entire video clip, all packets from the
clip are inserted into the server buffer i.e., that buffer does
not become empty until the entire video is transferred). This
simply translates to very high values for A\; and \2. Our model
can be still applied and the power consumption for different
qualities can be calculated accordingly.



Motion in a video: Our framework accounts the type of
dynamics in a video stream (slow or fast motion). For ease of
discussion, we have assumed that the video is homogeneous in
this regard. However, a video may transition between periods
of fast motion to slow motion and vice versa. Tools such as
AForge [7] can estimate the expected durations of fast and
slow motion in such cases; with these estimates (done over
chunks of buffered video at the server side), the expected
energy savings can be easily computed with our framework.

Mobility If a UE is moving about a lot, this will cause
the state of the channel to change (PER will change). In such
cases, our model can simply recalculate power consumption
with the new PER (can be potentially measured as videos are
downloaded). However when a UE moves out of the coverage
area of an enB an LTE handover will be necessary. Our model
does not capture this characteristic.

Is a simple model enough?: One can conceive a simple
model which assumes that the entire video is downloaded
continuously and then displayed to the user. In such a case,
there will be no RRC state transitions (as discussed later,
it will be in a continuous reception state). Now, one might
argue that one can calculate the time for which the interface
is active provides an indicator of the energy spent. One could
proportionally increase this time based on the perceived packet
error rate. In practice however, two important characteristics
are worth pointing out. First, as we’ve pointed out already,
buffering is purposefully limited by popular video services
Thus, it is quite possible that as network conditions change,
the server side buffer becomes temporarily empty (and thus,
the video is not continuously downloaded) which could trigger
RRC state transitions. Our model is generic enough to take
care of such cases; it is also applicable to the case where the
server has a steady stream of video packets for a client for
continuous downloads.

Second, we also point out here that the video stream is not
necessarily transferred at the bit rate specified at the server.
If that was the case, one could simply use a linear model
to determine how the energy would vary with bit rate. The
video traffic is shaped not only because the server may have
varying loads (and thus transfers video at the specified bit
rate on average, but in a bursty manner), but also because
of retransmissions on the wireless channel due to varying
channel characteristics. Thus, it is inevitable that the packets
will experience some form of queuing at the LTE server

VII. CONCLUSIONS

In this paper, we build an analytical framework to capture
the energy consumption due to video downloads over LTE.
Our framework takes as input, the type of video (fast vs
slow motion and resolution), the link qualities experienced
(in terms of PER) and the power consumed in each LTE
state. It provides a quick and effective means of determining
the power consumption with various types of videos under
different network conditions. We validate our framework via
extensive simulations and real experiments.
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