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Abstract—A wireless camera network can provide situation
awareness information (e.g., humans in distress) in scenarios
such as disaster recovery. If such camera sensors are battery
operated, sending raw video feeds back to a central controller
can be expensive in terms of energy consumption. Further, if
all cameras were to use the optimal processing algorithm for
object decision, they may also expend unnecessary energy. Stated
otherwise, cameras that capture the same objects may not all have
to use the optimal algorithm to achieve a desired accuracy, and
this can save processing energy costs. In this paper, our objective
is to design and implement a framework that can support
coordination among cameras to deliver highly accurate detection
of objects in an energy efficient way. The framework, which
we call EECS (for energy efficient camera sensors), estimates
the detection accuracy and energy costs incurred (both the
processing and communication costs are taken into account) with
each detection algorithm for each camera, and comes up with
a choice of cameras for sending information pertaining to the
object of interest. This set of cameras and the video processing
algorithms that they must use, are chosen so as to minimize
the energy expenditures, given a desired detection accuracy. We
implement EECS on a camera network built with smartphones,
and demonstrate that it reduces the energy consumption by up
to 40% while ensuring a object detection accuracy of over 86%.

I. INTRODUCTION

Timely and accurate detection of objects of interest (e.g.,
humans) is critical in many scenarios of interest. For example,
in rescue and recovery missions following natural disasters,
one might want to detect humans or animals in distress.
Homeland security might be interested in automatically and
proactively tracking unattended baggage in airports or bus
stations. Today, camera sensors equipped with computational
capabilities can be deployed in the field to provide situation
awareness information in such scenarios. In fact, battery oper-
ated, low power embedded camera devices (e.g, the CMUcam
series [1]) that can be used for such purposes are already
emerging and on the market. Using common programming
languages, these devices can be programmed to do multiple
types of on-board processing tasks (e.g., object and face
detection).

A network of such camera sensors can significantly im-
prove the accuracy of object detection. With such a network,
objects that might be obstructed or hidden from specific
angles of view, can still be potentially detected. However,
simply sending video feeds from all such camera sensors to a
central controller that is responsible for operations (e.g., search
and rescue) might not only be wasteful, but could result in
unnecessary energy expenditures and hurt the longevity of

the network. In addition, each camera could be trained to
use highly optimal, domain specific, algorithms to process the
captured video. However, the higher the fidelity of a processing
algorithm, the higher the cost in terms of processing energy.
Thus, when a plurality of cameras detect the same object, it
might be unnecessary for all of the cameras to use energy
expensive algorithms. Some of the cameras could use sub-
optimal processing to save energy while ensuring that the
detection accuracy does not take a big hit.

In this paper, our goal is to design a framework, called
EECS, that can facilitate co-ordination among the cameras in
such a network to realize significant energy savings, compared
to cases where there is no such co-ordination, and yet achieve a
high detection accuracy. The framework determines (a) which
cameras are suitable for capturing objects of interest, (b) what
domain specific algorithms to use for processing the captured
video.

Challenges: In order to achieve our overarching goal, we
need to tackle a set of key challenges. First, since the scenarios
are likely to be unknown a priori, the most accurate video
processing or detection algorithm for each camera sensor is
not known. The problem is harder if we need to rank order
the processing algorithms in terms of the accuracy they yield
and the energy expenditures they incur for the scenario. This
essentially requires the assessment of similarities between
the video captured of an unknown scenario and a set of
pre-installed training videos corresponding to a set of pre-
determined scenarios; such an online comparison is very
challenging for complicated and high dimensional signals like
video feeds. Second, we require EECS to be able to identify a
subset of camera sensors whose detection yields are together
sufficient to achieve a desired accuracy. This ensures that
EECS does not unnecessarily invoke all camera sensors and
thus, helps reduce energy consumption. Third, we need to
determine which camera nodes should utilize less accurate
energy efficient detection algorithms, instead of using the most
accurate (possibly more expensive) algorithm for processing
the videos while still adhering to the accuracy requirements.

EECS in brief: EECS is designed to address the above
challenges. To solve the first challenge, EECS leverages state-
of-the-art video comparison algorithms to identify the most
effective detection algorithm for each individual camera. In
brief, each camera captures a short video feed and compares
the feed with pre-loaded training videos to find the closest
match; the algorithm that works best for the matching training
video is then chosen. This process can be repeated when
the environment changes. The process, which is referred to



as “domain adaptation”, has been used for efficient video
comparisons [2]. Specifically, principle component analysis
(PCA) is applied on the captured and training videos to
remove the unimportant features, and to reduce the signal
dimensionality; the PCA-processed signals are then projected
onto a Grassmann manifold for comparison. The manifold is
created in a manner that ensures that a small distance between
two projected points in the manifold also indicates a high level
of similarity between two associated video feeds.

The above approach however, only allows each individual
camera to dynamically choose the most accurate algorithm
to process the captured video feeds. EECS ranks the camera
sensors based on individual accuracies and applies a novel
greedy algorithm to choose a subset of cameras that jointly
can achieve a predefined desired accuracy (thus addressing
the second challenge). This requires EECS to be able to iden-
tify and aggregate detection information of the same objects
from different views/cameras, and then assesses the detection
accuracy based on the aggregated information. Subsequently
towards addressing the third challenge, for each chosen cam-
era, EECS determines whether each camera can use a less
energy expensive algorithm that satisfies the desired detection
accuracy requirement and if yes, chooses the less expensive
algorithm for processing.

Novelty: To the best of our knowledge, EECS is the
first to support coordination across a set of battery operated
camera sensors towards reducing energy consumption while
ensuring high accuracy of object detection. While the design
of domain adaption for individual cameras has been studied in
the computer vision community, coordination across cameras
to determine the algorithms that different cameras should
use to achieve a certain detection accuracy has not been
considered before. Moreover, energy was not a consideration
in determining the choice of this set of algorithms.

Evaluations: We implement EECS on a testbed of An-
droid phones, which have pre-installed video feeds captured
from overlapping cameras. We implement three different video
processing algorithms on each of the camera views. The
algorithms are adaptively chosen by EECS depending on
the environment and requirements. Our evaluations show that
EECS achieves both higher precision and recall than using the
same algorithm to process all datasets. In addition, EECS’s
resource-aware algorithm selection approach helps to reduce
up to 40% of the total energy consumption while still achieving
≈ 86% of the highest accuracy (achieved when the most
accurate algorithms are used at all individual cameras).

II. RELATED WORK

Object detection algorithms: While our work is applica-
ble to object detection in general, we focus mainly on humans
as the objects of interest. Different features (color, gradient,
texture) and machine learning techniques (SVM, boosting)
have been used in object detection [3], [4], [5], [6], [7].
However, each algorithm only works well in specific scenarios
and conditions. In this work, we propose a framework for
adaptively choosing an appropriate algorithm depending on the
environment/condition.

Domain adaptation: Domain adaptation is used for learn-
ing classification rules for a target (e.g., indoor) dataset from a
pre-trained source dataset [2], [8]. In EECS, domain adaptation

is used to find the correspondence between features of the
two datasets. This correspondence is then used to assess
video similarity, and identify the most appropriate detection
algorithm for an unknown incoming video feed.

Adaptive algorithm selection: Algorithm selection has
been studied in several recent works for other problems. In
[9], a model to predict the performance of different image
segmentation algorithms is developed. In [10], pixels in an
image are segmented into different regions, and different
detection algorithms are applied for the different regions. In
these works, the values of the selected features are used
to determine which algorithms are used. In contrast, in our
approach, the similarities between features from different video
feeds are used to select the algorithm. The work in [11] is
the closest to our work; the authors consider using different
algorithms to detect humans in different video feeds. However,
they only consider choosing the most efficient algorithm to
process captured video feeds for a single camera. EECS, on the
other hand, focuses on multi-camera settings in which camera
diversity can be capitalized to reduce energy consumption.

Object detection using multiple cameras: Works such
as [12], [13], [14] focus on detecting objects of interest using
a network of camera sensors. However, they only employ a
specific video processing algorithm to detect objects. On the
other hand, EECS allows changing the detection algorithm
adaptively as the environment changes to improve energy
efficiency while ensuring detection accuracy.

Efficient video processing on mobile devices: Li
et al. [15] propose data manipulation techniques to reduce
memory access related energy consumption on mobile devices.
Lee et al. [16] implement and study the energy consumption
of different video encryption schemes on mobile devices. The
authors in [17], [18], [19] study and improve the energy
efficiency of video streaming applications for mobile devices.
Improving the efficiency of object detection or other video
processing algorithms is not our focus; we instead design a
framework to choose the most energy efficient algorithm from
a set of available algorithms while ensuring given accuracy
requirements.

III. VIDEO COMPARISON USING DOMAIN ADAPTATION

When a video feed is captured, each camera needs to
determine which video processing algorithm is most accurate.
In order to do so, in EECS, the new feed is compared against
a training set of videos that are pre-loaded onto the cameras.
To determine matches between the new feed and the videos
in the training set, an efficient video comparison technique
is essential. This process is referred to as domain adaptation,
i.e., determining which algorithm is best suited for the domain
pertaining to the captured scene in the new feed.

Domain adaptation for a single camera has been studied
in the computer vision community [2], [8] and can be used
to determine the similarity between videos. In many cases,
directly comparing video features in their original domains
does not yield good results. For example, images taken in
different conditions (indoor/outdoor, illumination, variations
in size of an object from different views, etc.) can be quite
different, but should actually be processed using the same
algorithm to achieve the highest accuracy, as shown in [11]. In



Symbol Meaning
α, β Sizes of feature space and PCA subspace
ti Features of the training video item Ti

vj Features of the incoming video item Vj

k1, k2 Number of frames used to represent Ti and Vj

xi, zj Basis of the PCA-projected subspaces of ti and vj
x̃i Orthogonal complement to xi, namely, x̃i

T xi = 0
θ(y) Geodesic flow function
U , V , Σ1, Σ2 Matrices used to compute θ(y) and Wij

Wij Geodesic kernel, used to compute distance between xi and zj

TABLE I: List of symbols used in computing video similarity

such cases, the similarity between two video feeds1 is much
more noticeable if the features in the feeds are projected on
to a common subspace. We use image key-points, and the
histogram of oriented gradients (HOG) as features of the image
frames in a video feed for comparison; the chosen features, to
be used in EECS, will be described in detail in section V.

The key idea in domain adaptation, is to project the two
video feeds (a training video and an unknown video feed) onto
a common subspace, in which similar patterns between the
videos can be better identified. Here, we choose to project
the training and the incoming videos (also referred to as data
items) onto a Grassmann manifold, as in [2]. The geodesic
flow curve is the shortest path that links two projected items
on the manifold, and represents a measure of similarity of
the data distributions on the manifold. If two items have
similar distributions on the Grassmann manifold, the same
video processing or detection algorithm should be applied on
the two video feeds [11].

In more detail, we formulate the problem of assessing the
similarity between two videos as follows 2. Let the features
to be compared in the training and captured videos, Ti and
Vi be ti ∈ Rk1×α, vj ∈ Rk2×α, respectively. Here, k1, k2

are the number of key frames (images) chosen in Ti and Vj ,
respectively, to represent the entire video feeds to reduce the
computational overhead. In addition, α is the dimension of the
feature vector of each chosen key frame. In other words, each
video feed is represented as a set of images, where each image
is then represented as a feature vector in the Rα space.

Using principal component analysis (PCA), we project all
the images in Ti onto a Rβ subspace in which the variances
of data are maximized; typically β < α. The basis of such a
subspace consists of β orthogonal α-dimensional basis vectors.
Let xi ∈ Rα×β be the basis of the original subspace and zj ∈
Rα×β be the basis of the subspace obtained when applying
PCA on vj . Let Gr(β,Rα) be a special space that contains all
the subspaces of size β in Rα; called a Grassmann manifold of
Rα. Then, both the subspaces represented by xi and vj lie on
Gr(β,Rα). Let x̃i ∈ Rα×(α−β) be the orthogonal complement
to xi, namely x̃iTxi = 0, where xT denotes the transpose of
matrix x.

Given the Grassman manifold, the geodesic flow connect-
ing xi and zj on the manifold, is defined as [2]:∫ 1

0

(θ(y)ti)
T (θ(y)vj)dy = tTi Wijvj . (1)

1We use the terms video feed and video item interchangeably.
2The list of symbols used in this section is summarized in Table I.

The left hand side of (1) provides the definition of the geodesic
flow, whose value can be computed using the right side of the
equation. θ(y) is the geodesic flow function, parameterized by
a continuous variable y ∈ [0, 1] [2].

The geodesic flow can be computed by computing the
kernel function Wij between the two feature vectors ti and
vj . Wij is defined as:

Wij = [xiU x̃iV ]

[
Λ1 Λ2

Λ2 Λ3

] [
UTxTi
V T x̃i

T

]
, (2)

where U , V are the left and right singular matrices when
applying singular value decomposition (SVD) to xTi zj and
x̃Ti zj , respectively. Further, let Σ1 and Σ2 be the diagonal
matrices of such SVDs; the values of Λ1, Λ2, and Λ3 matrices
are computed from both Σ1 and Σ2 [2]. The kernel function
Wij provides an effective way to compute the inner product
of high dimensional vectors ti and vj , which is widely used
to compute the similarity between vectors [20].

The kernel distance between the two video feeds Ti and Vj
(i.e., between features of two sets of images ti and vj) on the
manifold is computed based on the geodesic flow connecting
them as [21]:

K(Ti, Vj) = tTi Wijti + vTj Wijvj − 2tTi Wijvj , (3)

where K(Ti, Vj) is a k1×k2 matrix representing the individual
distances on the manifold from each image in Ti to each image
in Vj .

We define the total distance between the two video feeds
on the manifold to be the mean of all the kernel distances
between the individual images from the two feeds:

Md(Ti, Vj) =
1

k1k2

∑
m1

∑
m2

K(m1,m2)(Ti, Vj), (4)

where m1,m2 are integers in {1, · · · , k1}, {1, · · · , k2}, re-
spectively, and K(m1,m2)(Ti, Vj) is element (m1,m2) of the
matrix K(Ti, Vj).

Finally, we define the similarity of the two videos Ti, Vi
as:

Sim(Ti, Vj) = e−Md(Ti,Vj). (5)

Notice that Sim(Ti, Vj) ∈ [0, 1], for Md(Ti, Vj) ≥ 0. A higher
distance corresponds to a lower similarity value. Further, the
similarity approaches 0 exponentially fast beyond some certain
threshold (e.g., when Md(Ti, Vj) ≥ 4). In such cases, the video
feeds are considered dissimilar.

IV. EECS SYSTEM DESIGN

In this section, we describe the design of our camera
coordination framework EECS. EECS consists of two main
components: camera sensors and a central controller (we also
use the terms cameras and controller). In EECS, the central
controller collects visual features (discussed later in section V)
from the camera sensors and use these to determine the
most effective detection (video processing) algorithm, for each
camera, in terms of accuracy and energy consumption. In
addition, EECS decides what combination of views yields
the desired object detection accuracy, while ensuring that the
energy drain at the camera adheres to a set energy budget. In
EECS, video analytics and algorithm selection happen at the
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Fig. 1: EECS system for adaptively choosing detection algorithms in
a camera network.
controller to avoid storing information about training video
feeds and executing processing-expensive, domain adaptation
at each battery-operated camera sensor. Here, as is typically
the case, we assume that the controller does not have energy
constraints and can easily perform these required operations.

Each camera individually executes a detection algorithm to
detect the presence of objects (e.g. humans) in the scene. The
detection accuracy of a certain algorithm depends on how well
it matches the environmental conditions, which are dictated
by attributes such as brightness and indoor versus outdoor,
etc. At the same time, different algorithms consume different
amounts of energy. The controller collects information relating
to the detected objects as well as residual energy information
from the camera sensors. Based on the assessment of the
achieved global detection accuracy and the energy budgets
and expenditures at each camera, the controller adaptively
invokes different sets of cameras and/or different detection
algorithms to meet both the accuracy and energy requirements.
Fig. 1 depicts the functional view of system with its different
components. In the following, we describe the details of EECS.

Let T = {T1, T2, · · · , TN} be the set of training videos
at the controller. Let A = {A1, A2, · · · , AH} be the set of
available detection algorithms pre-installed at each individual
camera. Each camera sensor Sj ∈ S of M cameras has an
energy budget Bj , which is a function of the required operation
time as well as other processing parameters (such as number
of frames processed per second). In addition, each camera has
a communication cost Cj , which depends on the link quality
from the camera to the central controller and is independent
of the detection algorithm assigned to the camera3. Let V be
the set of captured video feeds, where Vj ∈ V is the video
feed captured at camera Sj . The goal of EECS is to identify
a subset of the camera sensors S ′ ⊆ S and the corresponding
video processing algorithm A′j ∈ A to be used at each camera
Sj ∈ S ′ such that energy consumption is minimized subject to
minimum global detection accuracy D, to be defined in Section
IV-C, and maximum energy constraints c(A′j) + Cj ≤ Bj .
Here, c(A′j) represents the computation cost for algorithm A′j .
We develop a greedy algorithm to address this combinatorial
optimization problem.

3Specifically, Cj depends on the resolution of the captured video, and the
available bandwidth between the camera sensor and the central controller. This
can be estimated using tools such as iPerf [22], by transferring some sampled
frames and recording the consumed energy.

A. Offline training
A key task of the controller is to rank order the video

processing algorithms based on their detection accuracies and
identify the most accurate algorithm for the captured video
feed Vj with regards to each individual camera sensor Sj .
EECS performs a video comparison of the incoming video
with the training videos using the domain adaptation technique,
described in section III.

First, the controller applies each available detection al-
gorithm to process each training item, and measures the
computational cost and the detection accuracy achieved (a
total of H × N combinations). Processing energy costs of
the algorithms are estimated by applying each algorithm to a
few sampled frames and recording the consumed energy, using
tools such as PowerTutor [23]. For the detection accuracy,
the controller measures the precision and recall values for
each algorithm. The precision value is the number of correctly
identified objects from among the detected objects, while the
recall is the number of detected objects from among the
objects actually in the scene. We consider scenarios where both
precision and recall are important to the detection performance.
Since these two metrics could be conflicting, we consider the
f score value [24], which balances both metrics and is usually
used to assess the accuracy of a detection algorithm. It is
computed as f score = 2× recall×precision

recall+precision . For each training
item, a ranked list of algorithms is then constructed based on
the f score. For each training video Ti ∈ T , the most accurate
detection algorithm satisfying the energy constraint, labeled
A∗i ∈ A, is identified.

B. Resource-aware algorithm selection
In this subsection we describe how the information gath-

ered at the central controller from the camera sensors is used
to adaptively choose the detection algorithm for each camera
sensor.

1) Uploading video features: When the camera sensors
start up, or when surrounding environmental changes are
detected, each sensor Sj extracts and uploads features, such
as image key points and HOG, of the captured video feed Vj
to the controller (details discussed in section V). Further, each
camera notifies the controller about its energy budget Bj . Note
that, detection of environmental changes is not in the scope of
this paper.

2) Rank ordering the detection algorithms: Once the cen-
tral controller receives video features Vj from camera sensor
Sj , it determines the video similarities between the input and
the items in its training set, and identifies the closest training
item T ∗i ∈ T that is most similar to Vj using Equation
(5). Because EECS uses state-of-the-art video comparison
techniques, a high similarity between T ∗i and Vj indicates that
the two videos should be processed by the same algorithm
[11]. Thus, algorithm A∗i , associated with T ∗i , will be the most
accurate algorithm that can be used to process Vj . Further,
the process ensures that the rank ordering of the detection
algorithms will also be similar between the videos.

3) Choosing a subset of cameras: Periodically, for a short
accuracy assessment duration (e.g., 100 frames), each camera
employs all the available detection algorithms satisfying their
energy budget and then transmit the detection metadata to the
controller. This information is then used to estimate the best



possible global accuracy that can be achieved 4. The cameras
are then rank ordered based on their individual accuracies in
the list So = [S1, S2, ..., Sm].

Next, the central controller iterates over subsets of cameras
in So, estimating the global accuracy when cameras are acti-
vated sequentially from the list So in order, until the desired
global accuracy is satisfied. The set of chosen cameras is
denoted by S ′ ⊂ S. This approach ensures that EECS does not
invoke all the camera sensors unnecessarily, but only invokes
a sufficient set of cameras to satisfy the detection accuracy
requirements while conserving energy.

4) Choosing detection algorithms: In the previous step,
a set of cameras that satisfies the required accuracy using
the associated most accurate (i.e., best) detection algorithms
A∗j ,∀j ∈ {1, 2, · · · ,M} are chosen. Here, we seek to further
reduce the energy usage at the camera sensors while still
satisfying the detection accuracy requirements.

First, the controller browses the list S ′ in reverse order
to consider the cameras with the lower accuracies first, to-
wards reducing energy expenses. Then, for each camera, the
controller checks whether a different lower energy algorithm
can be used, while still retaining the required global accuracy
D. This reduction in accuracy is a direct consequence of the
algorithm chosen at that camera. In other words, at each step,
the accuracy with regards to the other cameras is not affected.
Note that, in order to reduce the number of alternatives that
need to be explored, EECS only pays attention to algorithms
that have higher f score

energy cost values compared to the most accurate
algorithm. It selects this algorithm for the corresponding
camera and feeds back this information to the camera sensor.
If such an algorithm is not found, then this process stops.
Otherwise, the process continues with the next camera in S ′.

Next, the set of cameras S ′ is used, along with the selected
detection algorithms, until the next re-calibration interval (e.g.,
after 500 frames). At that point, a new accuracy assessment
process starts, and a new set of camera sensors and detection
algorithms might be chosen.

C. Global detection accuracy estimation

In our algorithm, the central controller assesses the global
detection accuracy, given the accuracy assessments from the
different camera sensors. This process is explained in detail as
follows.

In order to assess the global accuracy, the controller needs
first to identify the same object (e.g., human) captured from
different cameras/views, and estimate the achieved accuracy
pertaining to that object. Correctly aggregating the same de-
tected areas (representing objects) from multiple views allow
EECS to correctly identify the total number of objects that has
been detected in the scene, since those areas will be counted as
a single object. Otherwise, the same detected human might be
counted multiple times, which leads to an incorrect assessment
of the global detection accuracy. However, this re-identification
of the same object from multiple camera views is challenging
in itself; this is because images of the same object can be quite
different if viewed from different angles. In the following, we

4The metadata consists of features extracted from the video (e.g., color
features). Metadata and global detection accuracy will be defined formally in
Section IV-C.

discuss how detection metadata are used to aggregate multiple
views of the same object.

Aggregating detection metadata from multiple cameras:
For each detected object in an image, object detection algo-
rithms provide the location (rectangular bounding box) of the
area on the image as well as a score reflecting how confident
the algorithm is, with regards to the area representing an
object of interest (for example, see the detection algorithm
in [3]). Thus, for each detected area, the sensors extract and
upload metadata of that area representing a potential object.
Specifically, this metadata includes: (i) the location of the area
in the image, (ii) color features of the area, and finally (iii) a
confidence measure that the detected area is an actual object of
interest. This metadata is then used for object re-identification
as follows.

First, a set of landmark points on the ground are chosen
in the real world coordinate system. The locations of these
landmarks are then identified in the captured images of each
individual cameras. Using the correlation between the locations
of the landmarks in the images captured by two cameras facili-
tates the building of a mapping function (called a homography)
between the “ground planes” of the two cameras (e.g., by using
RANSAC [25], which produce very accurate results). Such
homographies are built offline and need to be recalibrated only
if the camera geometry (e.g., orientation, zoom) changes. Once
such a homography is constructed, for each detected area in an
image, the central controller extracts the center of the bottom
edge in the frame, which is supposed to be on the ground, and
then projects that center point onto the ground plane of other
camera views to identify detected areas of the same object in
the other camera views.

Next, the controller uses the color features of the detected
areas to reduce the false matches due to imperfect homography
matching. Specifically, in EECS, we extract the Mean Color
feature [26] of a detected area, and then use PCA to reduce
the number of features. Then, the Mahalanobis distance [27]
is used to compute the distance between the color features of
two detected areas by different cameras that were pre-matched
by homography mapping. If the distance is within a certain
threshold, we consider the two detected regions to correspond
to the same object.

Finally, for objects that are re-identified using location of
the area on the image and color features, we need to combine
their confidence scores to have a single confidence measure for
the corresponding object. We discuss how the central controller
fuses object detection scores from multiple cameras

Assessing global detection accuracy: First, we denote
the area on the image for each detected object i, using the
algorithm running on camera Sj , by Rij . Each area Rij has a
corresponding detection probability Pij5, representing the de-
tection precision associated with that area. Thus, Pij indicates
the probability that the area Rij is actually an object of interest,
while (1−Pij) is thus the false positive probability of object i
on camera j. The combined true positive detection probability
Pi is then computed as the complementary probability that all
cameras Sj yield false positive detections Thus, Pi, is then

5Object detection scores can be converted into detection probabilities via
an offline training process.



given by
Pi = 1−

∏
j

(1− Pij). (6)

In reality, ground truth information may not be available
at operation time, and involving a human in the loop to
manually verify the detection is assumed to be not possible
or expensive (for instance, if the human has to continuously
provide feedback on the results). Thus, it is not possible to
quantify achieved accuracy measures such as precision and
recall to be used in updating camera and algorithm selection.

Thus, in this paper, global detection accuracy is char-
acterized by two measurable quantities: (i) the number of
objects on the field jointly detected by the cameras (after re-
identification), and (ii) the combined detection probability of
each detected object. To bound detection accuracy of system,
the controller periodically triggers each camera Sj to use
the highest accuracy algorithm A∗j to compute a “baseline”
global detection accuracy, quantified by the number of detected
objects, and the average detection probability. If the gap
between the detection accuracy achieved by current camera and
algorithm selection and that achieved by the baseline is large,
more cameras and/or more expensive algorithms are invoked.

Specifically, we let N∗ and P ∗ be the number of detected
objects and the average detection probability (of all detected
objects), respectively, when the best algorithms are used at
all the cameras. Here, the probability for each object is
computed by Equation 6. The desired accuracy is then defined
proportionally to the values of N∗ and P ∗. Specifically, let
D = [Dn, Dp], where Dn and Dp be the desired number of
detected objects and the desired mean value for the detection
probability, respectively. We then require that Dn ≥ (γn×N∗),
and Dp ≥ (γp×P ∗); the values of γn and γp can be changed
to influence the desired accuracy.

Summary: Fig. 2 summarizes the operations and interac-
tions between video sensors and the central controller. The
individual camera sensors capture video feeds, extract specific
features and send these features along with their residual
energy information, to the central controller. The central con-
troller does the video analytics to select a sub-set of cameras,
and the video processing algorithms that must be used at
these cameras, to achieve a good trade-off between detection
accuracy and energy expenses.

V. IMPLEMENTATION

In this section, we describe the detailed implementation of
EECS, which consists of two main components viz., camera
sensors and a central controller that gathers the outputs from
these cameras.

Note that, in implementing EECS, we focus on “humans”
as objects; this has significant importance in rescue, tactical
and homeland security missions. The techniques can however,
be used to detect other types of objects; only the detection
algorithms used at the camera sensors need to be replaced.

A. The camera sensors

We implement the camera sensors using Asus Zen II An-
droid smartphones. Each node is pre-installed with 4 different
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Fig. 2: Interactions between the sensors and central controller

human detection algorithms: HOG6 [3], ACF [4], C4 [6] and
LSVM [5]. We use OpenCV to implement HOG, LSVM, and
ACF, based on the source code provided by the authors. For
C4, we use the source code (in C++) provided by its authors.

First, each captured video feed is represented by 100 image
frames. For each frame, we extract the HOG features [3] and
SURF (speeded-up robust features) key-points7 [28] of the
image using OpenCV. The HOG features are represented by a
3780-dimension feature vector. For the SURF key-points, we
use the bag of words (BoW) approach [29]. Specifically, each
SURF key-point is represented by a 64-dimensional vector,
called the key-point descriptor. Once a training set is chosen
(more details about data sets are provided later in section VI),
key-point descriptors of the training images are extracted, and
then partitioned into predefined k clusters using the k-means
clustering algorithm. Each such cluster centroid is called a
visual word in the vocabulary.

In EECS, a vocabulary of 400 words is built from images
of 12 training video feeds. Subsequently, for any given image,
the key points of the image are extracted, and each key point is
then mapped to the nearest cluster centroid (visual word) [29].
The BoW representation of an image, regardless of the image
size and number of key-points, is thus a 400-bin histogram,
in which the value of each bin is the number of key-points
mapped on to the associated visual word. Thus, each image
frame in a incoming video feed is actually presented by a fixed
4180-dimension feature vector (combining the HOG feature
and the BoW representation), or about 16KB. The camera
nodes then upload the features of the set of chosen image
frames of the captured video feed to the central controller
for video comparisons and subsequent, processing (detection)
algorithm selection.

Once a detection algorithm is assigned by the central
controller, the camera sensors detect the presence of objects
of interest, and upload the information relating to the detected
areas (the locations and the color features of the objects in
the frame) to the controller for accuracy assessment and re-
calibration. We also utilize OpenCV to extract features from
the detected areas on the smartphones camera sensors. The
amount of detection metadata transmitted to the controller
depends on the number of objects detected. For each detected

6We use the term HOG for both the feature (histogram of gradient) and the
algorithm that leverages the feature.

7Key-points are small patches of an image that differ significantly from the
surrounding areas (in the image).



object, the metadata includes 8 bytes representing the position
(rectangular bounding box) of the object in the image, 4 bytes
for the detection probability, and finally, 160 bytes representing
the 40-dimensional color feature. Thus, a total of 172 bytes are
transmitted for each detected object.

B. The central controller
The central controller is implemented on a Linux server.

It contains a pre-installed training set consisting of different
video items (details in section VI). The accuracy (precision,
recall and f score values) of each algorithm on each training
item is computed.

To compute the similarity between the training videos and
the camera sensor frames sent to the controller, the source
code provided by the authors of [2] is used to compute video
distances on the Grassmann manifold. The controller then
follows the framework described in Section IV-B to select a
subset of cameras and the associated detection algorithms to
achieve the desired accuracy.

VI. EVALUATIONS

In this section, we evaluate both the accuracy and energy
efficiency of EECS.

Training and test datasets: We use the following publicly
available datasets in our evaluation; each of the datasets con-
sists of video feeds captured from 4 overlapping cameras:

• Dataset #1 is the “lab sequences” dataset, provided by
EPFL [30]. This dataset consists of indoor video feeds in
an empty room setting. In each video there are 6 people
walking in the room. The resolution of the video set is
360x288.

• Dataset #2 is the “chap” dataset, provided by Graz Univer-
sity [31]. This dataset also consists of indoor video feeds
in a lab setting, in which there are 4-6 people walking in
the room. There are furniture items in the lab which might
cause false positives in terms of detection; thus this dataset
has lower precision than the other datasets. The resolution of
this dataset is 1024x768. Thus the energy cost to process this
dataset is expected to be higher than in the other datasets.

• Dataset #3 is the “terrace sequences” dataset, also provided
by EPFL [30]. This dataset contains outdoor video feeds,
with 8 people walking on an empty terrace of a building.
The resolution is 360x288.

Since each set contains video feeds captured simultane-
ously from 4 overlapping cameras, there are 12 videos feeds in
total. Each of those video feeds is approximately 3000 frames
long. We use the first 1000 frames in each video feed as the
training video. The remaining 2000 frames from each video
feed are used as test data.

Ground truth information: All the datasets we use con-
tain ground truth information about human locations in the
scene. In particular, the 3D locations (in the real-world coor-
dinates) of where the humans stood in the scene are marked.
Further, for each video feed in the dataset, the homography
used to transform between coordinates on the ground plane in
the image and real-world coordinates is provided8. Using such

8Such a homography is built by marking the landmarks in the field and in
the images, as described in IV-B.

homography, those 3D locations are converted to 2D locations
in each video frame. This is then compared with the results of
the detection algorithm to estimate accuracy in our evaluation.
For datasets #1 and #3, ground truth information is available
every 25 frames, whereas the ground truth is available every
10 frames for dataset #2.

Re-identifying detected objects across cameras: Using
the provided homography information described above, EECS
can re-identify and aggregate the same objects detected by
different cameras. Color features of the matched objects are
then verified to reduce false positives, as described in [26]. By
using these two techniques, EECS is able to re-identify objects
with a high precision (more than 90%) in all the datasets.

Computing energy costs and budget: For each sensor,
we apply each algorithm to each of the videos to learn the
processing cost of the algorithm. The process is repeated over
1000 frames to get the average value. We transfer 1000 frames,
compressed using JPEG format, using WiFi in good conditions
to estimate the communication cost. In EECS, sensors only
transfer cropped image frames containing the detected objects
to the controller. The amount of transferred data thus varies
across frames since the number of detected objects and the
sizes of the different objects also vary. Thus, to estimate the
communication cost, we assume the whole frame is transferred,
and monitor the consumed energy. Doing so ensures the actual
communication cost will never be higher than our estimated
value.

Finally, the energy budget is computed by first defining
an expected operation time (e.g., 6 hours) and an expected
frame rate (e.g., image frames are processed every 2 seconds).
Given these, the number of frames needed to be processed
during the operation time (e.g., how often batteries need to
be recharged or replaced) can be computed. Subsequently, the
residual energy capacity is divided by the number of frames to
compute the energy budget for each frame. In the evaluations
that are presented later, we actually use different budget values
to evaluate how EECS adaptively chooses different algorithms
under different given budget constraints.

A. Estimating the detection accuracy

Each camera sensor is pre-installed with 4 different detec-
tion algorithms. Video feeds available are split into training
segments and test segments. We apply all the algorithms
to each of the training video segments to characterize the
accuracy of each algorithm on each training segment. Each
object detected is assigned a detection score by the algorithm,
reflecting a measure of confidence in detection. We discard
areas on a frame with very low detection score below a cut-
off detection score threshold dt. Different cut-off thresholds
correspond to different values of f score. For example, a
higher threshold will disregard detection areas with lower
scores to reduce the false positive rate (increase precision), but
on the other hand, might also cause correctly detected areas
with lower scores to be ignored and thus reduce recall. Thus,
even though we can increase precision or recall individually,
we choose a threshold dt which maximizes the f score value.
In other words, for each combination of an algorithm and
a training video segment, we record the highest possible
accuracy (as measured by f score) the algorithm can achieve
on that segment.



Alg. Thres-
hold

Recall Pre-
cision

F-
score

Energy
cost/frame(J)

Processing
time/frame
(s)

HOG 0.5 0.48 1.0 0.66 1.08 1.5
ACF 2 0.34 0.95 0.505 0.07 0.1
C4 0 0.46 1 0.63 4.92 2.4
LSVM -1.2 0.89 0.9 0.89 3.31 6.2

TABLE II: Accuracy of different algorithms on dataset #1, camera
#1, frame 0→1000, used as a training video item.

Alg. Thres-
hold

Recall Pre-
cision

F-
score

Energy
cost/frame(J)

Processing
time/frame
(s)

HOG 0.6 0.8 0.42 0.55 9.86 3.4
ACF 20 0.83 0.89 0.86 0.315 0.4
C4 0.5 0.70 0.70 0.70 5.56 6.8
LSVM -0.2 0.84 0.83 0.84 25.06 32.2

TABLE III: Accuracy of different algorithms on data set #2, camera
#1, frame 0→1000, used as a training video item.

The video feeds are split into two segments. The first
segment, 1000 frames, is used as training items. Tables II
and III show the efficiencies of the detection algorithms on
the training items extracted from video feeds captured from
camera #1, in dataset #1 and in dataset #2, respectively. We
also apply the algorithms on the test video segments using
the same threshold values learned from the training segments.
Table IV shows the accuracy of the detection algorithms on
the feed captured from camera #1 in dataset #1, from frame
1001 to 2950. The energy costs shown in these tables include
the processing costs of the corresponding algorithm as well
as the algorithm-independent communication cost to transfer
the images of detected objects to the central controller, as
described earlier in this section.

In Tables II and IV, we use two different segments from
the same video which is captured by camera #1 on dataset #1.
The tables show that the LSVM algorithm, even though has a
very high f score value, also has very high energy cost and
processing time; thus, it can be expensive to use on a battery
driven mobile platform. Thus, we will not consider LSVM in
the remainder of this section. Consequently, for video feeds
on dataset #1, camera #1, HOG will be considered the most
accurate detection algorithm.

B. Evaluating video similarity using domain adaptation

Extracting features from an entire video feed is expensive.
Here, we only extract the features (HOG, and BoW) of a
100 consecutive frames. To reduce the bias, the frames are
randomly selected from each video feed and the process is
repeated 5 times. We then report the average value of the
similarity.

Table V shows the similarities between the training and test
video items, computed as described in (5). In the table, Tx.y
(or Vx.y) indicates the training (or test) video item from dataset
#x and captured by camera #y. It is shown that, using the
manifold distance, in all the cases, we are able to match a test
item to the training item corresponding to the same dataset
and captured by the same camera. This observation is also
confirmed by the results in tables II and IV. These tables show
that video items belonging to same camera and same dataset
have the same most accurate detection algorithm as well as
the same “order” of the algorithms in terms of accuracy.

Alg. Thres-
hold

Recall Pre-
cision

F-
score

Energy
cost/frame(J)

Processing
time/frame
(s)

HOG 0.5 0.6 0.99 0.74 1.07 1.8
ACF 2 0.52 0.91 0.66 0.07 0.1
C4 0 0.534 0.974 0.69 4.82 2.3
LSVM -1.2 0.975 0.892 0.93 3.2 6.4

TABLE IV: Accuracy of different algorithms on dataset #1, camera
#1, frame 1001 → 2950, used as a test item.

C. Benefit of adaptively choosing the detection algorithms

Next, we show the benefits of adaptively choosing different
algorithms to process different video feeds. Fig. 3 shows the
highest detection accuracy when different algorithms are used
to process the video feeds captured by camera #1 in both
dataset #1 and dataset #2.

Assuming that the environment changes (from dataset #1
to #2), if the same algorithm is still used, the highest f score
the system can achieve by using one detection algorithm is
0.70 (using HOG algorithm) for both datasets. However, if
the system adaptively uses the best algorithm for each dataset
(specifically, HOG for dataset #1 and ACF for dataset #2), the
highest f score achieved is 0.81.

More importantly, adaptively choosing the most accurate
algorithm helps increase the recall and precision values simul-
taneously. Specifically, if HOG algorithm is used, the achieved
recall is 0.71, which is close to 0.73 of the adaptive approach.
However, the precision is much lower, 0.68, compared to 0.91
achieved when the adaptive approach is used (corresponding to
a higher false positive rate compared to the adaptive approach).
Similarly, when ACF is used, the precision is good, however,
the recall is significantly lower than the adaptive approach.
In other words, the false negative rate is high. Thus, using
an adaptive approach helps reduce both the false negative and
false positive rates simultaneously.

D. Should the highest accuracy algorithm always be used?

Based on video comparison, EECS can identify the most
accurate detection algorithm for an incoming video feed.
However, should the most accurate algorithms always be used
to process the video feeds?

Fig. 4 shows the trade-off between the achieved accuracy
(in terms of the number of correctly detected humans) and
energy costs when processing the 4 video feeds in dataset #1.
We show the values when 2 cameras are used: (i) 2HOG:
both cameras used HOG (the most accurate, yet expensive,
algorithm), (ii) 2ACF: both cameras used ACF (less accurate,
yet energy efficient, algorithm), (iii) HOG+ACF: one camera
used HOG and the other used ACF; and when 4 cameras are
used: (iv) 4HOG: all 4 cameras used HOG, (v) 4ACF: all 4
cameras used ACF, and finally, (vi) 2HOG+2ACF: two camera
used HOG while the other two cameras used ACF.

The x-axis shows the recall achieved (the number of
humans detected among the humans appearing in the scene)9,
while the y-axis shows the energy consumption for each case.

It is shown that, depending on the desired accuracy, a
less accurate algorithm can be used to achieve a significantly
lower energy consumption, but with a relatively small accuracy

9For dataset #1, the precision is ≥ 0.95 for all the algorithms (Table II).
Thus we only pay attention to the recall values in this case.



Test set/
Train set

V1.1 V1.2 V1.3 V1.4 V2.1 V2.2 V2.3 V2.4 V3.1 V3.2 V3.3 V3.4

T1.1 0.78 0.56 0.53 0.56 0.47 0.49 0.48 0.45 0.46 0.48 0.49 0.44
T1.2 0.55 0.77 0.54 0.60 0.46 0.48 0.48 0.49 0.48 0.49 0.46 0.40
T1.3 0.54 0.54 0.76 0.53 0.45 0.47 0.50 0.45 0.48 0.49 0.49 0.41
T1.4 0.56 0.61 0.54 0.76 0.47 0.50 0.51 0.48 0.48 0.53 0.48 0.40
T2.1 0.39 0.39 0.38 0.38 0.79 0.45 0.48 0.43 0.37 0.37 0.39 0.34
T2.2 0.44 0.47 0.45 0.47 0.48 0.75 0.51 0.45 0.43 0.43 0.46 0.39
T2.3 0.41 0.45 0.43 0.46 0.49 0.51 0.81 0.47 0.45 0.41 0.41 0.37
T2.4 0.38 0.43 0.39 0.41 0.45 0.44 0.47 0.76 0.41 0.36 0.39 0.37
T3.1 0.50 0.54 0.51 0.53 0.43 0.45 0.48 0.49 0.69 0.48 0.46 0.45
T3.2 0.44 0.47 0.44 0.49 0.41 0.41 0.45 0.39 0.40 0.69 0.43 0.38
T3.3 0.48 0.48 0.49 0.49 0.47 0.47 0.44 0.43 0.41 0.46 0.74 0.49
T3.4 0.45 0.43 0.45 0.43 0.42 0.41 0.43 0.42 0.42 0.40 0.51 0.75

Tx.y , Vx.y denote training and test video feed captured by camera #y in dataset #x, respectively

TABLE V: Video similarities computed using the manifold distance
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Fig. 5: Detected humans vs. energy consumption for dataset #1, with different energy budgets

hit. For example, the 2HOG+2ACF option only consumes
≈ 54% of the energy consumed by the 4HOG option, while
in the former case, 85% of objects actually appeared in the
scene were detected, compared to 92% in the latter case. The
difference in the achieved accuracy is only ≈ 7%.

E. Adaptive choice of algorithms in EECS

Next, we evaluate EECS for adaptively choosing detection
algorithms based on the energy budgets and desired detection
accuracy. For simplicity, we only show the results for dataset
#1 and dataset #2. Similar results are observed in the other
dataset.

In this experiment, we choose γn = 0.85 and γp = 0.8,
indicating EECS is allowed to reduce the number of cameras,
or assign sub-optimal detection algorithms to the cameras, as
long as: (i) the number of detected objects is at least 85% of
N∗, and (ii) the average detection probability is at least 80% of
P ∗, where N∗ and P ∗ are the number of detected objects, and
the average detection probability of all the detected objects,
respectively, when the best algorithms are used by all cameras.

In addition, EECS uses other parameters to control the
re-calibration process. In particular, the accuracy assessment
period and the re-calibration interval (see section IV-B) are
set to 100 and 500 frames, respectively. In other words,
EECS uses the detection metadata from 100 frames to assess
the detection accuracy and decide the set of cameras and
associated detection algorithms. This decision is then used for
500 frames before the accuracy is reassessed again. Note that,
for datasets #1 and #2, the ground truth is available every
25 frames. To evaluate EECS, we only process frames that
have ground truth information. Thus, EECS actually uses the
information from 4 frames to assess the accuracy and select
the cameras and detection algorithms. Such selection is then
used to process the next 20 frames before re-calibration. In
practice, EECS computes the highest possible accuracy (by
using the most accurate detection algorithms) using detection
metadata. This accuracy measure is then used to calibrate the
desired accuracy in place of ground truth information.

Fig. 5 shows the energy consumption and the number of
correctly detected humans when (i) the best algorithm is used
in each of the 4 cameras, (ii) EECS only chooses a smaller set
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Fig. 6: Detected humans vs. energy consumption for dataset #2

of cameras that is sufficient to achieve the desired accuracy,
and finally (iii) EECS chooses sub-optimal algorithms on
selected cameras while adhering to the required accuracy.

In Fig. 5a, the energy budget is relatively high so that the
camera sensors can choose HOG (the most accurate algorithm)
to detect humans. When all cameras use the best algorithm,
the whole system consumes ≈ 333 Joules and correctly detects
373 humans in total. However, EECS only needs to use
3 cameras to achieve similar accuracy. If all the selected
cameras still use the most accurate algorithm (HOG), the
energy consumption is reduced to ≈ 248 Joules (≈ 75% of the
highest consumption), while the number of detected humans is
341 (≈ 91% of the highest accuracy). Further, EECS assigns
sub-optimal algorithm (ACF) to some of the cameras to further
reduce the energy consumption to ≈ 198 Joules (≈ 59% of the
highest consumption energy cost). This energy conservation
is achieved while still detecting 322 humans (≈ 86% of the
highest accuracy).

In Fig. 5b, the available energy budget is less than the
energy costs incurred with HOG. Thus, the camera sensors
can now only use the sub-optimal algorithm ACF to de-
tect objects. When all the cameras are used, 307 humans
are correctly detected and the energy consumption is ≈ 22
Joules. EECS, however, uses fewer cameras (2 or 3 cameras)
to achieve similar accuracy. Specifically, the framework can
detect 269 (≈ 88% of the highest accuracy) humans with
an energy consumption of only 15 Joules (≈ 68% of the
highest consumption). Since ACF is already the most energy
efficient algorithm, EECS cannot further reduce the energy
consumption in this case.

In Fig. 6, we show the results for dataset #2. For this
dataset, ACF is both the most accurate and most energy
efficient algorithm10. Thus, the results for this case are similar
to those in Fig. 5b. Even though EECS is not able to reduce
energy consumption by using more efficient algorithms, it
only uses up to 3 cameras (only 2 cameras are used in some
rounds) to achieve similar accuracy compared to when all 4
cameras are used. Specifically, EECS is able to correctly detect
1269 humans (≈ 97% of the highest accuracy), while only
consuming 239 Joules (≈ 70% of the highest consumption).

VII. DISCUSSION

EECS can trade-off the global detection accuracy to some
extent (while ensuring a pre-defined accuracy requirement) for
energy conservation by assigning sub-optimal algorithms to
some of the camera sensors, for certain periods in time. This

10The energy consumption values of ACF in Fig. 6 are much higher than in
Fig. 5b since the resolution in dataset #2 is significantly higher than in dataset
#1.

reduction in detection accuracy could result in a number of
undetected objects. However, EECS can be tuned to resist
such misses. As it is, objects (e.g., humans) that are not
detected in some frames are likely to be detected at other
frames (e.g., when the objects move to different locations). In
addition, EECS can target energy conservation only in some
rounds; thus, a lower detection accuracy is only experienced
in such rounds. EECS would then periodically enforce higher
accuracy requirements in other rounds to catch objects that
were possibly missed earlier. We have performed some prelim-
inary studies that suggest this only results in slightly increased
energy costs. Specifically, if HOG and ACF are the most
accurate algorithms (as in our data set #1), and HOG yields
a higher accuracy with a higher expense, then HOG can be
used intermittently to increase accuracy in those corresponding
rounds.

VIII. CONCLUSIONS

In this paper, we present a framework, EECS, for support-
ing the coordination across a set of camera sensors to achieve
a desired object detection accuracy while achieving significant
energy savings. Specifically, EECS ensures that cameras do not
all unnecessarily use highly accurate but energy heavy video
processing algorithms for object detection. In essence, it facili-
tates the adaptive choice a subset of cameras, and allows some
of the chosen cameras use suboptimal detection algorithms to
conserve energy while still achieving the pre-defined desired
accuracy. Our evaluation shows that EECS helps save more
than 40% of the energy consumed compared to a case where all
cameras use the highest accuracy algorithms for detection and
transfer of key images relating to detected objects. Moreover
it still achieves ≈ 86% the accuracy achieved when the best
algorithms are used at all of the camera sensors. EECS can be
tuned to achieve the right trade-offs between energy efficiency
and desired accuracy.
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