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Abstract—This paper introduces a novel service for distributed

detection and summarization of crowd-sensed events. The work

is motivated by the proliferation of microblogging media, such

as Twitter, that can be used to detect and describe events in the

physical world, such as protests, disasters, or civil unrest. Since

crowd-sensed data is likely to be distributed, we consider an

architecture, where the data first accumulates across a plurality

of edge servers (e.g. cloudlets or repositories) and is then

summarized, rather than being shipped directly to its ultimate

destination (e.g., in a remote cloud). The architecture allows

graceful handling of overload and bandwidth limitations (e.g.,

in scenarios where capacity is impaired, as the case might be

after a disaster).

When bandwidth is scarce, our service, BigEye, only trans-

fers very limited metadata from the distributed edge repositories

to the central summarizer and yet supports highly accurate

detection and concise summarization of key events of global

interest. These summaries can then be sent to consumers (e.g.,

rescue personnel). Our emulations show that BigEye achieves

the same precision and recall values in detecting key events as

a system where all data is available centrally, while consuming

only 1% of the bandwidth needed to transmit all raw data.

I. INTRODUCTION

In scenarios like disaster aftermaths, one can visualize
crowdsensed data to be dispersed across a set of geographically
distributed sources because of strained infrastructure. If all
of this data were available at a central entity, it can be
analyzed to detect global events of interest. However, in such
scenarios it is very common for network infrastructure to
be damaged, thereby causing the available bandwidth to be
severely constrained. This makes it prohibitive to transfer large
volumes of the raw data to such a central entity. For example,
during and after the tropical storm Harvey, the failure of
several cell towers [41] strained the available bandwidth. If
it is possible to somehow only retrieve small amounts of data
from the distributed producers, and yet be able to detect events
of global significance with high accuracy, it could significantly
aid subsequent efforts of search and rescue following the
disaster. Our work targets this important problem.

Specifically, our paper describes the benefits of an edge-
assisted architecture for crowd-sensing based on social media
posts. A plethora of prior work suggests the use of social media
for physical event detection [40] (also called crowd-sensing or
social sensing in recent literature [13], [3], [43], [40]). Such
prior work describes detection algorithms, but assumes that

all relevant microblog data is already available in one place.
In contrast, this paper considers a distributed architecture,
where posts emitted by users are accumulated at the edge then
prioritized for collection in a manner that allows clients to
retrieve data summaries of user-determined granularity directly
from edge servers. Hereafter, we call these edge servers, the
producers. The paradigm is consistent with cloudlets [34] and
distributed proxies [19], [36]. The resulting service, we call
BigEye, shares very small amounts of metadata between
the distributed producers and a central entity (which we call
the summarizer). Once global events are detected, BigEye
composes a summary to provide insights for consumers on
events of interest. We implement BigEye using Twitter as an
example, and showcase its benefits.

Since each producer only has a local view of reported
events, it is unable to determine, by itself, which events are
of global significance. On the other hand, transferring all local
data from all producers to the central summarizer is wasteful,
especially in cases where the available bandwidth is strained.
The first challenge is then to identify key global events while
transferring only very limited metadata from each producer
to the summarizer. Multiple producers may detect the same
global event but there is no easy way to determine that these
triggers correspond to the same event. Thus, a second challenge
is to reconcile (possibly inconsistent) metadata from multiple
producers that correspond to a common event.

In a nutshell, to address these challenges, BigEye first
allows each producer to individually identify a set of local
events that are likely to be of global interest via a measure of
what is called the local information gain. Metadata associated
with these local events are pushed to the summarizer, which
then pulls additional metadata from a subset of producers as
needed. We show formally that the global events detected will
be identical to those detected if all the data was available
centrally. Once the global events are detected, BigEye uses
a lightweight method to reconcile common events across a
plurality of producers. Finally, using lightweight measurements
of bandwidth to the various producers, it can parallelize the
transfer of (heavier) content from the producers, such as pic-
tures referred to in tweets, to compose (illustrated) summaries
of all events within a very short time. Evaluation shows that
the system reduces bandwidth consumption to the summarizer
by 99% over approaches that communicate all raw data, while
remaining able to detect all key global events that would have
been detected if all the data was available centrally.



II. BASELINE: CENTRALIZED DETECTION

We first provide a description of a baseline method which
allows global event detection when all the data are centrally
available. The approach is largely based on Storyline [43],
which detects new events by identifying new word combina-
tions that occur suddenly with high frequency in a stream of
tweets. For example, consider an event, where a drunk driver
kills a running dog on a bridge. Tweets that describe the event
might include such words as ”drunk” and ”dog” in the same
tweet, generating a burst in the co-occurrence of these two
keywords (compared to their co-occurrence rates observed in
previous windows). Storyline uses an information gain metric
to detect such bursts and filters all tweets that contain the
bursting new keyword pair as belonging to the same event.

Formally, the information gain associated with a keyword
pair sz , across time windows k � 1 and k is given by [43]:

infoGain = H(Y )�H(Y |sz) (1)

In the above equation H(Y ) and H(Y |sz) are computed as
follows:
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where, Nk is the number of tweets in the current (kth)
time window, and Nk�1 is the number of tweets in the
immediately previous time window, k � 1. N

z
k and N

z
k�1

are the number of tweets that contain the keyword pair sz in
the current and previous time window, respectively. Note that,
these expressions roughly characterize the entropy (conditional
entropy) relating to the tweet volume (number of tweets with
the specific keyword pair) in consecutive time windows. More
details can be found in [43]. Having computed the information
gain for the various keyword pairs, a threshold is chosen
and all keyword pairs whose information gains are higher
than that threshold are considered to have associated physical
events that are of interest. Those keyword pairs are denoted as
discriminative pairs. Prior work also empirically determined
good information gain thresholds to use for event detection.
In the rest of this paper, we show how to distribute the event
detection service.

III. OVERVIEW AND ASSUMPTIONS

The BigEye architecture comprises a set of producers, a
summarizer and consumers (users). BigEye seeks to iden-
tify key events of global interest, occurring at specific time
windows of fixed duration (windows also called epochs). A
producer Pi (i 2 {1,m}) is an entity that collects sensed data
from a local region (e.g., a microblog repository). In BigEye,
we assume the time epochs are synchronized across all the
producers (we assume that protocols such as NTP can facilitate
this [26]); without loss of generality, we denote the index of
the time window of interest by k.

The summarizer is a central entity (e.g., a cloud server)
that receives appropriate data from all the producers, identifies
key events, and composes a summary. We assume that all the
producers are connected to the summarizer via a network.
The transfer of all local data from the m producers to the
central summarizer is considered to be expensive in terms of
bandwidth consumption (for example, because of limited band-
width, congestion or both). Instead, each producer identifies
those local events that are likely to be of global interest. It cre-
ates appropriate metadata corresponding to these events, and
pushes the same to the summarizer. The summarizer constructs
a summary which can be used to optionally trigger retrieval of
related heavier content (such as web pages, images, or video
clips whose URLs appear in the tweets). A consumer or user
is connected to the summarizer, and queries for summaries of
key events. A depiction of the modules and the composition of
BigEye is shown in Fig. 1. In the rest of this paper, we focus
on the first two blocks in the figure. The design of the last
block (multimedia content retrieval) is a somewhat orthogonal
concern and is delegated to a different publication. The key
notations used in the paper are summarized in Table I.

IV. DISTRIBUTED EVENT DETECTION

The distinguishing aspect of BigEye (compared to prior
approaches and in particular the baseline case described in
§ II) is that a realistic scenario wherein the sensed data is
distributed across multiple geographically dispersed producers,
is considered. Blindly transporting all the raw data from these
producers to a central entity or summarizer for creating sum-
maries as discussed before is prohibitive. Given this constraint,
the question we seek to answer here is “How can we determine
which events are of global significance if we don’t transfer all
the data to the central summarizer?”

The information gain metric (§ II) was computed assuming
that the entire data set was available centrally. However, now
each producer has a local view and we need an approach to
estimate the significance of a local event at the global level
(what local events would also be flagged as key events globally
if data was centrally available ?). If all the producers were to
simply report the “number of tweets” to the summarizer, in
the two consecutive time windows of interest (say k � 1 and
k), H(Y ) can be computed. However, the challenge lies in
computing H(Y |sz) globally since (a) all keyword pairs and
the associated tweets are not known centrally and (b) each
producer will only see part of the data and can only compute
H(Y |sz) based on its local dataset. To address these issues, we

TABLE I: Key notation

Symbol Description

Nk # of tweets in time window k

N
z
k # of tweets in time window k that contain the

pair sz
ps

Nz
k

Nz
k+Nz

k�1

k index of the data stream window
2 H(Y )� threshold

m # of producers
i Producer index
Pi i

th producer in the system
r ratio of occurrence of keyword pair sz in time

window k to the corresponding occurrence in
time window k � 1
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Fig. 1: A high level depiction of BigEye with its modules

Fig. 2: H(Y |s) with varying ps. p0s and p
1
s are two intersecting

points with H(Y )� threshold

first map a global requirement on information gain (and thus
H(Y |sz)) to a local requirement at each individual producer.
Later, we reconcile inconsistencies by having the summarizer
pull appropriate data from a subset of producers.

What values should the global H(Y |sz) take to achieve

high information gain? Before, we describe our approach
in more detail, we first ask the above question. As pointed
out above, H(Y ) only depends on the number of tweets in
consecutive time windows. Thus, the discriminatory term that
dictates the information gain with respect to a keyword pair
(say sz) is H(Y |sz). It is obvious that the lower the value
of this term, the higher the information gain associated with
the keyword. With reference to Equation 3, let us define
ps =

Nz
k

Nz
k+Nz

k�1
. Then, Nz

k�1

Nz
k�1+Nz

k
= 1� ps. In Fig. 2, we plot

H(Y |sz) as a function of ps. We see that the lowest values of
H(Y |sz) (yielding the highest information gain) are achieved
when ps is very small or very large (approaches 1). Since
ps corresponds to the probability of having a high number of
tweets in frame k relative to the previous frame, it must be
large (not small) in order to reflect a new event of interest
(otherwise it indicates an event that was of interest in frame
k� 1 but has died down). In other words, the takeaways from
the above discussion are (a) H(Y |sz) must be small (say some
small value ✏) and (b) the corresponding probability ps as
defined above must be large (we require it to be > 0.5).

Let r be the ratio of occurrence of a keyword pair in the
current time epoch to the corresponding occurrence in the
previous time epoch. Let p

⇤
s be the value of ps that makes

H(Y |sz) = ✏. Since we cannot directly obtain p
⇤
s in closed

form by solving H(Y |sz) = ✏, we numerically solve it using
the Newton method [23] and from among the results, choose
the value that is > 0.5. From p

⇤
s , we compute Nz

k
Nz

k�1
and denote

it as r
⇤. r⇤ is the minimum (global) threshold with respect to

the ratio of occurrences of a keyword pair in consecutive time
epochs, that must be met if the associated keyword pair is to
signify an event of interest. In other words, if for a keyword
pair r � r

⇤, then that keyword pair is a discriminative pair.

Next, we provide a formal proof of this claim.

Lemma 1. Any pair with ps � p
⇤
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by

F (ps). We show that F (x)  F (y) for 0 < x  y < 1. We
need to show that

x

1� x
 y

1� y
or, (7)

x(1� y)  y(1� x) or, (8)

x� xy  y � xy or, (9)

x  y (10)

which is true by assumption.

Choosing a local threshold: Given the global threshold,
r
⇤, we need to derive an appropriate local threshold; each

producer would estimate r with respect to each keyword pair
and if this r is lower than the local threshold one can deem
that those keyword pairs are not of global interest. In order to
retrieve all the discriminative pairs of global interest (those that
would have been detected if all data was available centrally) we
need to be conservative i.e., the choice of the local threshold
must account for the worst case scenario. By doing so, we can
achieve the same precision and recall values with BigEye,
compared to a centralized baseline (discussed in § II). We point
out here, that one may experience an outlier case, where there
are no (zero) tweets with a keyword pair in window (k � 1)
but a significant number in window k; to avoid the divide by
zero possibility, we assume that each pair appears at least once
at each time window; this fix has almost no influence on the
ratios that we are trying to compute.

Given the above threshold and based on the following
theorem, we choose the local threshold to be r⇤

m if there are
m producers.

Theorem 1. If a keyword pair has a global ratio of occurrence
r which is � r

⇤, the local ratio of occurrence of that keyword
pair must be larger than or equal to r⇤

m at one or more of the
m producers.
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Proof: Let the number of occurrences of a keyword pair
in the current and previous time windows be N

z
k and N

z
k�1,

respectively. The ratio of occurrence of the pair at the global
level ( Nz

k
Nz

k�1
) � r

⇤.

Case 1: Nz
k

m is an integer:

Let the number of occurrences of the pair in window k

(current window) at the local producers be:
Nz

k
m + c1, Nz

k
m + c2,..., Nz

k
m + cm, where ci and Nz

k
m are

integers.

The summation of all the occurrences, across all producers
should be equal to the global count Nz

k , i.e., (N
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z
k

m + cm) = N
z
k .

Thus, mNz
k

m +
P

i ci = N
z
k , hence,

P
i ci = 0

Case 1A: Pi with ci � 0.

The ratio of occurrence of the keyword pair of interest at

Pi is
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z0

k�1  N
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k�1. Here, Nz0

k�1 is the
number of occurrences of the keyword pair in the previous
time window (window (k � 1)) at Pi; naturally this is  the
global count in that window.

The next step shows that the theorem holds regardless of
the value of Nz0

k�1.
Nz

k
m +ci
Nz0

k�1

= Nz
k

mNz0
k�1

+ ci
Nz0

k�1

� Nz
k

mNz0
k�1

� Nz
k

mNz
k�1

.

But Nz
k

mNz
k�1

� r⇤

m and hence, the local rate of occurence at

Pi is higher than r⇤

m .

Case 1B: Pi with ci < 0.

Since
P

i ci = 0, there there must be at least one other
producer with cl > 0, l 6= i; Case 1A will now apply to that
producer l.

Case 2: Nz
k

m is not an integer:

If all occurrences at local producers are bNz
k

m c, their
summation becomes smaller than N

z
k . Hence, the number of

occurrences with respect to at least one of the producers,
denoted as Pi, must be � dNz

k
m e. In other words, the ratio of

occurrence at Pi is dNz
k

m e
Nz0

k�1

, where 1  N
z0

k�1  N
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k�1. Similar

to the previous case, dNz
k
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Nz0
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� r⇤

m .

Distributed event detection algorithm: Based on the
above findings, BigEye applies the following algorithm for
distributed event detection.

1) Each producer computes the ratio of occurrences
of keyword pairs available locally and transmits the
pairs having ratios larger than or equal to r⇤

m to the
summarizer.

2) The summarizer sends a list of the received pairs to
all the producers and inquires about the occurrences

of those pairs at the producers. Any producer that had
identified that keyword pair, but had not reported it
(because it did not meet the threshold) now reports
the number of occurrences of that pair. Once this
information is available, the summarizer computes the
global ratios of all pairs received in step (1).

3) The summarizer filters out pairs with the global ratios
less than the global threshold, r⇤.

Theorem 1 proved that any globally significant keyword
pair “will” be reported by at least a single producer in the first
step above. This proves the following lemma.

Lemma 2. BigEye’s distributed detection algorithm achieves
100% precision and recall, relative to centrally available data.

Discussion: The performance of our algorithm degrades
when the local threshold is very small. When the local
threshold becomes very small, the number of keyword pairs
sent by the producers to the summarizer increases drastically.
Specifically, this happens when the number of producers m is
very large or the global threshold r

⇤ is very small, or both.
When the local threshold becomes very small (say has a value
1) each producer sends all the pairs; to avoid division by zero
we had implicitly set the ratio of occurrence of any pair at a
local producer to be greater than or equal to 1. However, in
practice, these cases are not of interest. A very large set of
producers will imply that the local data consists of small sets,
and thus, it will be hard to detect events that are of global
interest. A very small threshold will also fail in discriminating
between key events of interest and others.

V. EVENT CONSOLIDATION

Different discriminative pairs detected by the summarizer
(based on local reporting from the producers) may refer to
the same physical event. This is because a single event can
be characterized by multiple discriminative keyword pairs.
For example, the two keyword pairs (drive, drunk) and (dog,
bridge) could refer to a car accident where a drunk driver ran
over a running dog on a bridge. It is important to consolidate
similar events to avoid redundant summarization i.e., retrievals
of unnecessary (redundant or excessive) visual content per-
taining to the same event. To aid consolidation, BigEye
groups the microblogs containing specific “keyword pairs”
into clusters. When two keyword pairs represent the same
event, we expect the two corresponding clusters to have similar
sets of microblogs and thus consolidate the pairs. Assessing
this similarity in the distributed environment is challenging.
Naively sending the entire cluster of words associated with a
keyword pair to the summarizer for computing a “similarity
score” defeats the purpose of reducing communication costs.
Thus, BigEye consists of a lightweight approach to consoli-
date events consisting of the two steps below.

Step I: First, BigEye tries to consolidate the keyword
pairs representing similar events at the local producers. In
particular, it consolidates events corresponding to “keyword
pairs,” for which the associated clusters have content that are
very similar. We use the Jaccard distance [29] to measure the
similarity between the two clusters (events). Previous work
[43] has reported that the Jaccard distance outperforms other
similarity metrics for event consolidation in this way.
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Returning to our earlier example, all the tweets about the
’drunk driver who ran over a dog on the bridge’ should have
the keywords pairs (drunk, driver) and (dog, bridge). Thus, if
we compute similarity score between two local clusters corre-
sponding to the keyword pairs (drunk, driver) and (dog,bridge),
one can expect the score is very high (in our experiments we
find such scores to be in line with what is computed over
all the tweets when available centrally). Based on this, we
compute the similarity between events represented by keyword
pairs at local producers. If the distance between these two
events is above the given threshold, the local producer sends
the keyword pairs representing these events to the summarizer
reporting that they should be consolidated. At the summarizer,
if the majority of the producers (� 50%) indicate that two
keyword pairs should be consolidated, the summarizer sends
feedback to all the producers to merge the contents associated
with these keyword pairs. This helps to consolidate highly
similar events at individual producers, without sending the
entire cluster contents to the summarizer.

Step II: In the second step, BigEye further tries to consol-
idate global events that do not have very high similarity locally
at individual producers, and were not consolidated in Step I. To
achieve this objective, it seeks to only exchange minimal infor-
mation with the summarizer to limit bandwidth consumption.
Specifically, it employs minHash [9] and Locality Sensitive
Hashing (LSH) [15] functions at each producer, to convert a
cluster of words represented by a discriminative keyword pair
into a set of hash integers. minHash and Locality Sensitive
Hashing (LSH) are techniques commonly used to measure
the similarity of large documents within reasonable running
times ([15], [21]). The probability that hashes of two sets are
similar is equivalent to the corresponding Jaccard similarity of
the same sets[5], [21]. Each producer transmits the computed
hash values to the summarizer. The summarizer compares the
hash values across clusters to measure the similarity globally.
The bandwidth consumed on sharing the value generated by
minHash is significantly smaller than the bandwidth consumed
on sharing the entire cluster to the summarizer (as will be
shown in § VI). At this point, BigEye has tried to reconcile
the possibility that a single global event of interest was perhaps
identified as different events because there were multiple
keyword pairs from tweets that were used as discriminatory
features for this event. While we are not able to completely
eliminate a single event being wrongly classified as multiple
events, this process drastically reduces the possibility.

VI. IMPLEMENTATION AND EVALUATION

In this section, we describe in detail our experimentation
environment and evaluate the performance of each module of
BigEye. We implement BigEye on the top of the popular
Mininet[27], a software defined network (SDN) emulator.
Specifically, we use the NDN test-bed topology [28] which
can be considered as the representation of a real scenario with
distributed producers. We use the default latencies per link
unless specified otherwise; in some cases, we alter the link
capacities to showcase specific results. Note that we do not use
name-based forwarding in our work; rather, we use default IP
based routing methods (this is what is used with smartphones
or social media transfers today).

We have producer nodes in the network that stream mi-

croblog data, and a summarizer that coordinates with these
producers in the three stages of BigEye, and finally composes
summaries. We used the ONOS SDN controller [32] to manage
the flows from the producers to the summarizer (and vice
versa). We use the default settings in ONOS [7]. Python was
used in the implementation of all BigEye modules.

A. Datasets and Distribution

We collect two datasets of tweets, one of which is related
to protests within a time frame (Protest), and the second to the
hurricane Florence (Florence), using the Twitter API. We clean
up the dataset by removing re-tweets, stop words [33], special
characters, links and attachments, and do stemming [31]. For
that purpose, we use Python-NLTK tokenizer [38] and Porter
stemmer [31]. Below we summarize the datasets collected:

• Protest. The dataset was collected from March 18,
2018 to April 18, 2018 with keyword “protest”. It con-
sists of approximately 300,000 tweets after filtering
out the retweets.

• Florence. The dataset was collected from Sept 14,
2018 to Sept 24, 2018 with keywords “hurricane” and
“florence”. It contains approximately 100,000 tweets
after filtering out the retweets.

We stream the data as feeds to the producers to emulate a
real-time situation. We choose the window size to be 24 hours.
We use the term instance to refer to the data corresponding to
each such window size. Thus, the total number of instances
considered (including Protest and Florence datasets) in our
paper is 40. For distributing the data over multiple producers,
we consider two different scenarios detailed next.

1) Natural distribution: In practice, the tweets are posted
by Twitter users from different geographical locations. How-
ever, the geolocation of the tweet is included in only less
than 2% of Twitter data[10] which makes simulating the exact
real-world geographical distribution of tweets difficult. So,
in this paper, we used users’ addresses (available via users’
profiles) to simulate the geographical distribution of tweets
across multiple producers. Even then, some of the users’ had
provided vague addresses (e.g., “on the floor” and “sky”). We
could only retrieve the location of 60% of users in Protest and
70% of users in Florence Hurricane datasets. We converted
these addresses to geolocations (latitude and longitude) using
the API provided by HERE.com [16].

Recall that the considered NDN topology reflects real
server locations; it is assumed that each of these servers is
a producer and each tweet is sent to the nearest producer. An
example is shown in Fig. 3. The model can be extended to
capture a variable number of producers that is less than the
total number of producers in the NDN-topology as follows. We
first send each tweet to the nearest producer (all nodes in the
network are potential candidates for being a producer) and then
select the top x locations where x is the selected number of
producers. For the remaining producers, the tweets are moved
to the nearest producer from among the selected x producers.
The tweets with no user location are sent to randomly selected
producers from this set.

2) Synthetic distribution To further evaluate the perfor-
mance of BigEye, we consider a synthetic distribution of
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Fig. 3: A united stated map of two hour tweets of Florence
dataset where red dots are sources of tweets and blue dots are
the producers. The tweets from each red dot are sent to the
nearest blue dot.

tweets across multiple producers. Specifically, the distribution
of the data over the producers follow a Gaussian distribution
with µ = Nk

m and �
2 = � ⇤ µ; we vary the � to control the

skew.

B. Evaluation Parameters

We evaluate the performance of BigEye with respect to
the case where all data is available centrally. We consider
the datasets described in the previous section. Each dataset is
streamed separately to adhere to our assumption (we consider
streamed data to belong to a particular scope) in § III. The
obtained results are then merged before presentation for two
reasons. First, we observe that we get consistent performance
with BigEye with both datasets when the data is distributed
over multiple producers, compared to the case where data is
available centrally. Second, BigEye is generic in that it works
with any crowd-sensed dataset belonging to a particular scope.
Because of these two reasons, showcasing the performance
of each dataset independently does not provide any new
information but consumes space.

We perform experiments with all the instances from the
datasets (40 instances) considered one at a time. To gain
statistical significance, we repeat each experiment 50 times.
While BigEye was built holistically with all of its three
components, we evaluate each component independently to
showcase its merits. Towards this, we use the following set
ups.

Distributed Event Detection Module: As shown in § IV,
our approach always provides the same precision and recall
in detecting key events, as that of a system where all data is
available centrally. We have validated this experimentally and
omit showing the event detection accuracy in the interest of
space.

To evaluate if the number of keyword pairs that are returned
by BigEye to the summarizer is reasonable, we compare
the number with the best case scenario. In particular, we
consider an oracle that does a brute force search, considering
all possible subsets of the keywords pairs sent (the ranked
orders of those pairs are still maintained), and checks if any
of those subsets yields the same precision and recall as our
approach (and the central approach). We choose the smallest
subset among these as the best possible scenario (we label it as
oracle prediction in the results that we present). In other words,
instead of choosing a threshold r⇤

m , we find a the smallest value

Fig. 4: CDF of the number of detected discriminative pairs
with different global thresholds.

l  m such that choosing r⇤
l results in the detection of all

events of interest.

Event Consolidation: Next, we assess the performance
of our proposed distributed consolidation. Towards this, we
compare the BigEye’s approach with the case where we send
all the data associated with the clusters to the summarizer
for consolidation. This baseline is denoted as central con-
solidation. This also corresponds to the consolidation used in
Storyline [43]; here the data is available centrally and Jaccard
distance is used for similarity assessment.

The metrics of interest are accuracy (defined next) and the
amount of data sent from the producers to summarizer for the
purposes of consolidation. Accuracy is defined to be the ratio
of the number of keyword pairs that are grouped correctly
(the events are correctly consolidated) to the total number of
keyword pairs. Two keyword pairs are incorrectly grouped if
(a) these pairs belong to the same event but are put in different
groups and (b) if they belong to different groups (events) but
are consolidated into the same group. We also compare the
amount of sent data from the producers to summarizer with
our approach (in bytes), with the other approach.

C. Results on distributed event detection

First, we evaluate our distributed event detection module
using the aforementioned metrics. We recall our discussion in
§ IV (H(Y |sz) was to be a small value ✏), and select ✏ to be
0.08, 0.09 and 0.1 (r⇤ = 100,87 and 76, respectively). Here,
we also refer the reader to Table I since the notation therein
is used in the discussion.

Effect of r
⇤ on the total number of pairs retrieved by

the summarizer. We plot the CDFs of the number of events
(corresponding to identified discriminative key word pairs)
detected with each value of r⇤ in Fig. 4. As one might expect,
as r

⇤ increases, the number of pairs retrieved decreases (with
higher r

⇤ only the most significant events are detected). This
effect is also seen in Fig. 5.
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Fig. 5: The performance of our distributed event detection with
varying number of producers

Fig. 6: Performance of our distributed event detection with
different data distributions

Effect of increasing number of producers. In Figure 5, we
plot the ratio of the number of retrieved keyword pairs to the
total number of keyword pairs identified, versus the number
of producers. We assume that the data are distributed as per
the natural distribution. As one might expect, the number of
key-words pairs returned to the summarizer increases when
as the number of producers, m, increases. This is because r⇤

m
decreases i.e., a lower or more conservative (local) threshold
is used at each of the producers. It is worth noting that with
small r⇤ = 76, (H(Y |sz) = 0.1) and large m = 18, the total
number of received pairs is less than 1% of the total number
of keyword pairs considered globally.

Comparison with oracle. Next we examine how the num-
ber of keyword pairs retrieved with BigEye compares to
what is obtained by an oracle, when the data is spread across
the producers as per the different data distributions (discussed
in subsection VI-A). For the skewed distribution, we choose
µ = Nk

m and �
2 = 0.5 ⇤ µ; this ensures a high skew. We fix

✏ = 0.09 (r⇤=87), and m to be 10.

Fig. 7: Distributed consolidation accuray with respect to cen-
tralized consolidation (Storyline [43] )

.

Fig. 8: Bandwidth savings from BigEye’s distributed consol-
idation approach in terms of total amount of data sent from
producers to summarizer.

In Figure 6, we plot the CDF of the ratio of the number
of pairs received at the summarizer to the number of global
discriminative pairs with both BigEye and the oracle based
approach described earlier. We see that the performance of
BigEye is similar to that of the oracle when data is dispersed
as per the natural distribution. However, when the distribution
is skewed, the performance of the BigEye degrades compared
to the oracle. This is because the producers with large numbers
of tweets have a large number of keyword pairs that pass the
conservative threshold selected by BigEye; thus, they end up
sending a large number of pairs that are not useful in detecting
key events.
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D. Results with regards to consolidation

Next, we evaluate the benefits from BigEye’s consoli-
dation module. In our evaluations we use the same ✏ values
mentioned earlier in § VI-C. Recall that BigEye consolidates
events over two steps. In the first step, we consider a similarity
requirement of 0.99 (Jacquard distance) to consolidate events
at individual producers. For the second step, we consider three
minHash signatures of length 64, 128, and 256 integers. We
consider different minHash signatures as it has been reported
that the length of generated minHash signatures affects the
similarity scores [21]. We also vary the consolidation thresh-
olds that are used centrally from 0.4 to 0.9 with a stepsize of
0.1.

In Figure 7, we compare BigEye’s consolidation approach
with different minHash lengths. We observe that the similarity
estimation improves as the length of the minHash signature
increases (less collisions). Similar phenomena have also been
reported in previous literature [21]. We observe that, for a
minHash signature of length 128, almost 85% of instances
show a consolidation accuracy of larger than 70% of what is
achieved if all data was available centrally. BigEye provides
consistent consolidation accuracies irrespective of the number
of producers.

We show next the consolidation benefits in terms of the
reduction in the volume of data sent from producers to
summarizer in bytes, compared to sending all keywords in the
clusters (needed for central consolidation); Fig. 8 shows that
our approach reduces the communication costs significantly
compared to that baseline approach, and in particular the
average cost by 60% (fewer bytes).

E. An Output Example of BigEye

We show in Table II the holistic output of BigEye based
on two randomly selected instance from Florence. Specifi-
cally, we show the detected discriminative pairs, the textual
summaries associated with the detected events and a visual
summary corresponding to the discriminative pair. In this
implementation, the visual summary is simply a randomly se-
lected image from one of the tweets that belong to the content
relating to the summary. To elaborate on these instances, on
Sept 15 and 16, two major events relating to saving pets were
detected. First a pedestrian was able to free six dogs that were
locked inside a cage and abandoned by their owner during the
hurricane. The second event related to a truck driver saving
64 dogs during the hurricane. As shown in the table, BigEye
distinguishes the two events despite the strong correlation
between them (saving pets).

VII. DISCUSSION

As alluded to in § III and Fig. 1, BigEye contains a third
module which retrieves appropriate richer image/video content
from the producers to form informative visual summaries. In
Table II, the visual summary was a randomly chosen image
corresponding to the events of interest. In practice however,
one may want to retrieve more appropriate content (e.g., the
most popular, images with the highest resolution or camera
orientation) so as to be more beneficial to the search and rescue
responders. Since the data is distributed across a pluarlity of
producers, “how to determine the most appropriate content?”

is not an easy question to answer. In addition, to ensure that the
visual summaries are quickly composed, it becomes important
to parallelize the retrieval of visual content from multiple
producers to the extent possible (to minimize the time of
retrieval). While we have partially addressed these problems,
given the space limitations, we delegate the discussion of the
approaches we design to a different publication.

VIII. RELATED WORK

Recent literature makes an analogy between posts on social
networks and sensor data [41], [42]. Similar to BigEye,
there are prior studies on detecting events from such sensor
data. Allan et al.[4] used “term frequency” (tf) and “inverse
document frequency” (idf) features to build a query represen-
tation for content from news stories and identified an event
when the similarity score of new news story was less than
a given threshold in comparison to any previous news query
in memory. Similarly, Shamma et al. [35] used a normalized
term frequency to identify peaky topics, the terms which are
particular to a time window, to detect highly localized events
of interest. Benhardus et al. [6] also used tf-idf analysis and
relative normalized term frequency analysis on twitter docu-
ments to identify trending topics. However, these approaches
were reported to be inefficient in separating individual event
instances [43]. Moreover, unlike tf-idf, BigEye works by
only computing information gain over two consecutive time
windows.

Text stream clustering has also been applied for event
detection. Ordonez et al. [30], Zhong et al. [45] and Aggarwal
and Yu [2], used optimizations of k-means algorithms to cluster
data streams for events detection. Similarly, communication
patterns [11], social network topological features [1], language
specific features [12], [37], [44], and location of tweets [8],
[22], [39] have also been used by researchers for clustering
data to detect events. Nevertheless, precisely defining the
number of clusters (k) for online streaming data is not feasible.
Researchers have also used topic modeling for event detection
[20], [17], [46]. However, topic based approaches have been
reported to be inefficient in identifying events happening in
parallel instances [43]. Unlike these methods, BigEye detects
events by measuring the temporal bursts in the word-pairs
that do not co-occur frequently. BigEye’s event detection
approach is closely related to Storyline that was proposed by
Wang et al. [43]. However, unlike BigEye, Wang et al. only
focuses on event detection when data is centrally located.

BigEye centers around the detection of global events
by only sharing minimal amounts of information between
distributed producers and a central summarizer. There have
been some prior work on selectively sending information to a
central entity [18], [24], [14]. However, unlike BigEye, these
approaches do not focus on event detection. Closely relevant
to our study is the study by McCreadie et al. [25]. Unlike
BigEye, they do not consider bandwidth constraints and only
try to minimize the event detection time by distributing the
computational costs of processing documents across multiple
machines.

IX. CONCLUSIONS

In this paper, we design and implement a framework
BigEye that facilitates (a) the detection of key global events
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TABLE II: Florence Hurricane Summarization

Date Detected keywords Textual summary Visual summary

Sept 15 sympathy, hurricane,
deepest, hurricane

”My deepest thoughts and prayers are with
those in North and South Carolina, and
Virginia affected by Hurricane Florence”

My Deepest Condolences to the families of
those that died in Tropical Storm/Hurricane
Florence.

Sept 16 ’abandon’, ’hero’,
’six’, ’dog’, ’64’,
’rescue’, ’hurricane’

“Six dogs have been rescued from rising flood
waters, after they were locked in a cage and
abandoned by their owners”

“As Florence loomed, a pet lover escaped
South Carolina with 64 dogs and cats on a
school bus”

based on crowd-sensed data that is distributed across geograph-
ically spread out producers and (b) the composition of concise
summaries that provide a zoomed-in view about such events.
A distinguishing aspect of BigEye is that it is extremely
lightweight in terms of bandwidth consumption i.e., it requires
the transfer of very little of the raw crowd-sensed data from the
producers to a central entity for both event detection and the
following summarization. In spite of this, it is able ot achieve
100 % precision and recall values compared to a case where all
the crowd-sensed data is available centrally, while transmitting
only 1 % of the crowd-sensed data.
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