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Abstract

Vision systems that deploy Deep Neural Networks
(DNNs) are known to be vulnerable to adversarial exam-
ples. Recent research has shown that checking the intrin-
sic consistencies in the input data is a promising way to
detect adversarial attacks (e.g., by checking the object co-
occurrence relationships in complex scenes). However, ex-
isting approaches are tied to specific models and do not of-
fer generalizability. Motivated by the observation that lan-
guage descriptions of natural scene images have already
captured the object co-occurrence relationships that can be
learned by a language model, we develop a novel approach
to perform context consistency checks using such language
models. The distinguishing aspect of our approach is that
it is independent of the deployed object detector and yet of-
fers very high accuracy in terms of detecting adversarial
examples in practical scenes with multiple objects. Exper-
iments on the PASCAL VOC and MS COCO datasets show
that our method can outperform state-of-the-art methods in
detecting adversarial attacks.

1. Introduction

Deep neural networks (DNNs) are widely used in vision
tasks such as object detection and classification, for their
ability to achieve state-of-the art (SOTA) performance in
such tasks. DNN-based vision systems are also known to be
vulnerable to adversarial examples [13, 38, 14, 20, 4, 1, 31];
specifically, it is possible to add (quasi-)imperceptible per-
turbations that can cause DNN-based vision systems to out-
put incorrect results, while projecting high confidence with
regard to the results. For example, adversarial examples
can misclassify STOP signs to speed limit signs [10] and a
school bus to an ostrich [38].

One promising defense strategy proposed recently is to
capture the intrinsic dependencies within the input data, and

to check for violations of such dependencies to detect adver-
sarial examples. For instance, in scene images with multiple
objects, the intrinsic relationships between objects, com-
monly known as the context of the scene, can be used to
detect adversarial attacks [21]. Similarly, the dependen-
cies between video frames can be used to detect adversarial
frames in video classification [18, 41]. To illustrate, let us
consider the STOP sign attack as an example. A STOP sign
is a part of a road intersection scene wherein it typically co-
exists with a stop line and/or a street name sign; in contrast,
a speed limit sign is rarely, if ever, seen at intersections and
thus does not co-exist with the latter objects.

While context has been used extensively for object
recognition problems and scene understanding, there is little
work with respect to detection of adversarial attacks using
context. In our previous work [21], we proposed model-
ing context as a fully connected graph, where each node is
an object proposal from a Region Proposal Network (RPN),
and edges encode how other regions (including the back-
ground and the whole scene) affect the current node in its
feature space. Then we train a bank of auto-encoders (each
corresponds to a category of objects) to check for consis-
tency with respect to the distribution of context features.
While this approach performs well, it is deeply coupled
with Faster R-CNN [36] and cannot be applied to single-
stage detectors like YOLO [35]; besides, it requires retrain-
ing when there is any change to the Faster R-CNN model
(e.g., when switching to another CNN model). In summary,
while prior approaches have tried to utilize context to detect
adversarial attacks, they do so in a way that intricately ties
the context to the model in use, which limits their applica-
bility.

In this paper, we propose a novel model-agnostic adver-
sarial attack detector based on object co-occurrence. Our
observation is that the language description of a natural
scene image (i.e., of the output of an object detection net-
work) can readily capture the dependencies between ob-
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Context-based Queries:
Q1: Bus (and) [mask]
Q2: [mask] (and) Toothbrush

Answers:
A1: Bus (and) Signal
A2: Cup (and) Toothbrush

Detection Result:
Bus (and) Toothbrush Adversarial

Context-based Queries:
Q1: Bus (and) [mask]
Q2: [mask] (and) Signal

Answers:
A1: Bus (and) Signal
A2: Bus (and) Signal

Detection Result:
Bus (and) Signal Benign

Benign

Language
Model

consistent?

No

Yes

Adversarial

Language
Model

consistent?

Figure 1: High-level idea of how our language model-based context consistency check works. First, we use a language model to learn the object co-
occurrence context (e.g., bus and signal in the example) from descriptions of scene images. At the test time, we mask off detected objects in the scene
description and ask the language model to predict the object based on context (i.e., other objects). By measuring the consistency between the detection
results and the prediction results, we assess if the input scene image is adversarial or not.

jects. We exploit recent advances in natural language mod-
els to learn the dependencies between objects based on co-
occurrence and to detect adversarial attacks as violations of
the learned context model. Figure 1 depicts the high-level
idea of our approach. Given an unknown scene image, we
first encode the output of an object detection network into a
sentence describing the object co-occurrence relationships
(e.g., “bus and signals”). Then we use a trained language
model to predict each detected object instance purely based
on the context. Finally, we evaluate the context consistency
of the scene image by comparing the language model pre-
diction the and the detection results. If the results are dif-
ferent, we conclude that the input image is adversarial.

The key contributions of our work are as follows.

• To the best of our knowledge we are the first to propose
a model-agnostic, context-consistency based approach to
detect adversarial perturbations against object detectors.

• We design and realize a language-based model to learn
the object co-occurrence relationships in complex scenes,
which serves as our novel context model to detect adver-
sarial attacks.

• We conduct extensive experiments with three different
types of adversarial attacks (misclassification, hiding,
and appearing) on two large-scale datasets - PASCAL
VOC [9] and Microsoft COCO [24]. Our method yields
high detection performance in all the test cases; the ROC-
AUC is over 0.72 in most cases, which is 12-69% higher
than a state-of-the-art attack detection method [44] that
does not use context and is comparable to (only 5%
worse) previous context-inconsistency-based adversarial
attack detection approach [21] that is model-dependent
(tightly coupled with the Faster R-CNN architecture thus
cannot be applied to other architectures, like YOLO).

2. Related Work

In this section, we review closely related work.
Object Detection seeks to locate and classify object in-
stances in images or videos. It is a domain that has been
extensively studied [36, 26, 35, 23]. Faster R-CNN [36]
and YOLO [35] are two state-of-the-art DNN-based object
detectors that we considered in this work. F-RCNN uses a
two-stage approach where the first stage proposes bounding
boxes and the second stage performs classification. YOLO
takes a single pass design aiming to reducing the computa-
tion complexity and improving detection speed.
Context-aware Object Detection aims to exploit con-
text information to boost the performance of object detec-
tion [34, 39, 8, 2]. Earlier approaches incorporate con-
text (object co-occurrence) information as a post-processing
step to re-score objects detected by DNN-based object de-
tectors [12, 6, 33]. Recent work has also proposed incorpo-
rating context as part of the DNN using recurrent units [28]
or neural attention models [17]. Our method takes the post-
processing style for (a) the ease of training, and (b) integrat-
ing with multiple different object detectors.
Scene Understanding and Caption Generation study the
problem of generating natural language descriptions for
scene images [43, 29, 37, 15, 47, 45]. Besides recogniz-
ing objects in a scene, a description generator also needs
to detect the relationships or interactions between objects
(e.g., “man riding a horse”). Although descriptions gener-
ated by these systems (e.g., the scene graph [19]) contain
richer contextual information and are more discriminative,
because predicting correct relationships is a much harder
problem than object recognition, existing approaches are
not robust enough (i.e., their performance over benign im-
ages is not very accurate yet). For this reason, we opt for the
simpler context graph purely based on object co-occurrence
where there is only one relationship between objects—they



co-occur. This context can also be described with a simpler
language, which is easier to model as well.
Adversarial Attacks against DNNs are slightly perturbed
inputs that can cause a DNN to misbehave [13]. In the vi-
sual domain, the perturbations are usually (quasi-) imper-
ceptible noises, but can also be small patches that can be
physically applied to a target object [10]. In whitebox set-
tings, adversarial attacks can be generated using gradient-
guided optimizations [38, 14, 20, 4, 1, 31]. Because our
approach takes the prediction results (i.e., labels) as inputs,
different attack methods (i.e., how labels are misclassified)
will not affect the attack detection results; so, we only use
one attack method in our evaluation.
Adversarial Attacks against Object Detectors has re-
ceived less attention than those against image classifiers.
Most related work focuses on physically realizable at-
tacks [10, 5, 46], especially in the domain of autonomous
driving vehicles [3]. A key difference from attacking an
image classifier is that there are two additional types of at-
tacks viable against object detectors: hiding and appearing
attack [5, 10]. Since our attack detection method takes the
output of an object detector as input, it is not sensitive to
whether the attack is physical or digital. Therefore, we only
evaluate our approach against digital attacks.
Detectors of Adversarial Attacks aim to distinguish ad-
versarial images from benign ones. Statistics based detec-
tion methods rely on different distributions in the feature
space between clean images and perturbed ones [16, 11, 25]
to detect adversarial attacks. Another approach is to trans-
form the input and compare the output of the DNN over
the original input with the output over the transformed in-
put; a large inconsistency usually indicates the input is ad-
versarial [44, 22]. For example, Feature Squeeze [44] is a
state-of-the-art method that aims to remove useless features
from the input space (e.g., by reducing the bit depth of pix-
els and smoothening surrounding pixels). We compare with
this method in our experiments.
Detecting Adversarial Attacks using Context is a promis-
ing defense strategy explored by recent work. Xiao et
al. [42] propose a detection method in the task of segmen-
tation based on spatial consistency (i.e., how the prediction
result of a pixel differs from surrounding pixels). Xiao et
al. [41] also proposed using temporal consistency to detect
adversarial frames in video clips. Ma et al., found that the
correlation between audio and video can be use to detect
adversarial attacks [30]. The closest work to our approach
is our earlier work [21], in which we proposed using an ob-
ject’s context profile, which captures four types of relation-
ships among region proposals (spatial context, object-object
context, object-background context, and object-scene con-
text) to detect adversarial perturbations. Since the context
profile used by our previous work is extracted from the in-
ternal layers of the object detection network, it is tightly

coupled with the object detector. The approach presented
in this work is model-agnostic and thus, does not require
expensive retraining to support new object detectors.

3. Methodology
In this section, we first formalize the problem definition.

Subsequently, we provide an overview of our approach and
describe each step in detail.

Problem Definition. Let I be a scene image and C be
the set of known category labels. An object detection net-
work D(I) = O, takes I as input and outputs a set of de-
tected objects O = {(bbi, ci), . . . , (bbn, cn)}, where n is
the number of detected object instances, bbi is the bound-
ing box coordinates of the i-th instance, and ci ∈ C is the
category label of the i-th instance.

A co-occurrence context graph G = (V,E) over a set of
scene images I is a fully connected graph, where a ver-
tex is an object (bbi, ci) and the edge between two ob-
jects (bbi, ci) → (bbj , cj) encodes the importance of the
co-occurrence (i.e., how likely is it that the existence of
(bbi, ci) can predict the existence of (bbj , cj)).

The goal of an attacker is to inject a small perturbation to
a scene image I ′ ← I + ∆I , so the output of the detection
network is manipulated to be D(I ′) = O′ (O′ 6= O). Our
goal is to determine whether a scene image I is adversarial,
with the help of the context graph G.

Threat Model. Similar to previous work [21], we
assume a strong white-box attack model where attack-
ers have full knowledge of the object detection network
D(·). From an attack detection perspective, this provides
defense against the strongest possible attack. Previous
works [10, 5, 46] have defined three kinds of attacks based
on how O′ is different from O.
• Misclassification attack, where the label of an instance is

misclassified, i.e., c′i 6= ci;
• Hiding attack, wherein an instance is not detected by the

victim object detector, i.e., (bbi, ci) /∈ O′;
• Appearing attack, where an instance that does not exist, is

detected by the victim object detector, i.e., (bb′i, c
′
i) /∈ O.

Overview. Our approach uses context consistency
checks to detect adversarial attacks, where the context is
defined by the co-occurrence of objects within the scene
and their relative positions. The two main challenges in
realizing this approach are: (1) how to learn the context
graph G (i.e., the edge weights), and (2) given a test time
co-occurrence relationship O, how to check whether it is
consistent with G.

In this work, we explore the feasibility of using natu-
ral language models to solve these challenges. In particular,
we first define a new language SCENE-Lang to capture the
category and coarse-grained location of object instances in
a scene image. We can then describe the output O of an



Object Position(x1, y1, x2, y2) Center (x, y) Location

Elephant (0.68,0.46,0.82,0.78) (0.75,0.62) 5

Car (0.86,0.70,0.93,0.83) (0.89,0.77) 7

Car (0.47,0.67,0.59,0.77) (0.53,0.72) 8

Truck (0.61,0.51,0.89,0.95) (0.75,0.73) 8

Image SCENE-Lang SentenceDetection Result

Object
Dtector

0 1 2

3 4 5

6 7 8
SCENE-Lang

Parser

<5, elephant>
<7, car>
<8, car>

<8, truck>

Figure 2: A given image is first processed by an Object Detector (e.g. F-RCNN) to get the detection result. As shown in the table, the positions of object’s
bounding boxes in the detection results are normalized by the width or height of the image. For each object, we compute the center of its bounding box.
Then, we map the center to an H×W grid to get a coarse-grained location. Finally, we convert the processed detection results into a SCENE-Lang sentence.
Note that each line in the right-most box is a SCENE-Lang word.

object detection network using a sentence in SCENE-Lang.
Such scene descriptions (i.e. sentences in SCENE-Lang)
form the underpinning for training a language model that
essentially models the context graph G. In this work, we
use a model based on BERT [7, 27], which we call SCENE-
BERT, to learn the intrinsic dependencies between words
(i.e., co-occurring objects). Compared to alternative meth-
ods like 2-D co-occurrence matrix, graph neural networks,
and message-passing-based RNNs, we believe that the at-
tention mechanism of the BERT model allows the capture
of dependencies between objects with significantly reduced
computation. We also believe that BERT will perform bet-
ter on naturally occurring, more complicated scenes (i.e.,
images with more objects) because they can appropriately
activate the attention heads from transformers.

During test time, we generate a context consistency score
for a scene image I based on the trained SCENE-BERT
model. A violation of context consistency in the scene
image will lead to a low consistency score. This allows
us to detect adversarial attacks by thresholding the consis-
tency score of the composed SCENE-Lang sentence from
the scene image. The overall workflow is depicted in Fig-
ure 1. We point out here (again) that because SCENE-BERT
learns the context from the output of an object detection net-
work D(·), it can work with most detection networks like
F-RCNN and YOLO. More importantly, because SCENE-
BERT can be trained independently (e.g., using the ground
truth labels), applying it to a new detection network neither
requires the retraining of the detection network nor SCENE-
BERT itself.

3.1. Learning Context with Language Model

SCENE-Lang. We define a new language called
SCENE Language (SCENE-Lang) to describe the object
co-occurrence information in natural scene images. Each
natural scene image can be described with one SCENE-
Lang sentence and each word in the sentence is associated

with an object instance.
SCENE-Lang Words. We describe the category of an

object and its coarse-grained location with a SCENE-Lang
word. To describe the location of an object, we evenly di-
vide each image into a H ×W grid and label each grid cell
using a number, so we can use a small, finite vocabulary to
describe the scene. Using coarse-grained locations can also
help tolerate adversarial attacks that may shift the bounding
boxes of objects. The center of an object’s bounding box
determines which cell the object is in. We denote the set
location labels as L = {1, . . . ,H ×W}. Therefore, each
SCENE-Lang word w = (l, c) is a pair of a location label
(l ∈ L) and a category label (c ∈ C). We denote the finite
vocabulary of SCENE-Lang as W = C × L, whose size
|W | = |C| ×H ×W . Note that although we could encode
the object label ci using a number, because SCENE-Lang
is a pseudo language we choose to use the natural language
label ci; this enables ease of explanation upon detecting a
context consistency violation.

SCENE-Lang Sentence. We describe the object co-
occurrence relationships in a scene image I with a single
SCENE-Lang sentence, wherein each word is associated
with an object instance in the image. The sentence is repre-
sented by sI = [w1, . . . , wn], where the length of the sen-
tence n is equal to the number of object instances in the
image I . We use s instead of sI subsequently, for ease of
exposition. The order of the words in the sentence is sorted
based on their location labels (numerically ascending). Fig-
ure 2 shows an example about how to describe a scene im-
age with a SCENE-lang sentence.

SCENE-BERT. We use SCENE-BERT, a natural lan-
guage model to learn the co-occurrence context graph G in
natural scene images. Each input to SCENE-BERT is a se-
quence of tokens, denoted as T = [t1, . . . , tn]. The model
also takes a n-dimensional mask vector M ∈ {0, 1}n as in-
put, where 0 in the i-th dimension indicates masking off the
i-th token ti and 1 indicates that the corresponding token ti



<5, elephant> <7, car> [MASK] <8, truck>

E1 E2 E3 E4

O1 O3 O4

Candidates:
<8, car>
<8, elephant>
<8, truck>
...

RoBERTa

Classification Layer

O2

<5, elephant> <7, car> <8, truck>

Figure 3: During training or testing time, we selectively mask one or some
tokens and ask the SCENE-BERT to predict the masked part. We update
weights based on the prediction result at training time. We take the predic-
tion results as the categories, which fit in current context, at test time.

is not masked. The number of tokens n is determined by
the number of words in the input SCENE-Lang sentence.
The output of SCENE-BERT is a reconstructed sequence of
tokens, where the masked off token in T is replaced with a
listed of predicted tokens that match the context (i.e., with
lowest cross-entropy loss). We use f(T,M, ti) to denote
the confidence score of ti in the predicted token list. If ti is
not in the list, f(T,M, ti) = 0. This score will be used to
calculate the consistency score of the whole scene.

SCENE-BERT Architecture. SCENE-BERT is based on
the multi-layer bidirectional transformer model BERT [7].
Figure 3 shows the simplified architecture of the model.
Since transformers have been widely adopted in language-
related tasks and we are reusing an existing implementation
of BERT, we omit the detailed description of the model ar-
chitecture and refer the readers to [40], in the interest of
space. Besides being a state-of-the-art language model,
we choose BERT to implement our language model for
two main reasons. First, the use of the bidirectional self-
attention mechanism allows BERT to capture dependencies
from both directions (i.e., the prediction of the current word
depends on both words appearing before it and after it).
This matches our context model very well as the context
graph G is not ordered (relationships are both ways). Sec-
ond, the way BERT is trained is also a perfect match for our
task. In particular, BERT is trained with the Masked Lan-
guage Modeling (MLM) task, where some input tokens are
masked at random and the model is asked to predict them.
This task is very similar to our approach to detect adversar-
ial attacks (Figure 1): check whether object detection result
is consistent with those predicted purely based on context.

Tokenization. Because SCENE-Lang is a pseudo lan-
guage, tokenizing a sentence s is straightforward. Specif-

ically, we assign each unique word w in the finite vocab-
ulary of SCENE-Lang W , a unique number, which serves
at its corresponding token (i.e., t ∈ {1, . . . , |W |}). So the
tokenizer simply maps each word wi in a sentence s to its
corresponding number.

Training. We train SCENE-BERT using the same unsu-
pervised masked language modeling task as RoBERTa [27].
Specifically, it randomly masks token(s) from the input se-
quence, and the objective of the model is to predict the orig-
inal token(s), only based on the remaining tokens in the
sentence (i.e., the context). In other words, SCENE-BERT
learns the dependencies between co-occurring objects, or
the edge weights in the object co-occurrence graph G. We
want to highlight the unique advantage of SCENE-BERT
again in that it can be trained with any set of sentences in
SCENE-Lang. This means that it can be trained with the
ground truth labels of an object detection dataset (as we do
in our experiments); this would work with any object detec-
tion network trained with the same dataset. Alternatively, it
can also be trained in a completely unsupervised manner by
running an object detector over a clean dataset to generate
the training sentences.

3.2. Checking Context Consistency

In this subsection, we illustrate how we use the
trained SCENE-BERT model to perform context consis-
tency checks. At a high level, we use differential analysis
to detect inconsistency, i.e., by comparing the detection re-
sult (in SCENE-Lang) with the scene description predicted
from our context model SCENE-BERT. The smaller the dif-
ference, the higher will be the consistency score. Because
most adversarial attacks will violate context consistency, by
thresholding the consistency score, we can detect whether
the input image is adversarial or not. Next, we introduce
how we calculate the consistency score.

Let I be a clean scene image and D(·) be the victim ob-
ject detector. We can encode the output D(I) = O using a
SCENE-Lang sentence s = [w1, . . . , wn] as described ear-
lier, which will be tokenized into T = [t1, . . . , tn]. Let
I ′ ← I + ∆I be the perturbed adversarial image and T′ be
the tokenized SCENE-Lang description over I ′. Recall that
there are three possible attacking goals, which will affect x
in three different ways:

• Misclassification attack where the token associated with
an instance is perturbed, i.e., t′i 6= ti;

• Hiding attack where a token is missing in the token se-
quence, i.e., ti /∈ T′;

• Appearing attack where an undesired token appears, i.e.,
t′i /∈ T.

Using the trained SCENE-BERT model, we can mask
off a token t′i ∈ T′ and ask the model to predict what t′i
is, based on the remaining tokens (i.e., the test time con-



Algorithm 1: Calculate the consistency score of a
SCENE-Lang sentence.

Input : Tokenized SCENE-Lang sentence T = [t1, . . . , tn],
the trained SCENE-BERT function f(·, ·, ·)

Output: Consistency score c
1 c = 1.0
2 M = 1n

3 for i = 1 to n do
4 M[i] = 0
5 rti ← f(T,M, ti)
6 c = min(c, rti )
7 M[i] = 1
8 end
9 return c

text). In theory, if the predicted result is different from t′i,
then we deduce that t′i is the likely target object under at-
tack. However, this has two associated problems. First,
there could be multiple objects that are contextually consis-
tent (i.e., SCENE-BERT can return a list of possible tokens
instead of a single one), and hence, how should we cal-
culate the difference between t′i and the predicted tokens?
Second, T′ contains multiple tokens and so, how can we
know which token to mask, especially in the case of a hid-
ing attack (where the victim token is missing)? We solve
the first problem by using the confidence score of t′i in the
predicted list as the consistency score of that specific ob-
ject. If t′i is not in the predicted list from SCENE-BERT, its
consistency score will be 0. We solve the second problem
by iterating through all tokens (i.e., detected objects) and
using the lowest consistency score of all objects as the con-
sistency score of the whole image. The details are captured
in Algorithm 1. Note that our approach to calculate the con-
sistency score is able to handle hiding attacks because the
missing token typically affects the prediction results of the
other non-target tokens.

4. Experimental Analysis

In this section, we evaluate the performance of our ap-
proach through comprehensive experiments on two large-
scale object detection datasets: PASCAL VOC [9] and MS
COCO [24]. We used the two most popular object detection
networks: Faster R-CNN [36] and YOLO [35]. We also
compare our approach with two state-of-the-art adversar-
ial attack detection methods: a context-agnostic one feature
squeeze [44] and another context-aware detection method
SCEME [21]. The evaluation includes three types of attacks:
misclassification, hiding, and appearing.

4.1. Implementation Details

We use the RoBERTa [27] model, a reproduction of the
original BERT model [7], to implement SCENE-BERT. It is
configured with six hidden layers and twelve self-attention
heads.

Table 1: Attack success rate of three different goals on the PASCAL VOC
and MS COCO datasets.

Model Misclassification Hiding Appearing

Results on PASCAL VOC:

F-RCNN 90.33% 78.09% 96.01%
YOLO 80.16% 89.03% 94.78%

Results on MS COCO:

F-RCNN 92.78% 82.34% 94.49%
YOLO 79.82% 93.77% 89.74%

The PASCAL VOC dataset contains 20 object cate-
gories. The majority of images in the PASCAL VOC dataset
have 1 to 5 object instances, on average, 1.4 categories and
2.3 instances per image. The MS COCO dataset contains 80
object categories. Images in this dataset have more object
instances, on average, 3.5 categories and 7.7 instances per
image. We used the ground truth labels from both datasets
to train SCENE-BERT models. Since our context model is
designed to consider the co-occurrence consistency of mul-
tiple objects in the scene, we omitted images that consist
of a single object. For the PASCAL VOC 2007 dataset, we
used a 3 × 3 grid (i.e., H = 3 and W = 3); so in total
we have |W | = C × H × W = 20 × 3 × 3 = 180 to-
kens. For MS COCO, we also used a 3× 3 grid, so in total
|W | = C ×H ×W = 80× 3× 3 = 720 tokens.

Since SCENE-BERT can be trained independent of the
object detector, we used pre-trained F-RCNN and YOLO
models. For the PASCAL dataset, both models were
trained with VOC07trainval and VOC12trainval. For the
MS COCO dataset, the F-RCNN model was trained with
coco14train and coco14valminusminival, and the YOLO
model was trained with coco17train.

To test the attack detection performance, we generate
10,000 attacks for each attacking goal (misclassification,
hiding, and appearing) from both datasets, except for hid-
ing attacks on PASCAL VOC, which does not have enough
objects for hiding attacks. Because our detection method
uses high level semantic information (object co-occurrence
context) and does not rely on low-level features, we only
evaluate it against digital attacks. The attacks are gener-
ated using the standard iterative fast gradient sign method
(IFGSM) [20], with L∞ ≤ 10 as the perturbation budget;
and the perturbations are applied to the whole image. Be-
cause SCENE-BERT takes detected object labels and loca-
tions as inputs, how the perturbations are generated does not
affect the experimental analysis, thus we only used IFGSM.
Table 1 shows the attack success rate on the two datasets.

4.2. Baseline Models

We compare our method with two baseline models in the
experiments.



Feature Squeeze (FS) [44] is a SOTA context-agnostic
method for detecting adversarial image examples. This
mechanism can detect the adversarial image examples gen-
erated by Fast Gradient Sign Method [14], DeepFool [32],
and Projected Gradient Descent [31]. Its core idea is that,
adversarial attacks need to limit how many perturbations
can be applied (e.g., by limiting the change to the L2 or
L∞ norm) to achieve (quasi-)imperceptibility. Therefore,
by squeezing the input features (i.e., reducing the color bit
depth of each pixel and smoothing surrounding pixels), FS
may remove enough perturbations and acquire the correct
prediction results. Then, by comparing how different the
prediction results of the original input and the squeezed in-
put are, FS can detect adversarial attacks.

SCEME [21] is our previous context-consistency-based
adversarial attack detection method that showed much bet-
ter detection performance than Feature Squeeze. It models
context at region proposal level and uses attention mecha-
nism and Gated Recurrent Units (GRUs) to learn four types
of relationships between region proposals: (1) spatial con-
text between regions corresponding to the same object; (2)
object-object context between regions corresponding to dif-
ferent objects; (3) object-background context between re-
gions corresponding to objects and regions corresponding
to the background; and (4) object-scene context between re-
gions and the whole scene. To detect adversarial attacks,
SCEME uses auto-encoders (one per object category) to
learn the benign distribution of context profiles correspond-
ing to an object category. The context profile contains both
edge features and node features (i.e., features of the region
proposal). An adversarial attack that violates context con-
sistency will yield a higher reconstruction error rate and by
thresholding the reconstruction error rate, SCEME can de-
tect perturbed regions. Note that because SCEME works at
region proposal level instead of the whole image, we cannot
directly compare it with SCENE-BERT. To calculate the de-
tection performance at the whole image level, we aggregate
all reconstruction errors from each region proposal and use
the highest one as the final score.

4.3. Detection Performance

Evaluation Metric. Given a scene image and an object
detector, we aim to determine whether the scene image is
adversarial (i.e., the object detector is fooled by the im-
age and makes a wrong prediction). We first compose
the SCENE-Lang sentence using the detection result of the
scene image output by the object detector. We then use the
SCENE-BERT model to calculate the consistency score of
the composed SCENE-Lang sentence. We expect that be-
nign/negative images have higher consistency scores and
adversarial/positive images have lower consistency scores.
By thresholding the consistency score, we are able to plot
the receiver operating characteristic (ROC) curve of the de-

Table 2: Detection performance for F-RCNN, YOLO on VOC, COCO.
(*This configuration is plotted in Figure 4, additional configurations re-
ported in the supplementary material.)

Dataset Object Detector Attack Detector
AUC

Miscls Hiding Appear

VOC
F-RCNN*

SCENE-BERT 0.88 0.74 0.88
SCEME 0.93 0.95 0.87
Feature Squeeze 0.53 0.52 0.52

YOLO
SCENE-BERT 0.89 0.74 0.90
Feature Squeeze 0.77 0.75 0.79

COCO
F-RCNN

SCENE-BERT 0.84 0.55 0.85
Feature Squeeze 0.60 0.74 0.60

YOLO
SCENE-BERT 0.86 0.55 0.88
Feature Squeeze 0.66 0.60 0.67

tection. We report the area under the curve (AUC) of the
ROC curve to evaluate the detection performance.
Detection Performance. Table 2 shows the detection per-
formance on the PASCAL VOC dataset and the MS COCO
dataset. Figure 4 visualizes the AUC curves on the PAS-
CAL VOC dataset with F-RCNN under different attack se-
tups for better comparison with SCEME and FS. Overall,
SCEME and SCENE-BERT, both of which are the context-
aware detection methods, significantly outperformed Fea-
ture Squeeze, which is a context-agnostic method. The
only exception is hiding attacks on the MS COCO dataset.
The reason is that images from the MS COCO dataset have
more objects, so hiding a single object usually will not
significantly reduce the context consistency. We believe
the results once again validate the effectiveness of context
consistency-based detection approach. Comparing SCEME
and SCENE-BERT, we observed that SCEME still outper-
formed SCENE-BERT. We attribute this to the richer fea-
tures used by SCEME (e.g., object-background and object-
scene context). However, SCENE-BERT also has its advan-
tages over SCEME. First, SCENE-BERT is model-agnostic,
so we can also pair it with YOLO without any modifica-
tion to YOLO or retraining; on the other hand, SCEME is
tightly coupled with the Faster R-CNN architecture. Sec-
ond, SCENE-BERT is also faster as it only iterates through
detected object instances, whereas SCEME needs to iterate
through hundreds of region proposals.
Effectiveness of Locations. To understand the importance
of the coarse-grained location feature in our approach, we
also performed the attack detection task with a relaxed con-
sistency check, where we only check the category and ig-
nore the location when calculating the consistency score.
We name this approach SCENE-BERT Relax and the full
version SCENE-BERT Strict. The results are shown in Fig-
ure 5. As we can see, the AUC is higher across all three
types of attacks when we also check the coarse-grained lo-
cation when calculating the consistency score. We believe
this shows (1) SCENE-BERT is able to capture location re-
lated dependencies between objects, and (2) even coarse-
grained location information can help better detect the at-
tacks.
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Figure 4: Detection performance on the PASCAL VOC dataset.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ROC-AUC for F-RCNN VOC miscls

SCENE-BERT(Strict) AUC = 0.88
SCENE-BERT(Relax) AUC = 0.83

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ROC-AUC for F-RCNN VOC hiding

SCENE-BERT(Strict) AUC = 0.74
SCENE-BERT(Relax) AUC = 0.63

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ROC-AUC for F-RCNN VOC appear

SCENE-BERT(Strict) AUC = 0.88
SCENE-BERT(Relax) AUC = 0.84

Figure 5: SCENE-BERT Strict vs. SCENE-BERT Relax on PASCAL VOC.

4.4. Case Studies

While SCENE-BERT performed slightly worse than
SCEME over the datasets, we also observed cases where
SCENE-BERT can detect attacks that SCEME cannot. Fig-
ure 6 shows two cases. In the first case, the left bird (pea-
cock) is perturbed to be a boat; and in the second case, the
left horse is perturbed to be a dining table. Both cases ob-
viously violate the context consistency based on object co-
occurrence hence were detected by SCENE-BERT. We sus-
pect that the reason that SCEME did not detect these attacks
is because it also considers the visual features of the object
and the auto-encoders may focus more on the visual features
instead of the context.

While analyzing the evaluation results, we also noticed
that if the attack is context consistent (e.g., misclassifies a
bus to a car), then SCENE-BERT cannot detect such at-
tacks. We want to argue that context consistency is one way
to check for an attack and need not supplant, but can com-
plement, other methods that can check individual objects or
removal/addition of objects. Moreover, such context con-
sistent attacks are likely to be less disruptive. For example,
mis-clsassifying a bus to a car is unlikely to cause an au-
tonomous vehicle to collide with the bus, but changing a
speed limit sign in the middle of a road to a stop sign can
lead to disastrous outcomes.

5. Conclusion

Motivated by the observation that language descrip-
tions of a natural scene images have captured the object

diningtable: 0.67
horse: 1.00

person: 0.89

boat: 0.83

bird: 0.96 person: 0.93

Figure 6: Examples where SCENE-BERT is able to detect the attack but
SCEME does not.

co-occurrence relationship, we propose using a language
model to learn the dependencies between objects and using
the trained model to perform context consistency checks to
detect adversarial attacks. Compared to previous context-
consistency-based detection method, our approach can be
paired with most object detectors and does not require mod-
ification or retraining to the object detector. Our experi-
ments show that our method is very effective in detecting a
variety of attacks on two large scale datasets: it significantly
outperforms a state-of-the-art context-agnostic method and
is comparable to previous context-aware method that is
model-dependent.

Acknowledgments. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency
(DARPA) under Agreement No. HR00112090096. Ap-
proved for public release; distribution is unlimited.
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In the supplementary material, we conduct case study on
attacks that can bypass our context consistency checker and
benign images that are detected as adversarial (Section 6).
We present the implementation details about the baseline
models (Feature Squeeze and SCEME) used in the paper.

mouse: 1.00

person: 1.00

horse: 0.67

laptop: 0.98

laptop: 0.78

Figure 7: The adversarial examples that our proposed SCENE-BERT
model cannot detect.

cow: 0.99
person: 0.91

boat: 0.36

Figure 8: The benign example that our proposed SCENE-BERT model
detect as adversarial.

6. Case Study
In this section, we first show (1) attack examples that

cannot be detect by our language-based consistency checker
SCENE-BERT and (2) benign examples that are reported as
adversarial. Then we present the distribution of consistency
scores.

False Negatives. For the adversarial image on left hand
side of Figure 7, the attack goal is to misclassify the person
into a horse. Because the (misclassified) detection result
will be described “a person (and) a horse,” which is com-
mon, our context-consistency-based detector cannot tell the
image has been perturbed. For the adversarial image on
right hand side of Figure 7, the attack goal is to misclassify
the rightmost keyboard into a laptop. Similarly, because it
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Figure 9: The distribution of consistency score for three types of attacks.

is ordinary for a laptop to co-occur with another laptop, our
approach cannot detect the image as perturbed.

False Positives. There are also benign examples that are
detected as adversarial by SCENE-BERT. Figure 8 shows
an example. In this case, a person lying on top of a cow is
common, but a boat co-occur with cow is rare in the training
set or has never been seen before. In this case, though the
object boat is indeed an out-of-context anomaly, it is not an
attack.

Density Graph. To understand how common such cases
are, we plotted the distribution of consistency score for the
three types of attacks and the benign cases in Figure 9. As
we can see, the consistency score for misclassification ap-
pear attacks mainly concentrate at around 0, while the ma-
jority of the benign images have higher consistency score.
Hiding attacks are hard to detect because hiding attacks
usually do not violate context-consistency (e.g., hide one
person from a group of person will not cause the context
change too much). However, hiding attacks are still de-
tectable in subtle cases. For instance, a watch should be
wear by a person or located on a table, if the person are
hidden and not table detected, then the consistency can be
considered attacked.

These false negatives and false positives are caused by a
fundamental limitation of our consistency-based attack de-
tection approach—if the attack itself is context-aware, then
we cannot use context-consistency to detect such attacks;
on the other hand, if a benign case has never been seen be-
fore, then we may also report it as attacks. However, we
argue that (1) false positives can be reduced by extending
the training set (e.g., by using natural language datasets),
(2) as context imposes additional constraints, constructing
context-aware attacks are likely to be more expensive; and
(3) more importantly, context-consistent attacks may cause



be able to lead to dire consequences (e.g., misclassifying
STOP sign to YIELD sign may not lead to traffic accidents).

7. Implementation Details

7.1. Feature Squeeze

In this subsection, we explain how the baseline Feature
Squeeze is implemented. Algorithm 2 shows the algorithm.
ImgO denotes the original image, ImgQ defined in line 1
denotes the quantized image after squeezing. PRO defined
in line 2 denotes the prediction result for the original image
from object detector g(·), while PRFS defined in line 3 de-
notes the prediction result of quantized image. RO and RFS

defined in line 7, 9 denote one region from the prediction
result for original image and quantized image respectively.
Note that we take the highest distance among all regions as a
represent to the distance of whole image. Furthermore, for
each region, we take the lowest distance calculating from
all its overlapped as the distance for the queried region. Un-
der the consideration that we usually take the category with
highest confidence score for the regions dumped from ob-
ject detector, we manually set rule, i.e. the distance is 1 for
regions with different predicted categories.

Algorithm 2: Calculate the distance using Feature
Squeeze of an image.

Input : Image to be tested ImgO,
the quantilize function f(·),
the object detector g(·)

Output: Distance d
1 ImgQ = f(ImgO)
2 PRO = g(ImgO)
3 PRFS = g(ImgQ)
4 d = 0
5 n = length of PRFS
6 for i = 1 to n do
7 RFS = PRFS[i]
8 minDistance = 1
9 for RO in getOverlap(RFS ,PRO) do

10 distance = getDistance(RFS , RO)
11 minDistance = min(distance,minDistance)
12 end
13 d = max(minDistance, d)
14 end
15 if RO in PRO overlap with nothing in PRFS then
16 d = 1
17 end
18 return d

7.2. SCEME

In this subsection, we explain how the baseline SCEME
model is implemented. Algorithm 3 illustrates how we
adapted the original SCEME, which works at region pro-
posal level, to make it work at whole image level. PR de-
fined in line 2 denotes the prediction results. CP defined
in line 6 denotes the Context Profile extracted from inter-
mediate layer of F-RCNN which will be passed to SCEME

model to generate a reconstruction error. We take the high-
est reconstruction error as the reconstruction error of the
whole image.

Algorithm 3: Calculate the SCEME reconstruction
error at image level.

Input : Image to be tested Img,
the F-RCNN object detector f(·),
the trained SCEME function g(·, ·),

Output: Reconstruction Error e
1 e = 0
2 PR = f(Img)
3 n = length of PR
4 for i = 1 to n do
5 Category, CP = PR[i]
6 rec = g(Category, CP )
7 e = max(e, rec)
8 end
9 return e

Note that because the categories in MS COCO dataset
are biased and SCEME requires on auto-encoder for each
category, it cannot be trained well on categories that rarely
occur. For this reason, we did not measure SCEME’s per-
formance on the MS COCO dataset.

8. Additional Results
We plot the ROC-AUC curve for F-RCNN on COCO,

YOLO on VOC, and YOLO on COCO in Figure 10, Fig-
ure 12, and Figure 11.
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Figure 10: ROC-AUC for F-RCNN on COCO
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Figure 11: ROC-AUC for YOLO on COCO
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Figure 12: ROC-AUC for YOLO on VOC


