SmartSiren: Virus Detection and Alert for Smartphones

Jerry Cheung, Starsky Wong, Hao Yang and Songwu Lu MOBISYS 2007

Premise

- Smartphones have become increasingly popular.
- So have viruses for smartphones (among the hackers)!
 - These quickly spread using SMS or Bluetooth and sometimes IP-based applications.
- SmartSiren is a system that performs virus detection and quarantine.
 - Use of behavioral analysis
 - Inform potential victims of attack.

Contributions

- Demonstrate the vulnerability of Window Mobile Smart Phones by implementation of proof-of-concept viruses.
- Design of SmartSiren towards detection and targeted alerts
- A new ticketing scheme that is a part of SmartSiren to help preserve User privacy.

Roadmap

- Introduction to smartphones/viruses
- Requirements for virus infestation/ implementation
- SmartSiren Architecture
 - Collection of Data for Analysis
 - Detection of Viruses
 - Privacy Preservation
- Implementation
- Evaluations (based on simulations)

SmartPhone Viruses

Cabir

- released in 2004
- can self-replicate but does not harm phones
- Comm Warrior
 - An infected smartphone will send out a copy of itself to each smartphone on the user's contact list.

• Others

Infection Vector	Examples
Cellular Network	CommWarriors, Mabir
Bluetooth	Cabirs, CommWarrior
Internet over	Skulls, Doomboot
WiFi/GPRS/EDGE	
USB/ActiveSync/Docking	Crossover, Mobler
Peripherals	Cardtrap

What does SmartSiren target?

- Viruses that use the SMS and Bluetooth interfaces.
 - Why ?

Internet based, Peripheral based (floppy) or Docking based viruses, the host device needs to be infected first.

Hopefully antivirus systems help.

Requirement for an attack

- The requirement is that the phone should allow third party applications to run.
- Microsoft along with Symbian has taken the approach to implement policies to disallow unknown applications.
- However, approach does not work. Why?
 - Software bugs and vulnerabilities may still exist.
 - Time and economic pressures -- certification time consuming and expensive. Consumers feel frustrated since they cannot run apps.
 - SIM unlocking of the phone requires application unlocking -- very common in other countries.

Implementing a virus

- Implement a virus that mimics Cabir and Flexispy.
 - Use function calls in Bluetooth to discover the devices that are in close proximity.
 - Once these devices are discovered, a simple for loop to send them messages continuously.
 - 8 KB on a HP iPaq Smartphone.
- Prompts the users -- asks if it should be saved (more innovative ways possible)
 - If yes then, saves the virus and does what it is supposed to do.

Why are traditional methods inadequate ?

- Firewall and IDS difficult -- communication with peer devices using bluetooth and SMS.
- Up-to date antivirus software may be difficult to maintain -- intermittent Internet connectivity -- viral signatures may not be identifiable.
- Quarantining viruses during mobility difficult.
- Smartphone may not have storage/power to have a complex on-device anti-virus solution.

Architecture of SmartSiren

- Large number of smartphones that want to be protected.
- A proxy that communicated through either cellular or IP-based connections.
- A lightweight agent on each smartphone that logs device activities.
 - Logs periodically reported to proxy

SmartSiren Architecture

In a nutshell...

- Upon receiving logs, proxy performs per-device viral behavior analysis as well as aggregated system-wide analysis.
- Identifies infected smartphones.
- Proxy alerts infected smartphone users.
- It also alerts other smartphone users that may be vulnerable to attacks.
- Proxy based architecture chosen since smartphones may have limited capabilities.
 - Offloads processing burdens.
- One can think of multiple proxies to alleviate centralized bottleneck.

Smartphone agent

Consists of Four Modules

- Logging
 - Logs activities -- SMS and bluetooth
- Privacy Protection
 - Protection of user privacy (later)
- Reporting
 - Decides when to report activities -- daily or pro-active (abnormal activities)
- Communication
 - IP-based in implementation.
 - Leverage SMS gateway -- use SMS messages to send emails.

Proxy

- Four Modules also
 - Report Collection
 - Interact with smartphone agents to collect information.
 - Privacy Protection
 - Works with privacy protection module of smartphone agent.
 - Data Analysis
 - Performs analysis of data to detect whether there is a virus spreading in smartphone population.
 - Alerting
 - Upon identification of outbreak, alert infected devices using SMS.
 - Also alert potential victims (direct contact with infected devices)

Registering Information

• Smartphone registers its static configuration with proxy during initial registration.

Category	Value	
Phone Number	555-123-4567	
Email Address	john.doe@domainname.com	
Network	T-Mobile	
Phone Model	Dopod 577w	
Bluetooth	Yes	
OS type	Windows Mobile	optional
Contact List Info	Jane: 555-321-7654	
	Bob: 555-213-6745	
Mobility Profile	Cell ID 1234	
	Cell ID 9971	
	Cell ID 756	

Reporting Dynamic Activity

- Smartphone dynamically reports activity during operational phase.
 - For now ignore privacy concerns.
- Activities available in logging folders
 - SMS logging done by checking "Sent" folders
 - Logging of Bluetooth activities using properties of ConnectionsBluetoothCount and ConnectionBluetoothDescription in Windows Mobile OS.
- Reports sent daily (using SMS or Internet)
- In addition, when last daily report exceeds the long term average of daily usage + one standard deviation, device immediately sends report.
- Why?
 - Periodic reports help detect trojans --> don't exhibit strong epidemic behavior (Flexispy)
 - proactive reporting to report aggressive replication of virus

Example of a dynamic report

Category	Value
Identity	555 - 123 - 4567
Authentication	digital signatures
[Optional Privacy]	Submission Tickets
Log Date	Dec 4, 2006
Mobility Profile	CellID 1234
	CellID 756
	CellID 3215
Message Sent	555-111-1111
	555-222-2222
	555-333-3333
Bluetooth Sent	11:11:11:50:11:11
	22:22:22:22:22:22
	33:33:33:33:33:33

Types of Attacks

Targets	Virus	Content Communicated	
	Communicated	Personal	Unrelated
		Information	Information
From-Virus	DoS	[Flexispy]	[Redbrowser]
From-Device	[CommWarrior]	Info Leak	Spam
Randomized	Infection	[PBstealer]	Spam

- From virus: Virus brings set of targets
- From device : Device' s contact list
- Randomized : Anyone !
- Solution attempts to identify and react to virus goals through logging and use of "statistical monitoring" and "abnormality monitoring"

Statistical Monitoring

- U_{thresh}: sum of 7 days moving average of number of communications initiated by a user + standard deviation.
- U_{today}: Number of communications users initiate today.
- If U_{today} > U_{thresh}, report over-usage report.
- In addition, a global equilibrium P_{avg} is maintained.
 - P_{avg}: on average, each day, how many of the population exceed Uthresh.
 - When P_{today} exceeds wildly from P_{avg} : viral outbreak.
 - Authors use P_{today} > Detection Threshold Multiplier times
 P_{avg} --> DTM * P_{avg}

Abnormality Monitoring

- Goal to combat slow infecting worms.
- Virus may seek to achieve some form of financial gain or information theft -- RedBrowser or Flexispy.
- It may seek to slowly replicate and infect other phones -- Comm Warrior.
 - Note these are not mutually exclusive -- Comm Warrior may have payload with Flexispy virus
- A virus either hard codes communication destination or retrieves victim's info from contact list.
- For first type -- monitor if a destination is contacted often
- For second type -- insert a non-existent phone number in contact list
 - Normal users won't contact this number!

Alerting

	Bluetooth Virus Alert	Messaging Virus Alert
Infected Units Connected Units	$egin{array}{c} B_I \ B_C \end{array}$	$M_I \\ M_C$

- Above table -- types of alert messages
- Upon receiving B₁, smartphone knows it is infected -- shuts down Bluetooth interface and displays a visual alert to the user.
- When B_c is received, user knows he frequents a location (cell tower ID) that is frequented by infected users.
 - He then will shift to a non-discoverable mode to avoid contact with infected user.
- When M_I is received, infected unit should shut off outgoing SMS interface.
 - However Window Mobile does not offer this.
 - Thus, the authors simply display warning message
- When M_C is received, using Windows Mobile intercept incoming message to filter out infected users' messages.

Privacy Protection

- Critical -- information collected from smartphone may have sensistive information
 - call records, SMS records, network usage.
- Trade-off between virus protection and privacy
 - If you don't provide contact list, then cannot notify acquaintances.
- SmartSiren does not provide perfect privacy
- It only tries to ensure that proxy cannot infer user's daily activity from collected data.

Ways of ensuring privacy

- Obfuscation -- hide actual data in reports (encryption or hashing)
 - Not good since proxy needs this info.
- Anonymization
 - hides who submitted reports.
- SmartSiren includes an anonymous and ticketed report submission scheme.

Key Idea

- Smartphones can submit its report in an anonymous manner.
- However, to prevent bogus reports (now that no one claims responsibility), a unique cryptographic ticket is needed to submit report.
- To create anonymity, smartphones can exchange tickets using a proxyoblivious scheme.

Anonymous Report Submission

- To ensure anonymity, a device submits its activity only through IP based channels.
- IP address can change --DHCP, different wireless connections.
- If other means used, the reporting may be faster (if no IP connection is available) -but privacy is compromised to some extent
 - A trade-off between privacy and performance.

Ticketed Report Submission

- Goal -- limit number of reports but allow anonymity.
- Proxy has a Key K_P
- Each user has his own key.
- Proxy divides the users into traders and tradees.
- Traders query proxy requesting a ticket exchange.
- Proxy validates that ticket exchange is legitimate
 - User can issue a report
- The trader contacts tradee
- Tradee needs to have a similar validation
- Once they have validated each other, key exchange can happen.
- Key idea is that validation happens independently

Commutative Encryption

- The key idea exploited in order to facilitate this private communication is what is called Commutative Encryption.
- For any message M and two keys K₁ and K₂, a commutative cipher satisfies:

$$E_{K_1}(E_{K_2}(M)) = E_{K_2}(E_{K_1}(M))$$

The Process --1

- Let K_P be proxy's key and K_A be A's key.
- When trader A chooses a tradee it constructs a transaction description message TD as : M = (A, B, t)

t is the current time.

- A encrypts the message and sends $E_{K_A}(M)$ together with its identity to the proxy.
- This message is called the Request to Encryption message and the proxy has a list of all such messages received within the last Tm seconds -- the minimum time between two consecutive reports from a device.

The Process -- 2

- Proxy checks to see if it already has a RE from A in its cache
 - If yes, drop RE
 - If not, do the following.
- Encrypt $E_{K_A}(M)$ using its own key.
- Return the result $X_1 = E_{K_P}(E_{K_A}(\tilde{M}))$ to A.
- A decrypts the result with its key and sends the result $E_{K_A}^{-1}(X_1)$ to B.

The Process -- 3

- B encrypts the received message using its key K_B.
- It sends the result $E_{K_B}(E_{K_A}^{-1}(X_1))$, X_2 to proxy in a Request for Decryption (RD) message.
- Proxy decrypts X_2 with its key (does not know who B got the message from) and sends the message $E_{K_P}^{-1}(X_2)$ back to B.
- B decrypts the received message $E_{K_B}^{-1}(E_{K_P}^{-1}(X_2))$
- Let this message be X₃.

The process succeeds

because :

$$X_3 = E_{K_B}^{-1}(E_{K_P}^{-1}(E_{K_B}(E_{K_A}^{-1}(E_{K_P}(E_{K_A}(M))))))) = M$$

• Note that the commutative cipher property is key here!

Implementation

- They implement SmartSiren on a Dopod 577w phone.
- Logging, Alerting and other modules implemented.
- They do not do experiments (cannot because need help of provider).
- Only interesting thing : locating cell ID using AT commands -- helps determine locations visited by smartphone.

Evaluation

- Leverage 3-week SMS trace collected from a cellular service provider in India.
- 3.91 million users
- They simulate infection behavior of Comm Warrior.
 - Once a device is infected, virus sends a copy of itself to each smartphone on the user's contact list.

Spreading Trend of Virus

- As infection probability increases, higher levels of spread.
- Proxy helps drastically control spread.

Message Analysis

Message	without	with
Type	proxy	proxy
User	5027903 (31.72%)	5027903~(38.2%)
Virus	10823617 (68.29%)	$3703404 \ (28.2\%)$
Detection	Nil	879606~(6.7%)
Alert	Nil	$3539081 \ (26.9\%)$
Total	15851520	13149994

- There is some overhead required to disseminate information about attack.
- After reduction, significantly lower number of messages sent.

Other results

- Show that sometimes, a global view is helpful -- single users may not send much but a single destination is targeted.
- Bluetooth spreading trends -- similar in spirit.

My take

- Interesting paper
- Identifies an important real world problem -- tries to find a solution.
- Cannot solve problem -- real constraints
 - However show implementation.
 - Simulations from traces may be something we may want to consider.

