
PAPP: Prefetcher-Aware Prime and Probe Side-channel A�ack
Daimeng Wang

University of California, Riverside
Riverside, CA

dwang030@cs.ucr.edu

Zhiyun Qian
University of California, Riverside

Riverside, CA
zhiyunq@cs.ucr.edu

Nael Abu-Ghazaleh
University of California, Riverside

Riverside, CA
nael@cs.ucr.edu

Srikanth V Krishnamurthy
University of California, Riverside

Riverside, CA
krish@cs.ucr.edu

ABSTRACT
CPU memory prefetchers can substantially interfere with prime
and probe cache side-channel attacks, especially on in-order CPUs
which use aggressive prefetching. This interference is not accounted
for in previous attacks. In this paper, we propose PAPP, a Prefetcher-
Aware Prime Probe attack that can operate even in the presence
of aggressive prefetchers. Speci�cally, we reverse engineer the
prefetcher and replacement policy on several CPUs and use these in-
sights to design a prime and probe attack that minimizes the impact
of the prefetcher. We evaluate PAPP using Cache Side-channel Vul-
nerability (CSV) metric and demonstrate the substantial improve-
ments in the quality of the channel under di�erent conditions.

KEYWORDS
CPU cache, Prime and probe, Prefetching
ACM Reference Format:
Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V Krish-
namurthy. 2019. PAPP: Prefetcher-Aware Prime and Probe Side-channel
Attack. In The 56th Annual Design Automation Conference 2019 (DAC ’19),
June 2–6, 2019, Las Vegas, NV, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3316781.3317877

1 INTRODUCTION
CPU cache side-channels can be exploited to extract sensitive infor-
mation [15, 20]. These attacks can be launched by any userspace
process and are able to bypass cross-process and even cross-VM
boundaries. The most general of these attacks is Prime and Probe
which has been widely used to extract secret keys from crypto algo-
rithms including AES [7, 15, 17] and El-Gamal [12]. To successfully
implement a prime and probe attack, researchers put considerable
e�orts into understanding and reverse engineering CPU features
such as cache indexing [5, 13] and replacement policy [1].

One aspect of side-channel attack that has not been well studied
is the impact of the data prefetcher, which speculatively fetches un-
accessed cache lines to improve cache hit rate. The prefetcher adds

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’19, June 2–6, 2019, Las Vegas, NV, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6725-7/19/06. . . $15.00
https://doi.org/10.1145/3316781.3317877

noise to the side-channel information in two ways: �rst, the vic-
tim signal has some spurious accesses that are from the prefetcher
rather than the application. Moreover, the attacker’s prime and
probe access patterns are limited since it also generates unneeded
memory accesses from the prefetcher. The e�ects described above
can substantially interfere with prime and probe attacks. One com-
monly adopted methodology is to utilize a linked-list setup of the
eviction set [17] to suppress prefetching. By adopting this approach,
an attacker can suppress the prefetcher to the next-line prefetcher
only and thus enable prime and probe of every other cache set. Still,
this approach leaves the attacker missing half of the cache sets,
lowering the quality of the leaked signal. To make things worse,
on CPUs with more aggressive prefetching, the attacker might not
even be able to prime and probe every other set, making the at-
tack way less e�ective. In particular, in-order processors such as
the Intel Atom, which is often used in embedded systems, have
very aggressive prefetchers since cache misses cause substantial
performance losses without the support of out-of-order execution.

In this paper, we develop a new prime and probe attack which
we call Prefetcher-Aware Prime and Probe (PAPP). PAPP reverse-
engineers the replacement policy and the prefetching behavior
and generate a prime and probe pattern in an automated fashion.
PAPP mitigates the impact of the prefetcher on prime and probe
attacks, substantially improving their e�ectiveness (especially in
the presence of aggressive prefetchers). Our experiments show
that PAPP can almost completely circumvent the e�ect of cache
prefetching on in-order CPUs with aggressive prefetching policy,
substantially improving the quality of prime and probe attack.

Our main contributions are:
• We perform a systematic study on the impact of prefetching
on prime and probe attacks. We demonstrate limitations of the
existing implementation of prime and probe attack.

• We present a novel prime and probe strategy aiming to address
the e�ect of prefetching. We combine the knowledge of replace-
ment policy and cache prefetcher to e�ectively circumvent the
e�ect of cache prefetching. We automate the generation of prime
and probe strategy and open-source our implementation at [9].

• Weevaluated PAPP on real-world system using cache side-channel
vulnerability (CSV) metric. We show that our approach dou-
bles the information leakage comparing to traditional prime
and probe implementations. We also discuss the e�ect of the
prefetcher on CSV metric.

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V Krishnamurthy

(a) Initial state (b) Victim’s eviction (c) Signal erased (d) Cache hit

Figure 1: Prefetcher’s e�ect on traditional prime and probe

Figure 2: PAPP Attack Work�ow

2 BACKGROUND AND MOTIVATION
The high cost of memory accesses is one of the fundamental bot-
tlenecks limiting processor performance. Processors use caches
(often Set-associative) to store recently accessed memory in order to
compensate this cost. Moreover, modern CPUs exploit predictable
program access patterns using prefetchers that preload memory
that is likely to be accessed in the future [18]. Prefetchers can be
quite aggressive, especially in in-order processors which are often
used in embedded applications: in such processors, cache misses
cannot be compensated for using out-of-order execution. For ex-
ample, Intel CPUs implement a streaming prefetcher which could
prefetch up to 20 cache lines ahead [6].

Because CPU caches are shared among multiple programs, they
become targets of side-channel attacks [15]. Prime and probe is one
of the most general attack strategies because it does not require
shared memory pages with the victim. At high level, the attacker
starts with completely �lling (prime) the cache sets she wish to
monitor using a carefully chosen eviction set. When the victim
generates memory references, its accesses replace some of the cache
lines in the eviction set �lled by the attacker. The attacker can then
access the eviction set again (probe); whenever an access results in
a cache miss, she can infer that the victim has accessed that cache
set resulting in her data being replaced.

The most commonly used approach to implement a prime and
probe attack is to sequentially access all cache lines in the same
cache set from the eviction set, timing the total access time [12, 15].
This way, priming and probing are built into one access pattern,
making it e�cient to monitor a single cache set.

Unfortunately, this approach does not work well with multiple
cache sets in the presence of a prefetcher. Figure 1 shows an example
of a prime and probe attack on 8-way set-associative cache. First,
the attacker primes all cache lines in sets 0,1,2 and waits for victim’s

activity (a). Next, victim’s memory activity evicts cache set 1 (b). In
(c), the attacker starts to prime and probe cache set 0, getting all
cache hits due to the lack of victim’s activity on this set. However,
during this process, the prefetcher loads all cache lines from cache
set 1 back, completely erasing the signal created by the victim (d).

This issue cannot be solved by simply going backward in prime
and probe order. On many modern CPUs, the prefetcher can also
detect whether an attacker accessing memory in forward order or
backward order, changing prefetching tactics accordingly. Tromer
et. al. [17] attempted to set up a random-order linked-list structure
and utilize a pointer-chasing technique when accessing eviction
set memories, suppressing the stream prefetcher from aggressively
loading too many cache sets because of the unpredictable access
pattern. However, we �nd that this approach still cannot completely
get around the next-line prefetching (a standard prefetcher that
always brings in the next cache line), especially on in-order CPUs
with more aggressive prefetching. As a result, attackers often com-
pensate for this prefetching issue by either skipping every other
cache set and/or repeatedly conducting experiments and testing
di�erent cache sets each time [23]. In either case, the performance
and precision of prime and probe is severely impacted, potentially
making it unusable for CPUs with aggressive prefetchers.

3 PAPP DESIGN AND IMPLEMENTATION
We propose Prefetcher-Aware Prime and Probe (PAPP) attack, a
prime and probe attack that overcomes the negative impacts of
prefetching. Figure 2 demonstrates a high-level work�ow of the
attack. Similar to other prime and probe attacks, the attacker �rst
creates an eviction set. Utilizing this eviction set, PAPP �rst con-
ducts prefetcher reverse engineering and replacement policy
reverse engineering. Using the obtained pro�les of the prefetcher
and replacement policy, PAPP then constructs a probe sequence
and subsequently a prime sequence. PAPP then combines both
sequences into a prime and probe attack that circumvents the in-
terference of the prefetcher.

Speci�cally, PAPP leverages two new ideas: (1) It �rst reverse-
engineers the replacement policy to make the probe sequence possi-
ble using only one access to each set (instead of having to access all
the cache lines in each set). As a result, fewer accesses are generated,
leading to less prefetching activities; and (2) It uses probe patterns
that avoid the impact of the prefetcher. Together, the techniques
allow for near perfect probing of the cache, even on in-order CPUs
with aggressive prefetching. Although we omit the details due to
space, we are able to automate the construction of these sequences
giving our pro�ling, potentially enabling the attack to be adapt-
able with little e�ort to other CPUs. Detailed implementation of
algorithms used by PAPP can be found at [9].

To simplify explanations, and without loss of generality, we
assume that the attacker targets a single memory page. We design
and implement PAPP attack on Intel Atom Z3560 and Z3580 and
use the L2 cache of Z3580 for demonstration. Intel Atom is an in-
order processor with a uni�ed 16-way set-associative L2 cache. It
has a cache line size of 64 bytes, which means it would require 64
cache sets to cover a 4KB memory page. We selected the Atom, as
an in-order processor representative of what is used in embedded
systems, because such processors are known to use aggressive

PAPP: Prefetcher-Aware Prime and Probe Side-channel A�ack DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

(a) n = as = 0 (b) n = a + 16s = 0 (c) n = a + 16s = 32 (d) n = a + 16s = 63

Figure 3: Occupancy on L2 cache of Atom Z3580. Darker
cells means higher chance of cache line being in cache. Each
cache line tested 100 times.

prefetchers. All results are from real experiments conducted on an
Android phone using Atom Z3580 CPU.

3.1 Reverse Engineering the Prefetcher and
Replacement Policy

Eviction Set:We construct the eviction set ES withm sets and n
lines per set similar to other prime and probe attacks (e.g., [7]). Let a
be the associativity of the CPU cache level being targeted, i.e. each
cache set is composed of a cache lines. Therefore, in order to fully
occupy the cache, we need n � a. We partition the eviction set ES in
to two sections: occupation section andwarmup section (which
is a new improvement we introduce here). The occupation section
is composed ofm⇥a cache lines, designed to occupy the cache after
priming. This section is essential to all prime and probe attacks. On
CPUs with strict least-recently-used (LRU) replacement policy, the
warmup section is not needed. However, most modern CPUs do
not have a strict LRU policy [1], hence the necessity of the warmup
section which is used to make the occupancy and replacement state
of the cache set more predictable as we demonstrate later in the
paper.
Reverse Engineering Prefetcher: We reverse engineer the CPU
memory prefetcher and use the results later in Section 3.2 to con-
struct PAPP prime and probe sequence. Prefetcher reverse engi-
neering aims to answer the following two questions:

(1) What cache lines will be occupying the CPU cache after
accessing a sequence of memories in the eviction set?

(2) What cache lines will be �rst replaced upon victim’s access
to the same cache set?

We perform prefetcher reverse-engineering using two steps:
1) Access a sequence of cache lines in the eviction set ES and 2)
Access an arbitrary cache line in ES and check whether the this
line is cached (indicating it was loaded or prefetched). We adopt the
pointer-chasing technique used in previous literature [17] during
the accesses suppress the prefetcher.

The prefetcher behavior is complex and can vary based on the ac-
cess pattern and the availability of memory bandwidth. To provide
a basic characterization, we conduct prefetcher reverse-engineering
with respect to accesses to a single set, i.e. what cache lines will be

in the cache after we fully prime a single set s in by accessing all
cache lines mapped to s in the eviction set. The reverse-engineering
result on Intel Atom Z3580 processor is shown in Figure 3.

Figure 3(a) demonstrate the cache occupancy heat map of the
eviction set after priming set s = 0 in the eviction set without any
warmup section (i.e. n = a = 16). We notice that Atom does not
have a naive LRU replacement policy, as accessing 16 cache lines
in the eviction set does not guarantee full cache occupancy of the
accessed lines. As a result, we determine that a warmup section is
necessary for reliable cache priming.

Figures 3(b), 3(c), 3(d) shows the cache occupancy heat map
after priming set 0, 32 and 63 respectively with 16 extra lines as
warmup (i.e. n = a + 16 = 32). First, we see that using 16 extra
lines reliably ensures the cache occupancy of the occupancy section
of the eviction set (lines 16-31). Additionally, we found that the
prefetching behavior di�ers for di�erent cache sets. The prefetcher
is more aggressive at the beginning of the page (cache set 0) than
at the middle of the page (cache set 32). And towards the end of
the page (cache set 63) the prefetcher will prefetch previous cache
set instead of next cache set apparently to avoid prefetching into a
potentially unmapped or uncached page.

Based on the analysis above, we conclude that although tradi-
tional prime and probe will be able to monitor every other set at
the middle of the memory page, it’s impossible to do so at the be-
ginning and end of the page. The e�ectiveness of traditional prime
and probe is substantially impacted by aggressive prefetching.
Reverse EngineeringReplacement policy:We reverse engineer
the replacement policy which is needed to construct the prime and
probe sequences. If we can reliably set up which cache line will be
replaced if a set is accessed by the victim, we can probe only this
line to determine if there is a victim access, substantially reducing
the number of memory accesses and prefetcher noise.

Similar to prefetcher pro�ling conducted in Figure 3, we conduct
replacement pro�ling by �rst fully priming a cache set s . Afterwards,
for each cache line in s , we compare the miss rate of this cache line
with/without a single victim memory access in set s as an indicator
of how often a cache line in the eviction set will be replaced after
a single victim memory access at the same cache set. Figure 4
shows our pro�ling result on Intel Atom Z3580. According to Figure
4(a), when we have a 16-cache-line warmup section, the 16th least
recently used cache line reliably becomes the next victim. However,
as we can see in Figure 4(b), with a warmup section size of 8, the
replacement status becomes much less predictable.

3.2 PAPP Prime and probe Sequence
With the knowledge of the prefetching and replacement policies,
PAPP crafts a prefetcher aware prime and probe sequence.
Probe Sequence: To avoid prefetcher e�ects, accesses in the probe
sequence should not prefetch memory from the rest of the sequence;
otherwise prefetched data overwrites any victim data. Moreover,
accessing probe sequence should not prefetch new data into the
cache; otherwise prefetched data evicts attacker’s eviction set data.
We have automated the construction of probe sequence using the
prefetcher reverse-engineering result we discussed in Section 3.1.
We start with an empty sequence seqprobe = (). For each cache
set s in the eviction set ES , we try to �nd a cache line indexed to s

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V Krishnamurthy

(a) n = a + 16

(b) n = a + 8

Figure 4: Replacement pro�ling on L2 cache of Atom Z3580.
Darker means higher chance of line being replaced �rst.
Each cache line tested 100 times.

Figure 5: Sample probe sequence for L2 cache of Intel Atom.

Figure 6: Sample prime sequence (solid line) for L2 cache of
Intel Atom which sets line 20 to be replaced next.

in the occupation section of ES (thus prevents self-evicting) such
that accessing seqprobe does not prefetch the chosen cache line.
Upon �nding such cache line, we append it to seqprobe and move
on to the next set until all sets are covered. There can be multiple
possible probe sequences that satisfy our requirements. Figure 5
illustrates one possible generated probe sequence for L2 cache of
Intel Atom Z3580.
Prime Sequence: For each cache set s , we seek a memory access
sequence of cache lines in ES that can (1) occupy the cache with
the occupancy section in ES and (2) set the chosen cache line in the
probe sequence to be the next one being replaced. We automate this
process utilizing the reverse-engineering result of the prefetcher
and replacement policy. Figure 6 shows a prime sequence of one
set generated on Intel Atom Z3580. The sequence �rst access all

cache lines in the warmup section. Next, it accesses line 20 and
�nally rest of cache lines in occupation section. According to our
reverse-engineering result in Figure 4(a), this will reliably set line
20 as the next one being replaced.

Generating prime sequence will be problematic when there is
forward prefetching and backward prefetching at the same time.
In the case of Atom Z3580, priming cache set 62 will prefetch all
cache lines in set 61 while priming cache set 61 will prefetch set 62.
Therefore whichever set got primed �rst will have its replacement
status wiped when priming the other set. Fortunately, for Atom
Z3580, such backward prefetching only exists when priming cache
set 62 and 63. In practice, the attacker can omit these two cache
sets in order to ensure other cache sets are monitored e�ectively.

4 EVALUATION
We implement both PAPP and traditional prime and probe attacks
in C and perform the attack on Intel Atom Z3580 CPU running
Android OS. For traditional prime and probe attack, we use a stan-
dard implementation following previous attacks [4, 7, 23] which
prime and probe every other cache set and uses pointer chasing
to suppress the prefetcher. In contrast, PAPP is able to probe all
sets with the exception of sets 62 and 63 as discussed earlier. We
use a benchmark victim program and test the ability of prime and
probe attack towards inferring victim’s activity. We do not apply
any prefetcher suppression techniques to the victim. We consider
three victim process access patterns:

(1) Accessing one cache line: in this pattern, the victim’s be-
havior corresponds to LLC-based AES attacks introduced
in [4, 7, 23]. In these attacks, the attacker exploits the Linux
complete fair scheduler (CFS) to interrupt the victim’s exe-
cution. As a result, the victim can only access a single AES
table entry between two attacker prime and probe rounds.

(2) Accessing six consecutive cache lines: corresponds to at-
tacks on El-Gamal cipher [12], where each table entry spans
6 cache lines. CFS exploit is optional since the crypto com-
putation is much slower than AES.

(3) Accessing a various number of random cache lines: this case
provides a tunable more general access pattern.

To measure the e�ectiveness of the attack, we use the cache side-
channel vulnerability (CSV) [21] metric. CSV computes Pearson
correlation coe�cient between the victim’s cache activity (oracle)
and attacker’s measurement. The higher the CSV, the stronger the
correlation between victim’s activity and attacker’s measurement,
indicating better attack e�ectiveness.

4.1 Modi�cation to CSV Metric
CSV does not account for CPU cache prefetching and has only
been used in experiments where the prefetcher is disabled. The
original work [21] assumed that the prefetcher can be either dis-
abled or fully suppressed. As a result, it only considers the victim
accesses from the application perspective rather than their foot-
print in the cache as observed by the attacker. In reality, however,
the prefetcher a�ects victim’s memory footprint and in turn a�ect
attacker’s observations.

Figure 7 demonstrates one attack scenario. In this example, the
victim accesses one cache set while an attacker (traditional or PAPP)

PAPP: Prefetcher-Aware Prime and Probe Side-channel A�ack DAC ’19, June 2–6, 2019, Las Vegas, NV, USA

Figure 7: Victim’s prefetching

(a) Next-line prefetch prediction. (b) Full prefetch prediction.

Figure 8: CSV score with prefetch prediction.

is trying to infer victim’s access. To measure the e�ectiveness of the
attacker, CSV computes the correlation between attacker’s observa-
tion (Figure 7(c), Figure 7(d)) and victim’s access (Figure 7(a)). With
the presence of prefetcher, however, the attacker does not directly
monitor victim’s memory access. Instead, attacker can only monitor
a combination of victim’s memory access and victim’s prefetched
memory access (Figure 7(b)). Therefore, computing the correlation
between (a),(c) and (a),(d) does not accurately re�ect the success in
recovering the cache state, as some of the attacker’s observations
can only correlate to the victim’s prefetching behavior.

To address this issue, for the victim access pattern we include
the prefetching behavior based on a model of the prefetcher. A
simple model is to assume that the prefetcher will only prefetch
next cache line for the victim. A more sophisticated model can use
the prefetcher pro�le (as we carried out in the previous section) to
more accurately predict victim’s prefetching behavior. Note that
we only modify the computation of the CSV metric, not to the
operation of PAPP or traditional prime and probe experiments.

4.2 Comparison to Traditional Prime and
Probe

Figure 8 shows the CSV score with the traditional attack and
PAPP. We found that for type (1) victim, the prefetcher indeed only
prefetches the next cache line except at the beginning and end of a
page. PAPP substantially outperforms traditional prime and probe
across all cases: for example, for type(1) workload, PAPP achieve a
CSV of 0.81 using the modi�ed next line CSV metric (Figure 8(a))
and even higher with the full prefetch prediction (Figure 8(b)), while
traditional prime and probe scores only 0.48, demonstrating that
PAPP is a much higher quality attack. Since traditional prime and

Figure 9: Prefetched cache lines for type (3) victim.

Figure 10: CSV for type (3) victim

probe can only probe every other cache set, it cannot capture access
to sets not being probed, resulting in a lower correlation.

For type (2) and type (3) victims, we found that the prefetcher is
more aggressive when multiple closely-located cache lines are ac-
cessed. In type (2) victim, we found that the prefetcher is constantly
prefetching 10-11 cache lines. In type (3) victim, the aggressiveness
of the prefetcher depends on the memory access pattern of the
victim. As a result, a naive next-line prediction can no longer re�ect
the cache activity of the victim program. This can be compensated
by having a better pro�le of victim’s prefetching behavior, as shown
in Figure 8(b). We see that with the correct prefetcher pro�ling, the
CSV for type (2) victim rises to 0.2 (traditional) and 0.88 (PAPP),
while the CSV for type (3) victim rises to 0.39 (traditional) and
0.95 (PAPP). We notice that type (2) victim has a low CSV under
traditional prime and probe. This is because the prefetcher is more
aggressive for type (2) victim, hence prefetching cache lines in more
sets that traditional prime and probe cannot monitor.

Figure 9 further demonstrates the e�ect of the prefetcher when
a type (3) victim accesses various numbers of cache sets. On av-
erage, the prefetcher prefetches no more than 2.1 additional lines
per victim’s memory access. Figure 10 shows the CSV score for
type (3) victim with di�erent number of accesses. We notice that as
the intensity of the victim’s activity increases, next-line prediction
approach loses its e�ectiveness. A re�ned “full prediction” is nec-
essary when victim accesses more memory during one round of
prime and probe. As we mentioned in Section 4.1, this observation
only refers to the computation of the CSV metric. The operations
of PAPP or traditional prime and probe remain unmodi�ed.

4.3 Discussion
PAPP exploits the replacement policy and attempts to set the cache
replacement to a more predictable status. Through our experiment
with Intel Atom processors, we show that this can be achieved
on processors without naive LRU replacement policy. On ARM

DAC ’19, June 2–6, 2019, Las Vegas, NV, USA Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V Krishnamurthy

CPUs, however, we are unable to achieve the same since ARM’s
replacement policy is much less predictable as demonstrated in
previous research. [10]

We also experimented on some out-of-order Intel CPU architec-
tures including Xeon, Haswell, Sandybridge and Skylake. PAPP can
successfully generate a prime and probe strategy on these CPUs
but their prefetchers behaves very di�erently from Atom. On Xeon,
we found that pointer chasing technique can e�ectively disable
next-line prefetcher. On Haswell, Sandybridge and Skylake, we
found that priming a cache set with odd index will prefetch the
next line while priming a cache set with even index will prefetch
the previous line. As we discussed in Section 3.2, the generated
prime and probe strategy cannot monitor adjacent cache sets and
achieve higher coverage than traditional prime and probe on these
CPUs One conclusion of this is that PAPP is most important for
in-order processors which have more aggressive prefetching.

Besides coverage, PAPP also has an advantage of manipulat-
ing the replacement policy and separating probe sequence with
prime sequence. Speci�cally, when probing results in a cache hit,
an attacker can simply skip this set during priming, improving the
throughput of prime and probe drastically. This bene�t applies to
both in-order CPUs with aggressive prefetchers and out-of-order
CPUs with less aggressive prefetchers.

We show that with the prefetcher-aware approach of PAPP, we
can monitor more cache sets than traditional prime and probe
attacks. We believe this makes PAPP applicable on a wider variety
of attacks, especially in scenarios where attacker can only obtain a
limited number of observations. (e.g. [19]) We plan to implement
new cache side-channel attacks using PAPP in the future.

5 RELATEDWORK
There has been an abundance of existing work on prime and probe
CPU cache side-channel attacks. The Advanced Encryption Stan-
dard (AES) is the �rst to fall victim to prime and probe attack [7, 15,
17] where attackers were able to recover victim’s memory accesses
of AES lookup table, inferring the secret key. Prime and probe at-
tack is also used to break other mechanisms such as El-Gamal [12].
Zhang et al. [22, 23] show that prime and probe attacks can even
cross VM boundaries and perform cross-tenant attacks on PaaS
(Platform as a service) clouds. Moreover, prime and probe is shown
to work not only on Intel CPUs but also other environments such
as ARM [10] and browsers [14].

There have been a few studies on prefetcher’s e�ect on cache side-
channel attacks. Tromer et al. [17] is the �rst to acknowledge CPU
prefetching’s interference on prime and probe attack and propose a
linked-list structure of eviction set and pointer-chasing technique
to suppress the prefetcher. This technique is widely adopted in
almost all known prime and probe implementations. Fuchs et al. [3]
demonstrate that it is possible to defend prime and probe attacks
by applying disruptive prefetching techniques to obfuscate victim’s
memory footprint. Unfortunately, to our knowledge, this technique
is not implemented in any CPUs.

Recently, researchers are paying more attention to the implica-
tions of CPU optimizations (e.g. prefetcher, branch predictor, etc.)
on side-channel attacks. Shin et al. [16] show that CPU cache stride
prefetching introduces a side-channel that can be exploited against
ECDH algorithm in OpenSSL. Other CPU optimizations such as

branch predictor (e.g. [2]) and speculative execution (e.g. [8, 11]
have also been exploited for side-channel attacks.

6 CONCLUSION
In this paper, we propose PAPP: a prefetcher-aware prime and
probe cache side-channel attack. PAPP performs systematic reverse-
engineering of CPU cache prefetcher and replacement policy. We
show that PAPP is able to construct prime and probe strategy
that are resistant to the interference of aggressive prefetchers on
in-order CPUs. We evaluated PAPP on real-world system using
cache side-channel vulnerability (CSV) metric and demonstrates
that PAPP doubles the information leakage comparing to traditional
prime and probe implementations. We hope that in the future, PAPP
can be used in new attacks and applications to provide e�cient
cache monitoring.

REFERENCES
[1] A. Abel and J. Reineke. 2014. Reverse engineering of cache replacement policies

in intel microprocessors and their evaluation. In Proc. ISPASS ’14.
[2] D. Evtyushkin, P. Ponomarev, and N. Abu-Ghazaleh. 2016. Jump-over-ASLR:

Attacking the Branch Predictor to Bypass ASLR. In Proc. Micro ’16.
[3] A. Fuchs and R. B. Lee. 2015. Disruptive Prefetching: Impact on Side-channel

Attacks and Cache Designs. In Proc. SYSTOR ’15.
[4] D. Gullasch, E. Bangerter, and S. Krenn. [n. d.]. Cache Games – Bringing Access-

Based Cache Attacks on AES to Practice. In Proc. IEEE SP ’11.
[5] R. Hund, C. Willems, and T. Holz. 2013. Practical timing side channel attacks

against kernel space ASLR. In Proc. IEEE SP ’13.
[6] Intel. 2016. Intel 64 and IA-32 Architectures Optimization Reference Man-

ual). (2016). https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf

[7] M. Kayaalp, D. Ponomarev, N. Abu-Ghazaleh, and A. Jaleel. 2016. A high-
resolution side-channel attack on last-level cache. In Proc. DAC ’16.

[8] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T.
Prescher, M. Schwarz, and Y. Yarom. 2019. Spectre attacks: Exploiting speculative
execution. In Proc. IEEE SP ’19.

[9] UCR Security Lab. 2019. PAPP Repo. (2019). https://github.com/seclab-ucr/PAPP
[10] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard. 2016. ARMageddon:

Cache Attacks on Mobile Devices. In Proc. USENIX Security ’16.
[11] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,

P. Kocher, D. Genkin, Y. Yarom, and . Hamburg. 2018. Meltdown: Reading Kernel
Memory from User Space. In Proc. USENIX Security ’18.

[12] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B Lee. 2015. Last-level cache side-channel
attacks are practical. In Proc. IEEE SP ’15.

[13] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon. 2015.
Reverse engineering Intel last-level cache complex addressing using performance
counters. In Proc. RAID ’15.

[14] Y. Oren, V. P Kemerlis, S. Sethumadhavan, and A. D Keromytis. 2015. The spy in
the sandbox: Practical cache attacks in javascript and their implications. In Proc.
SIGSAC ’15.

[15] D. A. Osvik, A. Shamir, and E. Tromer. 2006. Cache Attacks and Countermeasures:
The Case of AES. In Topics in Cryptology – CT-RSA 2006, D. Pointcheval (Ed.).

[16] Y. Shin, H. C. Kim, D. Kwon, J. H. Jeong, and J. Hur. 2018. Unveiling Hardware-
based Data Prefetcher, a Hidden Source of Information Leakage. In Proc. SIGSAC
’18.

[17] E. Tromer, D. A. Osvik, and A. Shamir. 2010. E�cient Cache Attacks on AES, and
Countermeasures. Journal of Cryptology 23 (01 Jan 2010).

[18] S. P Vanderwiel and D. J Lilja. 2000. Data prefetch mechanisms. ACM Computing
Surveys (CSUR) 32, 2 (2000).

[19] D. Wang, A. Neupane, Z. Qian, N. Abu-Ghazaleh, S. V Krishnamurthy, E. JM
Colbert, and P. Yu. 2019. Unveiling your keystrokes: A Cache-based Side-channel
Attack on Graphics Libraries. In Proc. NDSS ’19.

[20] Y. Yarom and K. Falkner. 2014. FLUSH+ RELOAD: A High Resolution, Low Noise,
L3 Cache Side-Channel Attack. In Proc. USENIX Security ’14.

[21] T. Zhang, F. Liu, S. Chen, and R. Lee. 2013. Side Channel Vulnerability Metrics:
The Promise and the Pitfalls. In Proc. HASP ’13.

[22] Y. Zhang, A. Juels, K Reiter, M., and T. Ristenpart. 2014. Cross-tenant side-channel
attacks in PaaS clouds. In Proc. SIGSAC ’14.

[23] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. 2012. Cross-VM Side Channels
and Their Use to Extract Private Keys. In Proc. CCS ’12.

