Detecting Android Root Exploits
by Learning from Root Providers

loannis Gasparis, Zhiyun Qian, Chengyu Song, Srinkanth V. Krishnamurthy

I%UNIVE SITY FCA [FORNIA

We all love our smartphones

LI

WITH SMARTPHONES

more than a nxot‘{erﬁ Convientence

We all love our smartphones

» | love my Android phones especially!

Worldwide Smartphone OS Market Share
(Share in Unit Shipments)

e
M

o¥
'@"

e & & & &
£ o

o oF & (s \:,o*
® > » »

o ™ ™ Q)
& S S & D

Source: IDC, May 2017 s Android w—i0S s Windows Phone s Others

Why Android security is challenging?

» Fragmentation / diversity / customization

» Slow update

No updates available

)
P
)
©
Q.
>
o
@©
=
s et
O
9p)

.
[T o mmm
| W I am=
mnmn | =m=
3

Everybody puts their code into Android

M & atat T --Mobile- - -

\V, mmm QuALcomww

Android Framework
> APPLICATIONS

M gg @ LG QAo —0w-—

ANDROID
FRAMEWORK

| O | F
NATIVE LIBRARIES ANDROID RUNTIME

CORE LIBRARIES *
DALVIK VM

LINUX
KERNEL

Kernel / driver vulnerabilities

100+ CVEs —>

Elevation of privilege:

1. only AOSP,

2. excluding closed-source
components

Android Security Bulletins

Bulletin

August 2017

July 2017

June 2017

May 2017

April 2017

March 2017

Languages

Coming soon

English/ BHA&ZE / 3t=20{ / pycckwin / F32 (FE) / 3L (&
)
English / HAEE / $t=20{ / pycckuin / =32 (FE) / £ (8
=)
English / HZ<EE / St=0{ / pycckuin / =32 (FE) / £XZ (&
)
English/ BA&ZE / 3+=20{ / pycckuin / £ (FE) / £ (&
=)

English / HAEE / $H=20{ / pycckuin / =32 (FE) / £XZ (8
)

Published date

August 7, 2017

July 5,2017

June 5, 2017

May 1, 2017

April 3,2017

March 6, 2017

Security patch
level

2017-08-01
2017-08-05

2017-07-01
2017-07-05

2017-06-01
2017-06-05

2017-05-01
2017-05-05

2017-04-01
2017-04-05

2017-03-01
2017-03-05

Android root exploits [wj
From vulnerabilities to exploits

Towelroot, Pingpong root, DirtyCow, perf use-after-free (Samsung S7)

Malware with root exploit capabilities
> GODLESS, HummingBad, PokemonGo guide app, Dvmap, SpyDeaIer
- Obfuscated, anti-debugging/virtualization “,..... -
- Dynamically load exploits
- Survive months before taken down

Gulde For Pokémon Go New

*kKR 9527 2

Family

- e.g., Pokemon Go Guide
removed after 500,000+ downloads

Parent Guide

Goal

» Develop a cloud-based app screening system (similar to
bouncer)
- Addressing challenges mentioned earlier

» Detect exploits against known vulnerabilities
- Zero-day out-of-scope
> Android malware exploit known vulnerabilities

24
Android root exploits I, J
A

» Dual problem
> A challenging task to write
> A challenging task to detect

» Availability of vulnerabilities
» Exploit adaptation

Towelroot (CVE-2014-3153) Variants Count

ﬂﬂ._ﬂ_ﬂ.ﬁ.iﬁﬂﬂ.ﬂ.ﬂﬂ.ﬂ.
& i@"ﬁ ,,,9'“3’ ,,,9’6 0,99 oS W ,,,.v?’q ,,,.v??’ o,?‘o”,,, @ o

> 64
W

V'
%7 o

9

How to catch variety of root exploits?

Naive solution:

Our solution:

Requirements of the analysis environment

» Need to emulate the correct environment/preconditions
- Device environment (device, model, version)
> Program preconditions
int fd = open("/dev/exynos-mem", O RDWR) ;
if (fd == -1) {
printf("[!] Error opening /dev/exynos-mem\n") ;
exit (1) ;
}

> Input generation problem (system call return values)

Input success

Requirements of the analysis environment

» Need to emulate the correct enV|ronme /preconditions
- Device environment (device, ns
> Program precogditions

Where can we

collect data?

Key observations

» One—-click root apps [CCS’ 15]
> Some claim to support 100,000+ models
- One app contains: 167 exploit binaries, 59 exploit families

' [CCS 15] H. Zhang, D. She, Z. Qian,
3 Android Root and its Providers: A Double-Edged Sword

Key observations

» One-click root apps [CCS™ 15]
Root exploits mostly reused

[CCS 15] H. Zhang, D. She, Z. Qian,
Android Root and its Providers: A Double-Edged Sword

Key observations

» One—-click root apps [CCS’ 15]
Root exploits mostly reused

Why not learn from them to understand exploit requirements?
<Exploit, Device/Model/Version, Program Preconditions>

[CCS 15] H. Zhang, D. She, Z. Qian,
Android Root and its Providers: A Double-Edged Sword

System Overview - RootExplorer

FEET /v T

- _ .
L,/i\/ -\\m :

A) @ D
Real analysis
environment

®

one-click
root app

Offline Online

Behavior Graph

» System call based behavior signature [1]
> Root exploits interact with the OS through syscalls in unique ways
- Data & control dependencies (robust to simple reordering)

[1] KOLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA, E., ZHOU, X.Y., AND WANG, X.
ctive and efficient malware detection at the end host. USENIX Security 2009

Behavior Graph

» System call based behavior signature [1]
> Root exploits interact with the OS through syscalls in unique ways
- Data & control dependencies (robust to simple reordering)
- Statically extracted (for a given path)

addr
/dev/camera-isp 'control m fd
control

1] KOLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA, E., ZHOU, X.Y., AND WANG, X.
ctive and efficient malware detection at the end host. USENIX Security 2009

Extracting expected syscall returns

» Example: what ‘line’ should be returned from readline()?

int fdIo = open("/proc/iomen") ; readline() of file(“/proc/
// locate the kernel code offset in physical memory iomem”) cannot return NULL,
while ((line = readline(fdIo)) > 0} { line != NULL
if ((buf = strstr(line, "Kernel code™)) != NULL) {
addr = getAddress (buf) ; strstr() of the line returned
break; cannot return NULL - line
} has to contain “Kernel code”
}
int getAddress (buf) {

The buf has to have at least
return atoi[buf-20]; 20 preceding characters >
} line has to have 20
Answer: Line = aaaaaaaaaaaaaaaaaaaaKernel code” characters before “Kernel

code”

Implementation

» Offline learning

- Custom symbolic execution engine
based on IDA pro

» Online learning

> Loadable Kernel Module
- System call hooking
> Background Service

- Decides what to do for syscall
invocations

- Monitor and match behavior graphs

Application Layer

Background Apﬁ:f’aet:on
Service analysis
]
v v
Hooked Original
Cll‘l)aer‘?ii?r < System Call System Call
Table Table

Kernel Module

Kernel Layer

Experiment Setup

» Analysis environment: Android emulators
- Loaded with real files, e.qg., call logs, messages, contacts.
- Real IMEI number, appropriate build.prop file

» App input generator
> DroidBot: random user input and system events
> Run every app for 10 minutes

Evaluation Dataset

» Training set:
- 167 exploit binaries (from 59 exploit families)
- from a single one-click root app
» Testing set:
> Positive samples
- PoC from Internet, GODLESS malware, 7 one-click root apps
> Grey samples
- 1497 malware samples from an antivirus company
- 2000 recently uploaded apps from unofficial Android markets

- Negative samples
- Top 1000 free apps from Google’s Play Store

Detecting Exploit PoCs from the Internet

Soottooer Roottoiorr

diag 1/57 diag 0/57
exynos 4/57 v exynos 1/57 v
pingpong 1/57 v pingpong 0/57 v
towelroot 3/57 v towelroot 1/57 v
Detection rate for debug compilation Detection rate for obfuscated compilation

« Downloaded and compiled 4 different PoC exploits from the Internet
« Compiled them with all debugging info

« Compiled them with obfuscation (using LLVM) and packed them with UPX

Detecting GODLESS

» Run GODLESS against 5 different emulated devices and
observed the following:

HTC) Fujitsu Fujitsu Arrows X | Galaxy Note LTE| Samsung S3
Butterfly Arrows Z

perf_swevent

acdb X X X
hdcp X v X X X
msm_camera v/ v/ v 4 v/
put_user 4 v v 4 v/
fb_mem v v v v v/
X X v X X

X X X v X

diag

Detecting other one-click root apps

One-Click Root Apps

O, /dev/camera-sysram
O, /dev/graphics/fb5
O; /dev/exynos-mem
O, /dev/camera-isp
Os /dev/camera-isp
Og /dev/camera-isp
O, towelroot

Different one-click root apps choose to launch different exploits against a device

Detecting Malware in the Antivirus malware
dataset and 3rd-party Android Markets

» 1497 malware samples, 2000 apps from 3 party Android
Market
- Emulated Samsung S3 device
» Two apps flagged as containing root exploits
- Wifi Analyzer from MoboMarket (pingpong root)
> Flashlight app from the malware samples (camera-isp)
> Confirmed by VirusTotal or Anti-virus company

Conclusions

» RootExplorer, a system that learns from commercial-grade
root exploits and detects similar root exploits in malware

» We show that this is an effective solution and has the

potential to be used in practice

Questions?

zhiyunq@cs.ucr.edu

Contributions

> ([j)et_ection of Android root exploits that target a diverse set of Android
evices

- Based on commercial one-click root apps

- What environmental features are sought

- What pre-conditions need to be met for a root exploit to be triggered
» Design and implement RootExplorer

> Detects malwares that contain root exploits

- Uses static analysis to understand the environment and attack profile of the
exploits

- It utilizes the learned information to construct proper analysis environments
» Evaluation of RootExplorer

> Successfully detects malwares with root exploits

- Result in no false positives in our test case

> Found an application in Android market that contains root exploits

Operational Model

Static Analyzer Dynamic Analyzer

Pre-screening for native code,
packing, dynamic code loading,
device environment detector

Statlc Analyzer Native code > Device e Device

detector detector initiator

« Native Code Detector
« App matches signatures of known malwares
. . . . Known malware DB
« App has any native code/dynamically loading native code ", curistics for
« Custom heuristics to decide if it contains root exploits dangerous native code
* Device Detector
« Parses APK and finds (A) methods that contain code that check the
version of Android or the device name
« Parses APK and finds (B) methods that contain code that run native
executable code
« If there is a path between (A) to (B), a new appropriate device is created
* Device Initiator
« Modifies Android’s property system accordingly
« Modifies system files (/proc/version, etc) accordingly

Dynamic Analyzer

« Loadable Kernel Module
« Hooks every system call
« Tracks only a specific app
 Communicates with background
service

« Background Service
« Decides which action to take
« Deploys decoy objects
» Chooses behavior graphs and
preconditions accordingly

Application Layer

Background Apz:aaet:on
Service analysis

A

]

v)

Hooked Original
C’I;Zr‘?i?:r < System Call System Call
Table Table

Kernel Module

Kernel Layer

