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Abstract. On today’s online social networks (OSNs), users need to reveal their
content and their sharing patterns to a central provider. Though there are propos-
als for decentralized OSNs to protect user privacy, they have paid scant attention
to optimizing the cost borne by users or hiding their sharing patterns. In this pa-
per, we present Hermes, a decentralized OSN architecture, designed explicitly
with the goal of hiding sharing patterns while minimizing users’ costs. In doing
so, Hermes tackles three key challenges: 1) it enables timely and consistent shar-
ing of content, 2) it guarantees the confidentiality of posted private content, and
3) it hides sharing patterns from untrusted cloud service providers and users out-
side a private group. With extensive analyses of Hermes using traces of shared
content on Facebook, we estimate that the cost borne per user will be less than
$5 per month for over 90% of users. Our prototype implementation of Hermes
demonstrates that it only adds minimal overhead to content sharing.

1 Introduction

Today, leakage of information from OSN servers [6,5], coupled with the need for OSN
providers to mine user data (e.g., for targeted advertisements), have concerned users [12].
While posting encrypted data on OSNs [15,23] can work in theory, it compromises the
profit motives of an OSN if done at scale. Alternatively, one could share private content
with OSN friends by storing data outside the OSN provider’s control. Prior works that
follow this approach either store private content in the cloud [4,29,13] or across client
machines [24,27]. The former simply leaks private information to the cloud providers
in lieu of the OSN providers, and also increases user costs. The viability of an approach
based on the latter depends on the availability of consistent access to client machines.

Our contributions: In this paper, we design a decentralized OSN architecture, Her-
mes, with cost-effective privacy in mind. Hermes seeks to ensure that both the content
shared by a user and her sharing habits are kept private from both the OSN provider and
undesired friends. In doing so, Hermes seeks to (i) minimize the costs borne by users,
and (ii) preserve the interactive and chronologically consistent conversational structure
offered by a centralized OSN.

Hermes uses three key techniques to meet these goals. First, it judiciously combines
the use of compute and storage resources in the cloud to bootstrap conversations associ-
ated with newly shared content. This also supports the high availability of the content.
Second, it employs a novel cost-effective message propagation mechanism to enable
dissemination of comments in a timely and consistent manner. It identifies and purges
(from cloud storage) content that has been accessed by all intended recipients. Lastly,
but most importantly, Hermes carefully orchestrates how fake postings are included in
order to hide sharing patterns from the untrusted cloud providers used to store and prop-
agate content, while minimizing the additional costs incurred in doing so. A key feature
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of Hermes is its flexibility in deployment; it can either be implemented as a stand alone
distributed OSN or as an add-on to today’s OSNs like Facebook (while maintaining the
decentralized nature of content sharing). To summarize, our contributions are:

Design of Hermes: As our primary contribution, we design Hermes. It utilizes ex-
tremely small amounts of storage, bandwidth, and computing on the cloud to facilitate
real-time, consistent and anonymous exchange of private content. Importantly, Hermes
ensures that cloud providers cannot discover the users involved in private conversations
and is robust to the intersection attack [18].

Analyzing OSN data to determine resource requirements: Based on 1.8 million
posts crawled from Facebook, we 1) perform an analysis to determine key parameters
for implementing Hermes, and 2) conduct realistic simulations to show that (a) Hermes
effectively anonymizes users’ sharing patterns and (b) Hermes’s use of cloud resources
is low enough to facilitate its practical deployment. Our analysis suggests that, for 90%
of users, Hermes would typically require 1) cloud storage of much less than 5 MB,
and 2) a compute instance on the cloud that is active for roughly 4 days every month.
This corresponds to a monthly cost of less than $5 per user. With this budget, Hermes
ensures that cloud service providers are unable to guess the members or the group size
of any private conversation. If the cloud provider attempts to randomly guess the group
members, it is correct less than 15% of the time.

Implementation and evaluation: We implement a prototype of Hermes as a rudi-
mentary add-on to Facebook. Our evaluations show that Hermes incurs low cost, and
the user experience, in terms of delays, is similar to that with Facebook.

Scope: The privacy preserving features of Hermes can be used in conjunction with
a centralized component that can be used for posts that are not intended to be private. In
fact, our prototype of Hermes as an add on to Facebook achieves just that; private posts
are directed to Hermes while other content is shared in the traditional way. We wish to
also point out that we do not explicitly consider mobile users; however, Hermes can be
used in such contexts, and across multiple devices.

2 Related Work

Improving privacy in OSNs: Several systems propose to post encrypted content on
OSNs to protect privacy (e.g., [15,21,16]). However, encryption precludes OSN providers
from interpreting posted content and/or hides users’ social connections from OSNs.
These are not in the commercial interests of OSN providers, who may thus disallow
such postings. Hermes does not post any encrypted content on an OSN; it uses either
cloud storage or users’ personal devices to do so. Further, it does not use a central-
ized OSN framework to inform users of new content; doing so also informs the OSN
provider of the specifics of ongoing conversations.

Distributed OSNs: Other efforts propose storing private shared data on devices
other than OSN servers [27,24,29,4]. However, unlike Hermes, they either expose user
sharing patterns to cloud providers [29,4] or degrade user experience in terms of timely
and consistent sharing. Systems that store private data in the cloud do not control either
storage or bandwidth costs which increase over time as the volume of shared data grows.
While other systems store the data on users’ personal machines [27,24] to reduce costs,
the low availability of these machines (they may be turned off when not used) reduces
the timeliness of conversations and compromises data consistency. Hermes combines
resources on cloud services (within limit) with that on users’ personal machines to
support cost-effective sharing that is held privy from cloud providers.
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Priv.io [33] is a new decentralized OSN that aims to minimize the cost incurred
for facilitating private content sharing. However, Priv.io critically relies on support for
advanced messaging APIs from cloud services, which restricts the generality of Priv.io’s
architecture. In contrast, Hermes only requires cloud storage services to offer a minimal
PUT, GET, DELETE interface. Most importantly, due to Priv.io’s reliance on messaging
APIs offered by cloud services, unlike Hermes, it does not attempt to hide sharing
patterns (i.e., whom does a user share data with) from cloud providers.

Other related work: Efforts [22,30,21] that secure the data stored on untrusted
servers or the cloud do not try to account for OSN-specific characteristics (e.g., hid-
ing content sharing patterns). Unlike Hermes, these solutions would either significantly
increase cost or degrade timeliness. Moreover, Hermes enables anonymity in OSN con-
versations without requiring all members of a conversation to be simultaneously online.

3 Goals and Threat Model

Goals and challenges: Our over-arching goal is to design a decentralized, private OSN
architecture. In doing so, we have the following three objectives.

• High availability, timeliness, and consistency: First, we seek to preserve the desirable
properties enabled by a central provider. Specifically, (a) users should always be able
to access content shared with them, (b) content shared by a user should be received by
the intended recipients in a timely manner, so as to preserve the interactive comment
“threads” associated with content shared on OSNs, and, (c) all users involved in a
conversation should receive comments in the same causally consistent order. How
do we preserve these desirable properties despite the fact that content is stored in a
decentralized manner in Hermes?

• Protect the privacy of content and sharing patterns: While Hermes lacks any central
OSN provider, cloud services used to store and disseminate content may be able to
monitor conversations. How do we preserve the privacy of shared content from cloud
providers and prevent them from discovering the participants in any conversation?

• Minimize cost: Finally, we seek to minimize the storage, bandwidth, and compute
costs incurred by users in Hermes’s use of cloud services. This is made particularly
challenging due to the previous two goals. For example, one could enable timely
dissemination of comments if every user were to maintain her own compute instance
in the cloud at all times. Similarly, the members of any particular conversation can be
hidden from cloud providers by having all users constantly exchange fake comments
with each other. However, such measures will result in high cost.

Threat model: We assume that all service providers (of cloud services or of a cen-
tralized OSN) preserve the integrity and availability of the data that users store on them.
This may be either in fear of bad publicity or because users pay for the service. However,
we assume that all service providers may benefit from inferring information associated
with private conversations. Thus, we treat all service providers as “curious but honest”,
as in [33]. Moreover, if cloud providers discover the members of private conversations,
this information may leak. Therefore, we seek to ensure that, when a group of users
are involved in a private conversation using Hermes, no one outside the group learns
either the size or membership of this group. Here, we assume that cloud providers can
perform network-level traffic analysis (e.g., a provider can map the IP addresses from
which it is accessed, to user identities). The use of anonymity networks such as Tor [19]
would not scale to meet the traffic demands of a large-scale OSN. Lastly, ensuring the
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Fig. 1: Illustration of conversation timeline.

privacy of a users’ conversation group via fake messages (as in Hermes) requires that
the user has a sufficiently large set of friends; if a user has very few friends (e.g, < 5),
preserving the anonymity of a private conversation group is hard. We assume that users
have friends of the order of hundreds, as is typical on OSNs [3]; however, we assume
the sizes of private conversation groups to be much smaller.

4 Hermes Architecture

In this section, we describe the Hermes architecture with a simple running example.
Consider an OSN user (Alice), who wishes to share some content (say a photo)

meant only for her friends Bob and Chloe. To ensure that neither the private content nor
the intended recipients are exposed to anyone other than the intended recipients, Alice
encrypts the photo with an appropriate key (known only to Bob and Chloe) and shares
it using resources in the cloud. There are four main issues that we need to address to
enable this: 1) how do Bob and Chloe discover this content and the associated key to
decrypt it?, 2) how can comments on the content, posted by Alice, Bob, and Chloe,
be disseminated in a timely manner?, 3) how do we prevent the cloud provider from
inferring the members of this private exchange?, and 4) how to minimize costs incurred
by Alice, Bob, and Chloe? We next describe how Hermes tackles these questions.

Sharing new content: As shown in Fig. 1, every user (including Alice) first posts
her public key component to enable an ECDH key exchange (details of ECDH can be
found in [25]) on her OSN profile1, which is visible to all of her friends. Any user can
thus, fetch the public key components from her friends’ profiles and derive pairwise
keys with any of her friends.

To share a photo, Alice’s Hermes client chooses a new group key and creates two
encrypted copies (using a cipher such as AES) of this key, one copy encrypted using her
pairwise key with Bob and the other using her pairwise key with Chloe. Alice’s client
then stores these encrypted group key copies in Alice’s cloud store. The client also puts
the photo, encrypted with the group key (again using AES), in her cloud storage.

Bob’s and Chloe’s Hermes clients periodically check Alice’s cloud store for new
content shared with them. When new content exists, they fetch their respective en-
crypted group key copies from Alice’s store (the process is discussed later) and extract it
using their respective pairwise keys with Alice. Bob’s and Chloe’s clients then store the
extracted group key locally on their personal devices. The clients can fetch and decrypt
the photo using this group key.

Enabling OSN-like conversations: We next describe how Hermes enables OSN
like conversations with low cost.

1 This could be on her favorite OSN or Hermes’s servers depending on the implementation.
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Disseminating comments: After Bob and Chloe discover Alice’s photo, the
three of them may post comments on it. Our goal is to ensure that these comments
are disseminated in a timely and consistent manner, as is the case with a centralized
OSN. If all users involved in the conversation are always online, whenever a user posts
a comment, that user’s client can establish secure connections with the clients of the
other members of the conversation and inform them of the new comment. However, in
practice, Alice, Bob, and Chloe may come online at different times. Thus, there has to
be a common arbitrator that enables a user to discover comments posted when she is
not online and facilitates the chronological ordering of posted comments.

For this, we propose that the user who initiates the conversation (Alice) uses a com-
puting instance in the cloud to act on her behalf as the arbitrator. Today, there are many
such online computation resources available (e.g., Google App Engine [7], Heroku [9],
and Amazon EC2 [1]). Alice’s instance acts as a proxy for her.

Reducing compute instance costs for Alice: However, keeping the compute in-
stance active at all times is not cost-effective for Alice. Thus, by default, Alice’s Hermes
client terminates her instance following a preset period after Alice has shared any new
content (discussed later in Section 6). However, there may be users who come online
much after the instance has been terminated. To deal with such cases, Hermes uses
log files called ufiles (update files). Every user maintains a ufile in her cloud store
for each friend; these ufiles are created and the location of the ufiles are exchanged
between friends either when a user installs the Hermes client or when the user adds
a friend. Thereafter, whenever a user (Alice) posts a new piece of content relevant to
a specific friend (Chloe), Alice’s Hermes client adds an entry to the ufile for Chloe.
In all subsequent discussion, for the purposes of clarity, we only provide a high level
description of how ufiles are used and defer a detailed description to an appendix.

If Bob comes online after Alice’s compute instance has been terminated, his client
retrieves her ufile for him and locates any new updates. This allows Bob to retrieve
any content or comments shared by Alice. His client then indicates that the content has
been retrieved in his own ufile for Alice. Upon checking this entry when Alice comes
online, her Hermes client deletes the original entry in her ufile for Bob.

Note that ufiles also enable a user to discover comments without waiting for the
initiator of a conversation to come online. For example, if Bob is also Chloe’s friend,
Bob’s ufile for Chloe will indicate that he has commented on Alice’s photo. Chloe can
thus retrieve the comment and associate it with the original photo received from Alice
(based on an associated conversation ID).

Ensuring consistency of comments with ufiles: The above framework allows
a user who comes online after the instance is terminated to retrieve the object and recon-
struct the conversation associated with it (i.e., put the comments in chronological order
using vector timestamps [26]) as long as all the group members are his friends. How-
ever, if a group member (say Chloe) is not Bob’s friend, Chloe is unable to read Bob’s
ufiles; in fact, such a file for Chloe will not exist in Bob’s cloud storage, since ufiles

are only maintained for friends. This violates the structure of an OSN conversation.
To deal with such cases, Alice relays the locations of the comments associated with

her content via her own ufiles for each member of the conversation (who are her
friends since she initially shared the content with them). Since there may be delays in
relaying these locations (in rare cases where multiple users come online much after
the compute instance is terminated), there may be temporary loss in the chronological
consistency for a user who comes online at a late stage. There is an inherent trade-off
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here; the longer Alice’s compute instance is active, the less likely is that there is such a
loss in consistency. However, this will incur a higher cost.

Reducing storage costs: Finally, Alice cannot store her photo (or for that matter,
Bob cannot store his comment) on the cloud forever. This would result in a monotonic
growth in the consumed storage and thus, the associated cost. Instead, with Hermes,
content is removed from cloud storage after a certain time (the duration can be set by
Alice, but we discuss what might be appropriate in Section 6). A simple way of ensuring
that all group members have seen the content before it is purged is for Alice to check if
they have indicated this to be the case in their ufiles for her. If a user (say Bob) comes
online after a prolonged absence (much after when the content was removed from the
cloud), he may still learn of its existence via Alice’s ufile meant for him. Via his own
ufile for Alice, Bob’s client then requests Alice for the purged content. When Alice
comes online next, her client then copies the requested content back on to the cloud. In
fact, Bob can request the purged content from any or all of the group members of that
conversation (information on the group can be embedded as metadata in the encrypted
content) to restore the content on the cloud for him. Once a group member (say Chloe)
restores the content, Bob’s ufiles can be updated to indicate that the content is no
longer needed from other members.

This process increases the complexity of Hermes’s design, and thus, is not currently
implemented in our prototype; however, as we show in Section 6, such cases are rare if
one looks at typical content sharing on Facebook. Here, we also point out that Hermes
enables users to access their content from multiple devices; however, we omit the details
of how this is made possible due to space constraints.

5 Hiding users’ sharing patterns

Next, we discuss how Hermes ensures that cloud providers cannot determine any of the
following: a) “when” a private conversation is occurring, b) the group size of any given
conversation, and c) the individual members taking part in that conversation.

5.1 Hiding the membership information within each private conversation

First, let us consider a single private conversation initiated by Alice. Our goal here is to
ensure that the identities of the members of this private group and the size of the group
are not exposed to anyone outside the group.

Strawman approach: To hide the group members in a given conversation initiated
by Alice, one simple approach is to make ufiles indistinguishable across all of Alice’s
friends. Whenever Alice’s Hermes client needs to insert an entry into the ufile for a
particular friend, it can also insert dummy entries into the ufiles for all of Alice’s re-
maining friends; the entries in the ufile for any particular friend are encrypted with the
shared pairwise key between Alice and that friend, thus preventing the cloud provider
from inferring which entries are fake. Thus, based on the writes to and reads from the
ufiles in Alice’s cloud storage, the cloud provider will not be able to determine which
subset of Alice’s friends are involved in ongoing private conversations.

However, this simple approach has two limitations. First, it results in high storage,
bandwidth, and operational query costs for Alice, because a large number of fake en-
tries will need to be stored by Alice and accessed by Alice’s friends. Second, the cloud
provider may still be able to infer the members of Alice’s private conversation by ob-
serving which of Alice’s friends insert updates into the ufiles in their own storage



7

space; group members will post comments, but friends who are not part of the group
will not. We next discuss how we address both of these issues in Hermes.

Obfuscating group size: Instead of making the ufiles for all of Alice’s friends
indistinguishable, Hermes attempts to hide the group members (G) among a subset
of Alice’s friends (D), where G is a subset of D (referred to as the anonymity set).
Whenever an entry has to be added to the ufile for any user in G, dummy entries are
also added to the ufiles for those users in (D � G). The number of users in (D � G)

follows an exponential distribution, with its minimum, mean, and maximum values set
to ↵, |(N�G)|/4 (rationale in Section 6), and |(N�G)| 2, where N contains all of Alice’s
friends. The parameter ↵ allows us to handle small groups and is set to max(15, |G|).

The effect of these parameters is that the size of the anonymity set is always at least
double that of the private group. As a result, random guessing as to whether a particular
user in the anonymity set is a member of the group will be correct with a probability of
at most 50%. For small groups of size less than 15, randomly guessing as to whether a
user in D is a group member succeeds with probability |G|/(|G|+ 15). In addition, the
exponential distribution biases the anonymity set towards smaller sizes. This reduces the
additional storage and bandwidth costs incurred for providing anonymity, as compared
to a uniform distribution that chooses the size of the anonymity set at random from
the range [↵, |N � G|]. Lastly, note that it is insufficient to determine the size of the
anonymity set simply by inflating the group size by a fixed factor (since this clearly
reveals the group size).

Preventing inference of group membership based on comments: So far, Alice
has been able to share content with G without revealing G or its size (|G|). However,
since only members of G will post comments on the shared content, the cloud provider
will be able to distinguish the users in G from all those in D. Thus, the additional fake
members in D must also post fake comments as part of the conversation (these fake
comments are discarded upon retrieval by group members).

A naive approach would require all the additional members in D to post as per
either some random distribution or based on their previous posting habits. However, it
is hard to provide any anonymity guarantees with such an approach. Moreover, since we
assume that the source code for the Hermes client is publicly accessible, cloud service
providers will have access to any distributions hard-coded into the client software.

Instead, our approach for posting of dummy comments works as follows. We divide
time into slots, where all the members of a conversation can derive the slot boundaries
based on the time at which the conversation was initiated (see Figure 2). We refer to each
time slot as a round. In each round, every member of the conversation who is online
during that period posts at least one comment, at a random point in time during that
round. Those group members who have no real comments to post in a particular round—
this includes both the users in (D � G) and the users in G who have no comments to
post during that round—post at least one dummy comment during that round. All entries
added to any ufile are padded to a fixed size in order to hide the number of comments
being posted by a user; this is necessary because a user who posts real comments may
post multiple comments in a single round.

Importantly, every user in D posts either real or fake comments at only one particular
time during each round. This ensures that the cloud provider cannot distinguish between
users in G and those in (D � G), since it observes the same pattern of writing to and
reading from ufiles for all users in D. Thus, when all users in D are online, the cloud

2 Since private group sizes are typically small, we assume |(N�G)| > |G|.
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Fig. 2: Round structure in Hermes.

provider has only a G
D probability of correctly inferring whether a particular user in D

is indeed a member of the private group G.
Selecting the length of a round: A key design decision in instantiating the ap-

proach described above is to determine how time should be divided into rounds. Shorter
rounds lead to more timely dissemination of comments. This is because when one user
posts a comment in a particular round, another user can respond to this comment only
in the next round; note that every user can post comments only once in each round. In
contrast, longer rounds result in lower cost since fewer fake comments are posted, but
compromise timeliness. Based on this trade-off, we split the timeline of a conversation
into rounds as follows.

Our design is based on the observation that the commenting activity associated with
most conversations is high when the conversation initially begins. After this initial pe-
riod, the conversation goes stale and users may have few new comments.

Given this, to reduce the costs incurred to guarantee anonymity (hiding user sharing
patterns), we partition any conversation into two phases. The first phase is when the
conversation is fresh and one is likely to expect a comment in the near future. In this
phase, the timeliness of comment dissemination is important, and therefore we keep a
round’s length short. Once several rounds with no real comments are observed, the con-
versation transitions to the second phase. The second phase aims to capture that phase
of a conversation where no user has posted a comment for a while and there is a low
probability of new comments. In this phase, we want to limit the cost associated with
the conversation by minimizing the number of fake comments. The key property we ex-
ploit in this second phase is that, since the conversation is already stale, the timeliness
of straggler comments posted during this period is not of concern.

In the first phase, all rounds are of equal length as long as at least one real comment
is posted in each round. When there are no real comments in a particular round, we
increase the length of the round by a multiplicative factor. The round length in the first
phase is reset to its original value when a real comment is posted in the previous round.
After a certain number of consecutive rounds with no real comments, the conversation
transitions to the second phase. We model round durations in the second phase as a
geometric series also, but use a larger multiplicative factor to increase round durations
as compared to that used in the first phase. When a real comment is posted in the second
phase, the conversation is reset to the first phase, but a fewer number of rounds of
inactivity transitions the conversation back to the second phase in this case.

Note that the users who are in D but not in G cannot distinguish between real and
fake comments; this is intentional, since we seek to hide group membership not only
from cloud providers but also from users who are not in G. Therefore, in every round,
every user in G broadcasts to all of her friends who are also in D as to whether a real
comment was posted in the previous round or not. Every user in D � G who receives
this notification relays this on to all of the user’s friends who are in D, exactly once.
Thus, a user who receives a notification cannot distinguish between whether this was
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an original broadcast or a relayed broadcast. Once a user receives this information, she
can independently determine what the length of the next round will be and when the
transition between phases is triggered. Note that, from the cloud provider’s perspec-
tive, these notification messages that convey whether a real comment was posted in a
particular round are indistinguishable from real and fake comments. Moreover, though
the cloud provider may be able to infer when real comments are posted based on when
inter-comment spacings decrease, no one other than the users in G can determine which
users posted the real comments.

5.2 Hiding users’ conversation patterns by handling intersection attacks

Thus far, we have only considered hiding the identities of group members within a
conversation. Unfortunately, the above approach is insufficient in completely hiding
a users’ sharing patterns across conversations. If fake users (in D � G) are chosen
randomly from the user’s friends (N), the cloud provider can infer that users who appear
repeatedly in different conversations are likely to indeed be real members of private
groups.

To prevent such intersection attacks [18], we need to preserve anonymity across
conversations. For this, we seek to ensure that a consistent group of K friends (K ⇢ N)
appear across the conversations initiated by a user (Alice); we refer to this group as
the Top K group. Thus, if a private, repetitive, group initiated by Alice is of size G, the
provider can only randomly guess if a user in the group of K friends (K >> G) is a true
repetitive member with probability G

K . In essence, this provides |K|-anonymity [31].
Our approach to form the Top K group (algorithmically depicted below) is to (1)

tune the membership of D and (2) use fake conversations. We identify the friends with
whom Alice consistently has private conversations (say K1 � G) and include them in
the Top K group. We then fill the remainder of the Top K group with other friends with
whom Alice rarely initiates private conversations (say K2).

Stage 1 Learn user habits
1: for Next M1 conversations do
2: {8x 2 G : x.count+ = 1}
3: set D = N and start conversation with entire friends list.
4: end for
5: Select K1 users with highest count values
6: Select K2 random friends s.t. {8x 2 K2 : x 2 N ^ x 62 K1}
7: reset count Values
8: return K = K1 [K2

Stage 2 Use learned habits
1: for Next M2 conversations do
2: Select size for |D| = ↵+ Exp( |N|�|G|

4 )
3: 8x 2 (N� (G [K)) : P(x 2 D) = p

4: Fill D from K � G with probability of x 2 D / Max(c � x.count, delta), where
c = Max(8x 2 K : x.count)

5: 8x 2 D : x.count+=1
6: schedule dK�D

D e fake conversations with G = ; in current M2 conversations
7: end for

Tuning the membership of D: As the first step, we need to determine which of
Alice’s friends consistently belong in private conversations. While doing so, in order
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to preserve anonymity, we simply use the naive approach wherein all of her friends are
included in all conversations. This is referred to as the first stage or the learning stage of
anonymizing conversations (Stage 1). This stage is executed for M1 (tunable parameter)
conversations. During this stage, the Hermes client learns of the user’s posting habits
and with which friends the user is more likely to privately exchange information (set
K1). It then forms the Top K group as described above.

In the second stage (Stage 2) which is then executed for the subsequent M2 (tun
able parameter) conversations, we reduce the total cost incurred by a user (Alice) by
only consistently including the Top K group in private conversations. In each true con-
versation initiated by Alice, we now form the group D for that conversation as follows.
First, all the user’s friends that are neither part of the conversation group G nor the Top
K group (determined in the first stage) are considered as candidates for inclusion in D.
Each of these candidates is included in D with a very small fixed probability p. This
ensures that friends outside of Alice’s Top K group, i.e., users with whom she rarely
exchanges private content, are included with a small probability; this protects against
the server correctly identifying true rare inclusions of such friends. Subsequently, Al-
ice’s friends that are part of her Top K group but not in G, are considered for inclusion.
The probability that a particular user (say Chloe) in the Top K group is selected is pro-
portional to the difference between the maximum number of conversations any member
of Top K group is involved in (both true or fake roles), and the number of conversations
that Chloe is involved is involved in (both true or fake roles). This ensures that all of the
members of the Top K group are consistently involved in conversations.

Using fake conversations: In spite of filling the groups as above, it is possible that
real users appear more often than fake users. To address this, we schedule dK�D

D e fake
conversations (with fake comments) where G = ; (since each real conversation already
includes ⇡ D members from the Top K group). The groups, D, for such fake conversa-
tions are filled exactly as the real conversations are filled. Together, the above two steps
of stage two ensure that every member of the Top K group is in (approximately) the
same number of conversations on average.

To cope with the dynamics of Alice’s sharing behaviors (she could converse more
often with Bob and Dave at some point in time, and at a different time, exchange more
private content with Chloe and Eve), we return to the first stage periodically to recom-
pute the Top K group. Here, we take care to ensure that only minimal changes are made
to the group K2 to prevent the server from identifying these as fake users.

Finally, instead of using fake conversations, to reduce costs one can think of sup-
pressing an initiator’s conversations with particular users with whom she is conversing
too frequently. We do not explore this option as it violates our goal of ensuring timely
sharing as in a traditional OSN.

6 Quantifying Cost, Anonymity, and Timeliness Trade-offs

In order to tune Hermes’s configuration, we seek to understand the trade-offs between
anonymity, timeliness, and cost. To do this, we crawl a large dataset from Facebook,
and use the posting habits seen to perform a trace-driven simulation of Hermes.

Understanding the temporal nature of conversations: We first seek to understand
how long a posting is likely to be of interest to a user’s friends, in the common case.
Our particular interest is the time gap between when specific content was posted by a
user and when the friends of that user lose interest in viewing it (the interested friends
have already viewed it with high probability). However, it is impossible to accurately
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determine this duration without access to Facebook’s server-side logs. Therefore, we
instead use users’ comments on a post as a proxy for their interest in the post. Though
all users who find a posting to be of interest may not comment on it, previous studies
have shown that the number of friends that see a post and the number of friends com-
menting or liking it are positively correlated [17]. Thus, we ask the question: for those
postings that have associated comments, what is the time gap between the instant when
the posting was made and when the last associated comment was posted?

Due to the lack of a publicly available dataset on users’ posting habits, we crawled
the profiles of 68,863 Facebook users using a combination of FQL (Facebook query
language) and RestFB. Our crawled dataset, which spans a month, roughly comprises
1) 1.8 million wall posts and associated comments, and 2) 40K posts of either photos
or videos with ⇡ 35K associated comments. Remarkably, 70% of the 1.8 million posts
did not have any associated comments. Thus, we look at the other 30% and the pho-
tos/videos to determine the time-gap between when the initial content was posted and
when the last associated comment was seen. Based on Fig. 3a, we set the duration for
which a user caches data on her cloud storage to 3 days; 90% of posts do not receive
new comments beyond this period. In outlier cases, where content is sought long after
it was posted, we sacrifice timeliness for resource thriftiness as discussed earlier.

A simulation of Hermes: Next, we build a simulator to capture user interactions
with Hermes in a large-scale setting; the simulation provides both 1) an understand-
ing of how Hermes may perform, and 2) a validation of Hermes’s ability to provide
anonymity with limited resources (small volumes of storage and bandwidth, few oper-
ational queries, and short uptimes for a user’s computing instance). To the best of our
knowledge, there does not exist a simulator that mimics user interactions on an OSN.

Determining simulation parameters: The first input required by our simulator is
a measurement of how often users come online. This dictates the expected time for
disseminating content across Hermes clients, and thus, impacts how long the computing
instance, or data stored on the cloud, will need to be active. Note that the Hermes client
on a user’s device does not need her to interact with it to fetch new content. Thus, the
only time of interest is when the device is powered on and connected to the Internet.
Here, we use data from [32], which provides the time per day for which users’ devices
are active. We assume that most powered on devices today are connected to the Internet.
The weighted average of this time for desktops is 9.7 hours a day. The weighted average
of online time for portable computers is comparable at 8.3 hours a day [32].

Second, to determine when a friend retrieves a private posting made by a user, we
compute the relative time-gap between when the user is online and when the friend
comes online later. We assume that users in similar time-zones are online during similar
periods; if users are in time zones far apart, this time gap may be larger. Unfortunately,
we were unable to access the location information of users in our data set; Facebook
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does not allow programmatic access to this information. Hence, we use two approxima-
tions to characterize the distribution of when the friends of a user come online. 1) We
assume that users come online at random instances uniformly distributed over a 24 hour
period, and stay online for a uniformly distributed period with an average of 9.7 hours;
we believe that this model represents the likelihood that a user’s friends are distributed
all over the globe. 2) We consider a best case scenario wherein all of a user’s friends are
in her time-zone; here, we assume that the user and her friends come online within a
12 hour period. Again, the time at which the user comes online is uniformly distributed
within this period, and the duration for which one stays online is chosen as before.

Third, to accurately represent a user’s posting habits, we replay the posts in our
Facebook data set. Since the posts we crawl are those shared by a user with all her
friends, we obtain an estimate for the expected private group size from [20] and [3];
these studies suggest that while the social group size of a user is about 190, the more
intimate size of a social group is 12. On this basis, we consider expected group sizes of
15, and use a uniform distribution with variance 10 (to cover group sizes from 5 to 25).

Selecting system parameters: To simulate Hermes, we also need to choose the
parameters that control how the system trades off timeliness for anonymity. The two
phases of a conversation, as discussed in Section 5, depend on four factors, namely the
initial length of a round (l), the multiplicative growth rate in phase one (A1), the growth
rate in phase two (A2), and the number of rounds with no real comments in phase 1
(X), after which a conversation transitions to phase 2. To set X , we observe from the
Facebook data that 95% of the time, the time gap between two consecutive comments is
less than 24 hours. In other words, a conversation is unlikely to be of interest to friends
if there are no comments for about 24 hours. Hence, we transition a conversation from
the first to the second phase if we do not see a comment for 24 hours. Later we vary
l and A1 in our simulator and examine the effects on average cost and timeliness. For
phase 2, we seek an exponential growth, but want to simultaneously keep in check the
delay incurred in retrieving straggler comments; thus we set A2 = 2.

Simulator design: Our simulator captures all the features of Hermes described in
Sections 4 and 5. In our simulation, every user initiates conversations and posts com-
ments as per her posting activity on Facebook. For each private conversation initiated
by a user, we select a randomly chosen subset of the user’s friends based on her post-
ing habits and the expected group size considered. We consider the size of every shared
photo as 2 MB and the size of all other private posts as 0.5 KB (these numbers are much
larger than what we got from our crawled data). Since a user’s comments in our crawled
data may be on posts made by users outside our crawled population, we post any com-
ment by a user to a pre-existing randomly chosen conversation that she is involved in.

Results and interpretations: Our metrics of interest are (i) the time for which a
user’s compute instance needs to be active, (ii) the anonymity (likelihood of guessing if
a friend is a true group member) a conversational group is provided, (iii) the total cost
incurred, and (iv) the loss of timeliness due to users receiving stale data.

Compute costs: First, we seek to determine the time for which the instance associ-
ated with any object (post) needs to be active. Recall that a Hermes client of a group
member obtains new content as soon as she comes online. Considering the two approx-
imations discussed above for when users come online, Fig. 3b plots the distribution of
the time it takes for all the members of a private group to access the object. This is the
time for which the compute instance has to be up. To handle the common cases where
the group size is small (< 15), the compute instance needs be up for 6–7 hours even if
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a user’s friends are globally distributed; if the friends are all local, it needs to be up for
⇡ 4 hours. One may expect that in a typical case (when a user has both global and local
friends), the compute instance will have to be up for a duration somewhere in between 4

and 7 hours; we conservatively choose the duration to be 10 hours. In rare cases where
not all members access a posted object within the 10 hours, we trade-off timeliness
in serving the content for lower cost. Based on this, our simulations indicate that, for
⇡ 90% of the users, Hermes will need to keep their instances active for less than 100
hours (or 4 days) in a month, in order to privately exchange all the Facebook data that
they shared in the entire month. In comparison, prior solutions for OSN privacy [29,4]
require every user to persistently have a compute presence in the cloud.

Quantifying anonymity: Second, we seek to quantify the anonymity provided to a
conversational group. First, we consider each conversation individually. We define the
anonymity score to be the probability that the server is unable to correctly identify a
group member as true or fake (as discussed in Section 5 this is (1� |G|

|D| )). In Figure 4a,
we plot the anonymity score while varying the number of fake group members. The
x-axis represents the percentage of the initiator’s friends outside the group, who are
added as fake members (denoted as external fake friends or EFFs). Specifically, D =

G[EFF where, EFF ✓ {N�G}. The y-axis represents the anonymity score. Since the
likelihood that the server is able to guess correctly is approximately proportional to the
ratio of the number of true members (fixed) to the size of the composite group (with true
and fake members), the anonymity score steeply increases as the size of the composite
group increases initially. Beyond a certain point, we reach a point of diminishing gains,
wherein the increase in the anonymity score is less significant with an increase in the
composite group size. To achieve an anonymity score of about 0.9, we need to add 25%

of the friends outside the true group as fake members in each conversation.
Per conversation anonymity vs. cost trade-off: Next, in Figure 4b, we depict the

expected (total) cost incurred as a function of the percentage of EFFs. We obtain the
per-resource costs for different contributing factors from [1,2,8], and multiply this with
the amount of resources consumed. For an anonymity score of 0.9 (% of EFFs = 25),
we see that the expected total monthly cost per user is relatively low (< $ 4) with
both Google App Engine (GAE) and Amazon EC2 (storage and computing are from
the same provider). Thus, an EFF of 25% (or |N � G|/4) presents the best trade-off
between per conversation cost and anonymity in Hermes.

Handling intersection attacks: In the scenario described above, we only considered
the anonymity in a given conversation; the cost due to fake conversations (included
for protection against intersection attacks) was not considered. Next, we present results
that capture the effect of these conversations, which appear at a rate of dK�D

D e (recall
Stage 2). The parameter K determines the level of anonymity provided across conver-
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A1
Avg. Delay Avg. Ops

(min) Cost ($)
1.025 2.8867 5.13
1.05 3.096 2.80
1.10 22.52 2.32
Table 1: Cost for various values of A1

Operation MS/Req Bytes Rx Bytes Sent
Posts links 130 78 4
Check and 50 22 35retrieve update
Add comment 45 42 2
Table 2: Hermes’s resource consumption on GAE

sations as discussed earlier. The value of G is specific to each user and varies from 5
to 25; we fix an EFF of 25 % based on our previous results. In Figure 5a, we change
K by varying K2 (K1 is estimated in the first stage of the process for each user as dis-
cussed in Section 5). We immediately see that K ⇡ 150 yields the highest anonymity at
a reasonable cost. This is only marginally higher than the value of D (with the chosen
EFF value). This implies that, on average, we need only one fake conversation for every
real conversation in order to thwart the intersection attack. In Figure 5b, we plot the
difference in the maximum and minimum number of conversations that the members of
Top K group have participated in. We see that this difference is no greater than 3 at all
times; this demonstrates the high degree of anonymity within the Top K group.

Cost breakdown: Figure 5c shows the distribution (across users) of the total costs
due to the various components required by Hermes, viz., storage, bandwidth, opera-
tional queries, and the computing instance, with GAE. We see that, for about 95% of
the users, the total cost is < $10 a month. In comparison, if a compute instance is always
active, the cost of this alone would be > $60 per month. We also see that the cost due to
operational queries and the instance are the biggest contributors to the total cost. This
is expected since storage and bandwidth are relatively cheap, especially since Hermes
purges the cloud storage regularly. Operational costs are relatively high since storing,
retrieving, or even checking for content, incurs a cost [2,8]. The total cost with EC2 is
slightly lower than that with GAE (< $9 for 95% of the users) but the trends in the cost
components are similar; we do not plot the results here due to space considerations.

Timeliness vs. cost: In Figure 5d, we plot the expected delay incurred in accessing
posts (a measure of timeliness) versus the expected (total) cost. We again use GAE.
If the length l of each round (recall Section 5) is reduced, the operational costs are
increased, but the timeliness is improved as well. If instead, we increase l, the timeliness
suffers but queries are made less often (to check for content) and thus, cost decreases.
Even if the desired expected delay is as low as 5 minutes, the incurred cost with GAE
is no more than $5 per month. With EC2, this cost is even lower ($3). These results
demonstrate that good timeliness is possible with Hermes, with fairly low cost.

Timeliness vs. anonymity: Next, we quantify the impact of varying A1 on timeliness
for a fixed l (set to 5 minutes for our experiments). We measure this impact in terms of
average costs and the average delay over all conversations in the simulation. In Table 1
we show a representative subset of our results that is of interest. As evident, increas-
ing A1 decreases average cost but increases the average delay of message propagation.
From the table we see that when A1 is decreased to 1.05 from 1.10, the marginal re-
duction in delay is significant; however, the additional reduction is marginal when A1

is further reduced to 1.025. The cost growth is almost linear. These results suggest that
setting A1 (by default) to 1.05 provides the best trade-off between delay and cost.
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Fig. 6: End-to-end delays on Hermes and on Facebook
7 Prototype Implementation and Evaluations
Implementation: We prototype Hermes in Java as an add-on to Facebook. We use
the Facebook front end and a user’s profile therein is used for making her public key
component available. Hermes runs as a middleware and intercepts posts classified as
private. Dropbox and Google App Engine (GAE) are used for storage and computation.
Upon installation, the Hermes client requests OAuth 2.0 [10] access tokens from both
Facebook and Dropbox and stores these locally for later use. The client crawls the list
of the user’s friends on Facebook and creates one ufile for each of them on Dropbox.
The client also initializes a web-based application on GAE on behalf of the user.

The implementation of Hermes essentially follows the design as described in the
previous sections. ECDH is used to establish pairwise keys between the initiator and
each of her friends and these are then used to establish conversation specific group keys.
Then, the Hermes client uploads the content encrypted with the group key, to the user’s
space on Dropbox and requests Dropbox for the public URLs for these files.3 When the
user shares content, the Hermes client also invokes a GAE instance and uses the GAE
data store to save the encrypted public URL to the file on Dropbox. All communications
with the instance are over HTTPS. For efficiency, the instance shuts itself down after a
configurable time has elapsed after creation (10 hours by default).

Both true and fake members access content as described earlier. The client devices
of fake users are provided with a group key whose prefix indicates that it is a fake mem-
ber; the server cannot detect a fake member, since the fake group key is encrypted using
the pairwise keys. The client of a fake member simply discards all content retrieved
with respect to the conversation (both the original posting as well as comments).

Storage overhead associated with shared content: Our implementation uses AES
(256 bit key) to encrypt data and ECDH to establish a symmetric key (using the P -256
curve defined in [11]). The parameters (such as the curve and p) are defined in P -256
and available to all users.

Hermes adds overhead to shared content in three ways. (1) As described in Sec-
tion 4, each ufile entry occupies 16 bytes for a hash value and ⇡ 20 bytes for an en-
crypted URL on Dropbox. (2) Each ufile entry also includes the group key encrypted
with the pairwise key of the sender and its corresponding receiver, with information for
associating the entry with the receiver and authenticating her. In our implementation,
the size of each password tuple is 62 bytes. (3) Hermes stores information about the
uploaded files and the access tokens for writing to a user’s Dropbox account on the
user’s GAE instance. In our implementation, every post accounts for 440 bytes of space

3 With typical file sharing on Dropbox, when Alice shares a file with Bob, the shared file is
counted towards the storage capacity of both Alice and Bob. In our implementation, public
links are simply pointers to Alice’s files; the files are then directly accessed by Bob.
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on the GAE instance. In essence, (1) Hermes’s storage overhead is a few KB for sharing
data of any size; as an illustration, storage overhead is 82, 820, and 1640 bytes for group
sizes of 1, 10, and 20 members (including fake), and (2) storage overhead of Hermes
increases linearly with the composite group size. Note that we expect private groups to
be typically small [20,3].

Efficiency of Hermes: We next evaluate our prototype by comparing the delay in-
curred in sharing data with Hermes to that with Facebook. We share files of different
sizes and measure the total delay between when a user shares a file and when a recipi-
ent completes receiving that file. To mimic the overhead seen by real users, the receiver
program contacts 250 compute instances (250 is the average number of friends on Face-
book [14]) to check for new content.

Fig. 6a shows the variance in delays incurred (the minimum, median, and maximum
values across 5 trials) in the above experiment. The overhead imposed by Hermes as
compared to sharing and receiving data on Facebook, especially for delay-sensitive
sharing of small files, is within reason (a few seconds). Delays on Hermes are higher
than delays on Facebook because Hermes not only posts the shared content on Dropbox,
but also sends the links to these files to the user’s GAE instance. Furthermore, Hermes
uploads and downloads ufiles in addition to the content being shared.

We repeat the experiment on 6 PlanetLab [28] nodes, two on the US west and east
coasts, and one each in Europe, Asia, Australia, and South America, and with 10 clients
that access Hermes and Facebook via WiFi. Figs. 6b and 6c show the variance in median
access times across the PlanetLab nodes and across the wireless clients. We see that the
access times with Hermes are comparable to that of direct data sharing on Facebook.

Resource usage: Next, we measure the compute and bandwidth resources con-
sumed by the three Hermes client operations that require interactions with the com-
pute instance: (i) post links to newly shared content to the instance, (ii) serve requests
from friends who check if anything new has been shared with them (and download new
comments, if any), and (iii) receive the link to a recipient’s comment and post it to the
conversation. We perform each operation 1000 times and examine GAE’s reports for
resource usage. Table. 2 shows that the compute time and incoming/outgoing network
traffic incurred on average, for each operation is low.

8 Conclusions
We design and implement Hermes, a practical, cost-effective, OSN architecture for pri-
vate content sharing. Hermes intelligently uses limited storage and computing resources
on the cloud to facilitate timeliness and high availability, while minimizing resource us-
age. A key property of Hermes is that neither the cloud providers nor other friends of
a user can infer the membership of a private group. Via an analysis of mined Facebook
data and exhaustive simulations, we show that Hermes greatly reduces costs compared
to alternative solutions while ensuring the anonymity of the private group.
Acknowledgement: This work was supported by Army Research Office grant 62954CSREP.
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27. Liu, D., Shakimov, A., Cáceres, R., Varshavsky, A., Cox, L.P.: Confidant: Protecting osn data

without locking it up. Middleware’11
28. Peterson, L., Anderson, T., Culler, D., Roscoe, T.: A Blueprint for Introducing Disruptive

Technology into the Internet. In: HotNets’02
29. Shakimov, A., Lim, H., Caceres, R., Cox, L., Li, K., Liu, D., Varshavsky, A.: Vis-a-vis:

Privacy-preserving online social networking via virtual individual servers. COMSNETS ’11
(2011)

30. Stefanov, E., Shi, E., Song, D.X.: Towards practical oblivious ram. NDSS’12
31. Sweeney, L.: K-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness

Knowl.-Based Syst. (2002)
32. Urban, B., Tiefenbeck, V., Roth, K.: Energy consumption of consumer electronics in US

homes in 2010. bit.ly/10NMqOn
33. Zhang, L., Mislove, A.: Building confederated web-based services with priv.io. COSN ’13,

New York, NY, USA

A Propagating updates via ufiles
The ufile contains tuples < id, curl, up, data >, where id is a monotonically increas-
ing counter (eventually wraps around), curl is the unique URL pointing to the folder of
the owner of conversation c, up indicates the type of update, and data is the data asso-
ciated with a specific update status (explained later). A user’s Hermes client creates a
ufile for each of the user’s friends when the user first begins using Hermes (and when-
ever the user adds a new friend thereafter). The first time that a pair of friends engage

lat.ms/14fx4mC
wapo.st/12UidOW
bit.ly/117kPXo
bit.ly/1cclPzm
www.heroku.com/
oauth.net/
1.usa.gov/14fwPYI
bit.ly/15pqQmK
getsyme.com
wapo.st/11I58Mj
bit.ly/17Floky
bit.ly/10NMqOn


18

1. Bob inserts a 
comment in a file 

& updates his ufiles

comment

ufiles

2. Check Bob's ufile & 
download Bob's comment

Chloe

ufiles

encrpyted 
content

Bob

2. Check Bob's 
ufile & download 
Bob's comment Alice

3. Insert Bob's comment 
in the ufile for Dave

(relaying)

Dave
4. Check Alice's ufile to 

see Bob's comment

Fig. 7: Illustration of comment propagation in Hermes.
in a private conversation, they use the computing instance to exchange pointers to the
ufiles they have created for each other. The links to the ufiles are then stored on their
respective cloud storage permanently.

Consider a new bootstrapped conversation between Alice and all her friends. We
consider the scenario where Bob wants to post a comment (or reply) to content that was
originally shared by Alice.

Step 1: To comment on the content posted by Alice, Bob writes an update to the
ufiles that he maintains for his friends Alice and Chloe. Bob’s Hermes client writes
this update only to his ufiles for Alice and Chloe, and not his other friends, since they
are the members of the group. This update contains the tuple < id, curl, 1, link >,
where ‘1’ is an integer code to indicate that a new comment in conversation c is in
link,which is owned by Bob.

Step 2: When Alice and Chloe come online, they download their respective ufiles

from Bob’s storage and learn of the new comment in c. They individually retrieve Bob’s
comment and create new tuples of the form < id, curl, 2, link > in their own ufiles

for Bob. Here, ‘2’ is an integer code indicating that they have received the last comment
made by Bob in conversation c.

Step 3: When Bob comes online again and his client downloads the correspond-
ing ufiles from Alice and Chloe, it realizes that all his relevant friends have read his
latest comment. It then deletes the prior update < id, curl, 1, link > from his ufiles;
it also purges the corresponding comment from his cloud storage. By doing this, the
space occupied by the comment and ufiles do not simply grow over time, thus dras-
tically decreasing Hermes’s cloud storage requirements. Upon returning online, Alice
and Chloe notice that Bob’s original entry is deleted from his ufiles. This implicitly
tells them that Bob has received their update and hence, they delete their update tuples
from their ufiles for Bob.

Step 4: While Alice and Chloe get Bob’s comment, Dave is not Bob’s friend and
hence, does not receive it (Bob does not even maintain a ufile for Dave). To allow Dave
to see all the comments in a conversation he is part of (as with Facebook), Hermes lever-
ages the fact that Alice is a friend to all group members and incorporates an additional
step (shown in Fig.7). When Alice notices Bob’s update (step 2), she checks whether
there exist group members who are not friends with him. For each such member (e.g.,
Dave), Alice inserts an update tuple < id, curl, 3, rc > in their respective ufiles; here
‘3’ is a code for the relaying of a comment. rc refers to the relayed comment included
in the tuple. Upon coming online, Dave downloads Alice’s ufile for him, finds the
comment, and notifies Alice of the receipt of this update. Alice and Dave then purge the
associated updates from their respective ufiles (steps 2-4 as before).

Note that the above scheme for distributing comments also works for other types
of notifications (e.g., ‘Likes’ on Facebook) by simply having different update codes for
different types of notifications.
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