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Abstract. There has been a recent surge in research on adversarial
perturbations that defeat Deep Neural Networks (DNNs) in machine
vision; most of these perturbation-based attacks target object classifiers.
Inspired by the observation that humans are able to recognize objects
that appear out of place in a scene or along with other unlikely objects,
we augment the DNN with a system that learns context consistency rules
during training and checks for the violations of the same during testing.
Our approach builds a set of auto-encoders, one for each object class,
appropriately trained so as to output a discrepancy between the input
and output if an added adversarial perturbation violates context consis-
tency rules. Experiments on PASCAL VOC and MS COCO show that
our method effectively detects various adversarial attacks and achieves
high ROC-AUC (over 0.95 in most cases); this corresponds to over 20%
improvement over a state-of-the-art context-agnostic method.
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1 Introduction

Recent studies have shown that Deep Neural Networks (DNNs), which are the
state-of-the-art tools for a wide range of tasks [10, 18, 25, 37, 44], are vulnerable
to adversarial perturbation attacks [28, 49]. In the visual domain, such adversarial
perturbations can be digital or physical. The former refers to adding (quasi-)
imperceptible digital noises to an image to cause a DNN to misclassify an object
in the image; the latter refers to physically altering an object so that the captured
image of that object is misclassified. In general, adversarial perturbations are
not readily noticeable by humans, but cause the machine to fail at its task.

To defend against such attacks, our observation is that the misclassification
caused by adversarial perturbations is often out-of-context. To illustrate, consider
the traffic crossing scene in Fig. 1; a stop sign often co-exists with a stop line,
zebra crossing, street nameplate and other characteristics of a road intersection.



2 Shasha Li et al.,

Physical Adversarial Perturbation Attack

 Stop line, zebra crossing, ... 
then speed limit sign? suspicious!
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Fig. 1. An example of how our proposed context-aware defense mechanism works.
Previous studies [13, 43] have shown how small alterations (graffiti, patches etc.)
to a stop sign make a vulnerable DNN classify it as a speed limit. We posit that a
stop sign exists within the wider context of a scene (e.g., zebra crossing which is
usually not seen with a speed limit sign). Thus, the scene context can be used to
make the DNN more robust against such attacks.

Such co-existence relationships, together with the background, create a context
that can be captured by human vision systems. Specifically, if one (physically)
replaces the stop sign with a speed limit sign, humans can recognize the anomaly
that the speed limit sign does not fit in the scene. If a DNN module can also
learn such relationships (i.e., the context), it should also be able to deduce if the
(mis)classification result (i.e., the speed limit sign) is out of context.

Inspired by these observations and the fact that context has been used very
successfully in recognition problems, we propose to use context inconsistency
to detect adversarial perturbation attacks. This defense strategy complements
existing defense methods [17, 24, 33], and can cope with both digital and physical
perturbations. To the best of our knowledge, it is the first strategy to defend
object detection systems by considering objects “within the context of a scene.”

We realize a system that checks for context inconsistencies caused by adver-
sarial perturbations, and apply this approach for the defense of object detection
systems; our work is motivated by a rich literature on context-aware object
recognition systems [4, 11, 22, 35]. We assume a framework for object detection
similar to [42], where the system first proposes many regions that potentially
contain objects, which are then classified. In brief, our approach accounts for four
types of relationships among the regions, all of which together form the context
for each proposed region: a) regions corresponding to the same object (spatial
context); b) regions corresponding to other objects likely to co-exist within a
scene (object-object context ; c) the regions likely to co-exist with the background
(object-background context); and d) the consistency of the regions within the
holistic scene (object-scene context). Our approach constructs a fully connected
graph with the proposed regions and a super-region node which represents the
scene. In this graph, each node has, what we call an associated context profile.

The context profile is composed of node features (i.e., the original feature used
for classification) and edge features (i.e., context). Node features represent the
region of interest (RoI) and edge features encode how the current region relates
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to other regions in its feature space representation. Motivated by the observation
that the context profile of each object category is almost always unique, we use
an auto-encoder to learn the distribution of the context profile of each category.
In testing, the auto-encoder checks whether the classification result is consistent
with the testing context profile. In particular, if a proposed region (say of class
A) contains adversarial perturbations that cause the DNN of the object detector
to misclassify it as class B, using the auto-encoder of class B to reconstruct the
testing context profile of class A will result in a high reconstruction error. Based
on this, we can conclude that the classification result is suspicious.

The main contributions of our work are the following.
• To the best of our knowledge we are the first to propose using context inconsis-
tency to detect adversarial perturbations in object classification tasks.
• We design and realize a DNN-based adversarial detection system that automat-
ically extracts context for each region, and checks its consistency with a learned
context distribution of the corresponding category.
• We conduct extensive experiments on both digital and physical perturbation
attacks with three different adversarial targets on two large-scale datasets - PAS-
CAL VOC [12] and Microsoft COCO [32]. Our method yields high detection
performance in all the test cases; the ROC-AUC is over 0.95 in most cases, which
is 20-35% higher than a state-of-the-art method [47] that does not use context in
detecting adversarial perturbations.

2 Related Work

We review closely-related work and its relationship to our approach.
Object Detection, which seeks to locate and classify object instances in im-

ages/videos, has been extensively studied [31, 34, 41, 42]. Faster R-CNN [42]
is a state-of-the-art DNN-based object detector that we build upon. It initially
proposes class-agnostic bounding boxes called region proposals (first stage), and
then outputs the classification result for each of them in the second stage.

Adversarial Perturbations on Object Detection, and in particular physical
perturbations targeting DNN-based object detectors, have been studied re-
cently [6, 43, 48] (in addition to those targeting image classifiers [1, 13, 26]).
Besides mis-categorization attacks, two new types of attacks have emerged against
object detectors: the hiding attack and the appearing attack [6, 43] (see Sec-
tion 3.1 for more details). While defenses have been proposed against digital
adversarial perturbations in image classification, our work focuses on both digital
and physical adversarial attacks on object detection systems, which is an open
and challenging problem.

Adversarial Defense has been proposed for coping with digital perturbation
attacks in the image domain. Detection-based defenses aim to distinguish per-
turbed images from normal ones. Statistics based detection methods rely on
extracted features that have different distributions across clean images and per-
turbed ones [14, 19, 33]. Prediction inconsistency based detection methods process
the images and check for consistency between predictions on the original images
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Detection
Beyond
MNIST
CIFAR

Do not need
perturbed samples

for training

Extensibility to
object detection

PCAWhiten [19] 7 3 7, PCA is not feasible on large regions

GaussianMix [14] 7 7 7, Fixed-sized inputs are required

Steganalysis [33] 3 7 7, Unsatisfactory performance on small regions

ConvStat [38] 7 7 3

SafeNet [36] 3 7 3

PCAConv [29] 3 7 7, Fixed-sized inputs are required

SimpleNet [16] 7 7 3

AdapDenoise [30] 3 7 3

FeatureSqueeze [47] 3 3 3

Table 1. Comparison of existing detection-based defenses; since FeatureSqueeze [47]
meets all the basic requirements of our approach, it is used as a baseline in the
experimental analysis.

and processed versions [30, 47]. Other methods train a second binary classifier to
distinguish perturbed inputs from clean ones [29, 36, 38]. However many of these
are effective only on small and simple datasets like MNIST and CIFAR-10 [5].
Most of them need large amounts of perturbed samples for training, and very
few can be easily extended to region-level perturbation detection, which is the
goal of our method. Table 1 summarizes the differences between our method
and the other defense methods; we extend FeatureSqueeze [47], considered a
state-of-the-art detection method, which squeezes the input features by both
reducing the color bit depth of each pixel and spatially smoothening the input
images, to work at the region-level and use this as a baseline (with this extension
its performance is directly comparable to that of our approach).

Context Learning for Object Detection has been studied widely [4, 11, 21, 40,
45]. Earlier works that incorporate context information into DNN-based object
detectors [9, 15, 39] use object relations in post-processing, where the detected
objects are re-scored by considering object relations. Some recent works [7, 27]
perform sequential reasoning, i.e., objects detected earlier are used to help find
objects later. The state-of-the-art approaches based on recurrent units [35] or
neural attention models [22] process a set of objects using interactions between
their appearance features and geometry. Our proposed context learning framework
falls into this type, and among these, [35] is the one most related to our work.
We go beyond the context learning method to define the context profile and use
context inconsistency checks to detect attacks.

3 Methodology

3.1 Problem Definition and Framework Overview

We propose to detect adversarial perturbation attacks by recognizing the context
inconsistencies they cause, i.e., by connecting the dots with respect to whether
the object fits within the scene and in association with other entities in the scene.
Threat Model. We assume a strong white-box attack against the two-stage
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horse misclassified as boat
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, attack!!≠
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Testing:
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Fig. 2. Training phase: a fully connected graph is built to connect the regions of the
scene image – details in Fig. 3; context information relating to each object category
is collected and used to train auto-encoders. Testing phase: the context profile is
extracted for each region and input to the corresponding auto-encoder to check if it
matches with benign distribution.

Faster R-CNN model where both the training data and the parameters of the
model are known to the attacker. Since there are no existing attacks against the
first stage (i.e., region proposals), we do not consider such attacks. The attacker’s
goal is to cause the second stage of the object detector to malfunction by adding
digital or physical perturbations to one object instance/background region. There
are three types of attacks [6, 43, 48]:

• Miscategorization attacks make the object detector miscategorize the perturbed
object as belonging to a different category.

• Hiding attacks make the object detector fail in recognizing the presence of
the perturbed object, which happens when the confidence score is low or the
object is recognized as background.

• Appearing attacks make the object detector wrongly conclude that the per-
turbed background region contains an object of a desired category.

Framework Overview. We assume that we can get the region proposal results
from the first stage of the Faster R-CNN model and the prediction results for
each region from its second stage. We denote the input scene image as I and the
region proposals as RI = [r1, r2, ..., rN ], where N is the total number of proposals
of I. During the training phase, we have the ground truth category label and
bounding box for each ri, denoted as SI = [s1, s2, ..., sN ]. The Faster R-CNN’s
predictions on proposed regions are denoted as S̃I . Our goal as an attack detector
is to identify perturbed regions from all the proposed regions.

Fig. 2 shows the workflow of our framework. We use a structured DNN model
to build a fully connected graph on the proposed regions to model the context of
a scene image. We name this as Structure ContExt ModEl, or SCEME in short.
In SCEME, we combine the node features and edge features of each node ri, to
form its context profile. We use auto-encoders to detect context inconsistencies
as outliers. Specifically, during the training phase, for each category, we train a
separate auto-encoder to capture the distribution of the benign context profile



6 Shasha Li et al.,

Deep Cov
Layers

Region Proposal Net
(RPN)

RoI Pooling

a) Target Faster R-CNN stage 1:  region proposal

Target Faster R-CNN Stage 2: classification and regression for each RoI

RoI  feature 

updated RoI feature

Classifier

Regressor

category

bbox coordinates

Classifier

Regressor

category

bbox coordinates

b) Freeze the target Faster R-CNN & train SCEME 

 ri'

c) Message passing in SCEME: 

cj encodes location, scale and appearance of each RoI

RoI feature ri DropOut AvePool

Region
GRU

Scene
GRU

values: {r1,r2,...rj...rN}i≠j
keys: {c1,c2,...cj...cN}i≠j

query: ci
Attention

scene feature s

SCEME builds a graph

 ri'

 ri

Fig. 3. (a) The attack target model, the Faster R-CNN, is a two-stage detector. (b)
SCEME is built upon the proposed regions from the first stage of the Faster R-CNN,
and updates the RoI features by message passing across regions. (c) Zooming in
on SCEME shows how it fuses context information into each RoI, by updating RoI
features via Region and Scene GRUs.

of that category. We also have an auto-encoder for the background category to
detect hiding attacks. During testing, we extract the context profile for each
proposed region. We then select the corresponding auto-encoder based on the
prediction result of the Faster R-CNN model and check if the testing context
profile belongs to the benign distribution. If the reconstruction error rate is higher
than a threshold, we posit that the corresponding region contains adversarial
perturbations. In what follows, we describe each step of SCEME in detail.

3.2 Constructing SCEME

In this subsection, we describe the design of the fully connected graph and the
associated message passing mechanism in SCEME. Conceptually, SCEME builds
a fully connected graph on each scene image. Each node is a region proposal
generated by the first stage of the target object detector, plus the scene node. The
initial node features, ri, are the RoI pooling features of the corresponding region.
The node features are then updated (ri → r′i) using message passing from other
nodes. After convergence, the updated node features r′i are used as inputs to a
regressor towards refining the bounding box coordinates and a classifier to predict
the category, as shown in Fig. 3(b). Driven by the object detection objective,
we train SCEME and the following regressor and classifier together. We freeze the
weights of the target Faster R-CNN during the training. To force SCEME to rely
more on context information instead of the appearance information (i.e., node
features) when performing object detection, we apply a dropout function [20] on
the node features before inputing into SCEME, during the training phase. At the
end of training, SCEME should be able to have better object detection performance
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than the target Faster R-CNN since it explicitly uses the context information
from other regions to update the appearance features of each region via message
passing. This is observed in our implementation.

We use Gated Recurrent Units (GRU) [8] with attention [2] as the message
passing mechanism in SCEME. For each proposed region, relationships with other
regions and the whole scene form four kinds of context:

• Same-object context: for regions over the same object, the classification results
should be consistent;

• Object-object context: co-existence, relative location, and scale between objects
are usually correlated;

• Object-background context: the co-existence of the objects and the associated
background regions are also correlated;

• Object-scene context: when considering the whole scene image as one super
region, the co-existence of objects in the entire scene are also correlated.

To utilize object-scene context, the scene GRU takes the scene node features s as
the input, and updates ri → rscene. To utilize the other kinds of context, since
we have no ground truth about which object/background the regions belong to,
we use attention to learn what context category to utilize from different regions.
The query and key (they encode information like location, appearance, scale,
etc.) pertaining to each region are defined similar to [35]. Comparing the relative
location, scale and co-existence between the query of the current region and the
keys of all the other regions, the attention system assigns different attention
scores to each region, i.e., it updates ri, utilizing different amount of information
from {rj}j 6=i. Thus, rj is first weighted by the attention scores and then all rj are
summed up as the input to the Region GRU to update ri → rregions as shown in
Fig. 3(c). The corresponding output, rregions and rscene, are then combined via
the average pooling function to get the final updated RoI feature vector r′.

3.3 Context Profile

In this subsection, we describe how we extract a context profile in SCEME. Recall
that a context profile consists of node features r and edge features, where the
edge features describe how r is updated. Before introducing the edge features
that we use, we describe in detail how message passing is done with GRU [8].

A GRU is a memory cell that can remember the initial node features r and
then fuse incoming messages from other nodes into a meaningful representation.
Let us consider the GRU that takes the feature vector v (from other nodes) as the
input, and updates the current node features r. Note that r and v have the same
dimensions since both are from RoI pooling. GRU computes two gates given v
and r, for message fusion. The reset gate γr drops or enhances information in the
initial memory based on its relevance to the incoming message v. The update
gate γu controls how much of the initial memory needs to be carried over to the
next memory state, thus allowing a more effective representation. In other words,
γr and γu are two vectors of the same dimension as r and v, which are learned by
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Algorithm 1: SCEME: Training phase

Input : {RI , SI , S̃I}I∈TrainSet
Output : SCEME, AutoEncoderc for each object category c, and thresherr

1 SCEME ← TrainSCEME( {RI , SI}I∈TrainSet)

2 ContextProfiles[c] = [] for each object category c
3 for each RI = [r1, r2, ...] do
4 XI = [x1, x2, ...]← ExtractContextProfiles(SCEME, RI)

5 for each region, its prediction, and its context profile {rj , s̃j , xj} do
6 c̃← GetPredictedCategory(s̃j)
7 ContextProfiles[c̃]← ContextProfiles[c̃] + xj

8 end
9 end

10 for each category c do
11 AutoEncoderc ← TrainAutoEncoder(ContextProfiles[c])
12 end
13 thresherr = GetErrThreshold({AutoEncoderc})
14 return SCEME, {AutoEncoderc}, thresherr

the model to decide what information should be passed to the next memory state
given the current memory state and the incoming message. Therefore, we use the
gate vectors as the edge features in the context profile. There are, in total, four
gate feature vectors from both the Scene GRU and the Region GRU. Therefore,
we define the context profile of a proposed region as x = [r, γu1, γu2, γr1, γr2].

3.4 AutoEncoder for Learning Context Profile Distribution

In benign settings, all context profiles of a given category must be similar to
each other. For example, stop sign features exist with features of road signs and
zebra crossings. Therefore, the context profile of a stop sign corresponds to a
unique distribution that accounts for these characteristics. When a stop sign
is misclassified as a speed limit sign, its context profile should not fit with the
distribution corresponding to that of the speed limit sign category.

For each category, we use a separate auto-encoder (architecture shown in
the supplementary material) to learn the distribution of its context profile. The
input to the auto-encoder is the context profile x = [r, γu1, γu2, γr1, γr2]. A fully
connected layer is first used to compress the node features (r) and edge features
([γu1, γu2, γr1, γr2]) separately. This is followed by two convolution layers, wherein
the node and edge features are combined to learn the joint compression. Two fully
connected layers are then used to further compress the joint features. These layers
form a bottleneck that drives the encoder to learn the true relationships between
the features and get rid of redundant information. SmoothL1Loss, as defined
in [23, 46], between the input and the output is used to train the auto-encoder,
which is a common practice.

Once trained, we can detect adversarial perturbation attacks by appropriately
thresholding the reconstruction error. Giving a new context profile during testing,
if a) the node features are not aligned with the corresponding distribution of
benign node features, or b) the edge features are not aligned with the correspond-
ing distribution of benign edge features, or c) the joint distribution between the
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Algorithm 2: SCEME: Testing phase

Input :RI , S̃I , SCEME, {AutoEncoderc}, thresherr
Output : perturbed regions PerturbedSet

1 PerturbedSet = []
2 XI = ExtractContextProfiles(SCEME, RI)

3 for each region, its prediction, and its context profile {rj , s̃j , xj} do
4 c̃← GetPredictedCategory(s̃j)
5 err = GetAutoEncoderReconErr(AutoEncoderc̃, xj)
6 if err > thresherr then
7 region ← GetRegion(s̃j)
8 PerturbedSet← PerturbedSet+ region
9 end

10 return PerturbedSet

node features and the edge features is violated, the auto-encoder will not be able
to reconstruct the features using its learned distribution/relation. In other words,
a reconstruction error that is larger than the chosen threshold would indicate
either an appearance discrepancy or a context discrepancy between the input
and output of the auto-encoder.

An overview of the approach (training and testing phases) is captured in
Algorithms 1 and 2.

4 Experimental Analysis

We conduct comprehensive experiments on two large-scale object detection
datasets to evaluate the proposed method, SCEME, against six different adversar-
ial attacks, viz., digital miscategorization attack, digital hiding attack, digital
appearing attack, physical miscategorization attack, physical hiding attack, and
physical appearing attack, on Faster R-CNN (the general idea can be applied more
broadly). We analyze how different kinds of context contribute to the detection
performance. We also provide a case study for detecting physical perturbations
on stop signs, which has been used widely as a motivating example.

4.1 Implementation Details

Datasets. We use both PASCAL VOC [12] and MS COCO [32]. PASCAL VOC
contains 20 object categories. Each image, on average, has 1.4 categories and 2.3
instances [32]. We use voc07trainval and voc12trainval as training datasets and
the evaluations are carried out on voc07test. MS COCO contains 80 categories.
Each image, on average, has 3.5 categories and 7.7 instances. coco14train and
coco14valminusminival are used for training, and the evaluations are carried out
on coco14minival. Note that COCO has few examples for certain categories. To
make sure we have enough number of context profiles to learn the distribution,
we train 11 auto-encoders for the 11 categories that have the largest numbers of
extracted context profiles. Details are provided in the supplementary material.
Attack Implementations. For digital attacks, we use the standard iterative
fast gradient sign method (IFGSM) [26] and constrain the perturbation location
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(a) (b)

Fig. 4. (a) Reconstruction errors of benign aeroplane context profiles are generally
smaller than those of the context profiles of digitally perturbed objects that are
misclassified as an aeroplane. (b) Thresholding the reconstruction error, we get the
detection ROC curves for all the categories on PASCAL VOC dataset.

within the ground truth bounding box of the object instance. Because our defense
depends on contextual information, it is not sensitive to how the perturbation is
generated. We compare the performance against perturbations generated by a
different method (FGSM) in the supplementary material. We use the physical
attacks proposed in [13, 43], where perturbation stickers are constrained to be on
the object surface; the color of the stickers should be printable, and the pattern of
the stickers should be smooth. For evaluations on a large scale, we do not print or
add stickers physically; we add them digitally onto the scene image. This favors
attackers since they can control how their physical perturbations are captured.
Defense Implementation. Momentum optimizer with momentum 0.9 is used
to train SCEME. The learning rate is 5e-4 and decays every 80k iterations at a
decay rate of 0.1. The training finishes after 250k iterations. Adam optimizer is
used to train auto-encoders. The learning rate is 1e-4 and reduced by 0.1 when
the training loss stops decreasing for 2 epochs. Training finishes after 10 epochs.

4.2 Evaluation of Detection Performance

Evaluation Metric. We extract the context profile for each proposed region,
feed it to its corresponding auto-encoder and threshold the reconstruction error to
detect adversarial perturbations. Therefore, we evaluate the detection performance
at the region level. Benign/negative regions are the regions proposed from clean
objects; perturbed/positive regions are the regions relating to perturbed objects.
We report Area Under Curve (AUC) of Receiver Operating Characteristic Curve
(ROC) to evaluate the detection performance. Note that there can be multiple
regions of a perturbed object. If any of these regions is detected, it is a successful
perturbation detection. For hiding attacks, there is a possibility of no proposed
region; however, it occurs rarely (less than 1%).
Visualizing the Reconstruction Error. We plot the reconstruction error of
benign aeroplane context profiles and that of digitally perturbed objects that
are misclassified as an aeroplane. As shown in Fig. 4(a), the context profiles of
perturbed regions do not conform with the benign distribution of aeroplanes’
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Method
Digital Perturbation Physical Perturbation

Miscateg Hiding Appearing Miscateg Hiding Appearing

Results on PASCAL VOC:

FeatureSqueeze [47] 0.724 0.620 0.597 0.779 0.661 0.653

Co-occurGraph [3] 0.675 - - 0.810 - -

SCEME (node features only) 0.866 0.976 0.828 0.947 0.964 0.927

SCEME 0.938 0.981 0.869 0.973 0.976 0.970

Results on MS COCO:

FeatureSqueeze [47] 0.681 0.682 0.578 0.699 0.687 0.540

Co-occurGraph [3] 0.605 - - 0.546 - -

SCEME (node features only) 0.901 0.976 0.810 0.972 0.954 0.971

SCEME 0.959 0.984 0.886 0.989 0.968 0.989

Table 2. The detection performance (ROC-AUC) against six different attacks on
PASCAL VOC and MS COCO dataset

context profiles and cause larger reconstruction errors. This test validates our
hypothesis that the context profile of each category has a unique distribution. The
auto-encoder that learns from the context profile of class A will not reconstruct
class B well.

Detection Performance. Thresholding the reconstruction error, we plot the
ROC curve for “aeroplane” and other object categories tested on PASCAL VOC
dataset, in Fig. 4(b). The AUCs for all 21 categories (including background) are
all over 90%. This means that all the categories have their unique context profile
distributions, and the reconstruction error of their auto-encoders effectively detect
perturbations. The detection performance results, against six attacks on PASCAL
VOC and MS COCO, are shown in Tab. 2. Three baselines are considered.

• FeatureSqueeze [47]. As discussed in Tab. 1, many existing adversarial per-
turbation detection methods are not effective beyond simple datasets. Most
require perturbed samples while training, and only few can be extended to
region-level perturbation detection. We extend FeatureSqueeze, one of the
state-of-the-art methods, that is not limited by these, for the object detection
task. Implementation details are provided in the supplementary material.

• Co-occurGraph [3]. We also consider a non-deep graph model where co-
occurrence context is represented, as a baseline. We check the inconsistency
between the relational information in the training data and testing images
to detect attacks. Details are in the supplementary material. Note that the
co-occurrence statistics of background class cannot be modeled, and so this
approach is inapplicable for detecting hiding and appearing attacks.

• SCEME (node features only). Only node features are used to train the auto-
encoders (instead of using context profiles with both node features for region
representation and edge features for contextual relation representation). Note
that the node features already implicitly contain context information since, with
Faster R-CNN, the receptive field of neurons grows with depth and eventually
covers the entire image. We use this baseline to quantify the improvement we
achieve by explicitly modeling context information with SCEME.
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(a)

(b)

(c)

(d)

clean image digital perturbation Bottle misclassified
as TVmonitor

clean image physical perturbation Car misclassified
as Person clean image digital perturbation Bottle misclassified

as Car

clean image digital perturbation Horse misclassified
as Bird

+

+

+

+

The yellow box marks the ground truth perturbed region.
The red box marks the detected

                   perturbed region.

A false positive detection on non-perturbed person instance.

Fig. 5. A few interesting examples. SCEME successfully detects both digital and
physical perturbations as shown in (a) and (b). (c) shows that the horse misclassifi-
cation affects the context profile of person and leads to false positive detection on
the person instance. (d) Appearance information and spatial context are used to
successfully detect perturbations.

Our method SCEME, yields high AUC on both datasets and for all six attacks;
many of them are over 0.95. The detection performance of SCEME is consistently
better than that of FeatureSqueeze, by over 20%. Compared to Co-occurGraph,
the performance of our method in detecting miscategorization attacks, is better
by over 15%. Importantly, SCEME is able to detect hiding and appearing attacks
and detect perturbations in images with one object, which is not feasible with
Co-occurGraph. Using node features yields good detection performance and
further using edge features, improves performance by up to 8% for some attacks.
Examples of Detection Results. We visualize the detected perturbed regions
for both digital and physical miscategorization attack in Fig. 5. The reconstruction
error threshold is chosen to make the false positive rate 0.2%. SCEME successfully
detects both digital and physical perturbations as shown in Fig. 5(a)and(b). The
misclassification of the perturbed object could affect the context information of
another coexisting benign object and lead to a false perturbation detection on
the benign object as shown in Fig. 5(c). We observe that this rarely happens.
In most cases, although some part of the object-object context gets violated,
the appearance representation and other context would help in making the right
detection. When there are not many object-object context relationships as shown
in Fig. 5(d), appearance information and spatial context are mainly used to
detect a perturbation.

4.3 Analysis of Different Contextual Relations

In this subsection, we analyze what roles different kinds of context features play.
Spatial context consistency means that nearby regions of the same object
should yield consistent prediction. We do two kinds of analysis. The first one is
to observe the correlations between the adversarial detection performance and
the number of regions proposed by the target Faster R-CNN for the perturbed
object. Fig. 6(a) shows that the detection performance improves when more
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(a) (b)

(c)

Fig. 6. Subfigures are diverging bar charts. They start with ROC-AUC = 0.5 and
diverge in both upper and lower directions: upper parts are results on PASCAL VOC
and lower parts are on MS COCO. For each dataset, we show both the results from
the FeatureSqueeze baseline and SCEME, using overlay bars. (a) The more the regions
proposed, the better our detection performs, as there is more utilizable spatial
context; (b) the larger the overlapped region between the “appearing object” and
another object, the better our detection performs, as the spatial context violation
becomes larger and detectable (we only analyze the appearing attack here); (c)
the more the objects, the better our detection performs generally, as there is
more utilizable object-object context (performance slightly saturates at first due to
inadequate spatial context).

regions are proposed for the object and this correlation is not observed for the
baseline method (for both datasets). This indicates that spatial context plays a
role in perturbation detection. Our second analysis is on appearing attacks. If
the “appearing object” has a large overlap with one ground truth object, the
spatial context of that region will be violated. We plot in Fig. 6(b) the detection
performance with respect to the overlap between the appearing object and the
ground truth object, measured by Intersection over Union (IoU). We observe
that the more these two objects overlap, the more likely the region is detected as
perturbed, consistent with our hypothesis.
Object-object context captures the co-existence of objects and their relative
position and scale relations. We test the detection performance with respect
to the number of objects in the scene images. As shown in Fig. 6(c), in most
cases, the detection performance of SCEME first drops or stays stable, and then
improves. We believe that the reason is as follows: initially, as the number of
objects increases, the object-object context is weak and so is the spatial context as
the size of the objects gets smaller with more of them; however, as the number of
objects increases, the object-object context dominates and performance improves.

4.4 Case Study on Stop Sign

We revisit the stop sign example and provide quantitative results to validate
that context information helps defend against perturbations. We get 1000 per-
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False Positive Rate 0.1% 0.5% 1% 5% 10%

Recall of FeatureSqueeze [47] 0 0 0 3% 8%

Recall of SCEME (node features only) 33% 52% 64% 83% 91%

Recall of SCEME 54% 67% 74% 89% 93%

Table 3. Recall for detecting perturbed stop signs at different false positive rate.

turbed stop sign examples, all of which are misclassified by the Faster RCNN,
from the COCO dataset. The baselines and SCEME, are tested for detecting the
perturbations. If we set a lower reconstruction error threshold, we will have a
better chance of detecting the perturbed stop signs. However, there will be higher
false positives, which means wrong categorization of clean regions as perturbed.
Thus, to compare the methods, we constrain the threshold of each method so as
to meet a certain False Positive Rate (FPR), and compute the recall achieved,
i.e., out of the 1000 samples, how many are detected as perturbed? The results
are shown in Tab. 3. FeatureSqueeze [47] cannot detect any perturbation until a
FPR 5% is chosen. SCEME detects 54% of the perturbed stop signs with a FPR of
0.1%. Further, compared to its ablated version (that only uses node features),
our method detects almost twice as many perturbed samples when the FPR
required is very low (which is the case in many real-world applications).

5 Conclusions

Inspired by how humans can associate objects with where and how they appear
within a scene, we propose to detect adversarial perturbations by recognizing
context inconsistencies they cause in the input to a machine learning system. We
propose SCEME, which automatically learns four kinds of context, encompassing
relationships within the scene and to the scene holistically. Subsequently, we check
for inconsistencies within these context types, and flag those inputs as adversarial.
Our experiments show that our method is extremely effective in detecting a variety
of attacks on two large scale datasets and improves the detection performance by
over 20% compared to a state-of-the-art, context agnostic method.
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