
Ioannis	Gasparis,	Zhiyun	Qian,	Chengyu	Song,	Srinkanth	V.	Krishnamurthy	

}  I love my Android phones especially!

}  Fragmentation / diversity / customization
}  Slow update

100+ CVEs ->
Elevation of privilege:
1. only AOSP,
2. excluding closed-source
 components

Android Security Bulletins

}  From vulnerabilities to exploits
◦  Towelroot, Pingpong root, DirtyCow, perf use-after-free (Samsung S7)

}  Malware with root exploit capabilities
◦  GODLESS, HummingBad, PokemonGo guide app, Dvmap, SpyDealer, …
◦  Obfuscated, anti-debugging/virtualization
◦  Dynamically load exploits
◦  Survive months before taken down
�  e.g., Pokemon Go Guide

removed after 500,000+ downloads

}  Develop a cloud-based app screening system (similar to
bouncer)
◦  Addressing challenges mentioned earlier

}  Detect exploits against known vulnerabilities
◦  Zero-day out-of-scope
◦  Android malware exploit known vulnerabilities

}  Dual problem
◦  A challenging task to write
◦  A challenging task to detect

}  Availability of vulnerabilities
}  Exploit adaptation

Towelroot (CVE-2014-3153)

 Naïve solution:

 Our solution:

}  Need to emulate the correct environment/preconditions
◦  Device environment (device, model, version)
◦  Program preconditions

◦  Input generation problem (system call return values)

input success

}  Need to emulate the correct environment/preconditions
◦  Device environment (device, model, version)
◦  Program preconditions

◦  Input generation problem (system call return values)

input success

Where can we
collect data?

}  One-click root apps [CCS’ 15]
◦  Some claim to support 100,000+ models
◦  One app contains: 167 exploit binaries, 59 exploit families

[CCS 15] H. Zhang, D. She, Z. Qian,
Android Root and its Providers: A Double-Edged Sword

[CCS 15] H. Zhang, D. She, Z. Qian,
Android Root and its Providers: A Double-Edged Sword

}  One-click root apps [CCS’ 15]
}  Root exploits mostly reused

}  One-click root apps [CCS’ 15]
}  Root exploits mostly reused

}  Why not learn from them to understand exploit requirements?
◦  <Exploit, Device/Model/Version, Program Preconditions>

[CCS 15] H. Zhang, D. She, Z. Qian,
Android Root and its Providers: A Double-Edged Sword

one-click
root app

Offline Online

…
 …
 Real analysis

environment

}  System call based behavior signature [1]
◦  Root exploits interact with the OS through syscalls in unique ways
◦  Data & control dependencies (robust to simple reordering)

[1] KOLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA, E., ZHOU, X.Y., AND WANG, X.
Effective and efficient malware detection at the end host. USENIX Security 2009

}  System call based behavior signature [1]
◦  Root exploits interact with the OS through syscalls in unique ways
◦  Data & control dependencies (robust to simple reordering)
◦  Statically extracted (for a given path)

[1] KOLBITSCH, C., COMPARETTI, P. M., KRUEGEL, C., KIRDA, E., ZHOU, X.Y., AND WANG, X.
Effective and efficient malware detection at the end host. USENIX Security 2009

}  Example: what ‘line’ should be returned from readline()?

Answer: Line = “aaaaaaaaaaaaaaaaaaaaKernel code”

20 unconstrained characters

readline() of file(“/proc/
iomem”) cannot return NULL,
line != NULL

strstr() of the line returned
cannot return NULL à line
has to contain “Kernel code”

The buf has to have at least
20 preceding characters à
line has to have 20
characters before “Kernel
code”

}  Offline learning
◦  Custom symbolic execution engine

based on IDA pro
}  Online learning
◦  Loadable Kernel Module
�  System call hooking
◦  Background Service
�  Decides what to do for syscall

invocations
�  Monitor and match behavior graphs

}  Analysis environment: Android emulators
◦  Loaded with real files, e.g., call logs, messages, contacts.
◦  Real IMEI number, appropriate build.prop file

}  App input generator
◦  DroidBot: random user input and system events
◦  Run every app for 10 minutes

}  Training set:
◦  167 exploit binaries (from 59 exploit families)
�  from a single one-click root app

}  Testing set:
◦  Positive samples
�  PoC from Internet, GODLESS malware, 7 one-click root apps
◦  Grey samples
�  1497 malware samples from an antivirus company
�  2000 recently uploaded apps from unofficial Android markets
◦  Negative samples
�  Top 1000 free apps from Google’s Play Store

Exploit VirusTotal RootExplorer
diag 1/57 ✓

exynos 4/57 ✓
pingpong 1/57 ✓
towelroot 3/57 ✓

Detection rate for debug compilation

Exploit VirusTotal RootExplorer
diag 0/57 ✓

exynos 1/57 ✓
pingpong 0/57 ✓
towelroot 1/57 ✓

Detection rate for obfuscated compilation

•  Downloaded and compiled 4 different PoC exploits from the Internet
•  Compiled them with all debugging info
•  Compiled them with obfuscation (using LLVM) and packed them with UPX

}  Run GODLESS against 5 different emulated devices and
observed the following:

HTC J
Butterfly

Fujitsu
Arrows Z

Fujitsu Arrows X Galaxy Note LTE Samsung S3

acdb ✓ ✗ ✗ ✗ ✗
hdcp ✗ ✓ ✗ ✗ ✗

msm_camera ✓ ✓ ✓ ✓ ✓
put_user ✓ ✓ ✓ ✓ ✓
fb_mem ✓ ✓ ✓ ✓ ✓

perf_swevent ✗ ✗ ✓ ✗ ✗
diag ✗ ✗ ✗ ✓ ✗

One-Click Root Apps Exploit
O1 /dev/camera-sysram
O2 /dev/graphics/fb5
O3 /dev/exynos-mem
O4 /dev/camera-isp
O5 /dev/camera-isp
O6 /dev/camera-isp
O7 towelroot

Different one-click root apps choose to launch different exploits against a device

}  1497 malware samples, 2000 apps from 3rd party Android
Market
◦  Emulated Samsung S3 device

}  Two apps flagged as containing root exploits
◦  Wifi Analyzer from MoboMarket (pingpong root)
◦  Flashlight app from the malware samples (camera-isp)
◦  Confirmed by VirusTotal or Anti-virus company

}  RootExplorer, a system that learns from commercial-grade
root exploits and detects similar root exploits in malware

}  We show that this is an effective solution and has the
potential to be used in practice

Questions?
zhiyunq@cs.ucr.edu

}  Detection of Android root exploits that target a diverse set of Android
devices
◦  Based on commercial one-click root apps
◦  What environmental features are sought
◦  What pre-conditions need to be met for a root exploit to be triggered

}  Design and implement RootExplorer
◦  Detects malwares that contain root exploits
◦  Uses static analysis to understand the environment and attack profile of the

exploits
◦  It utilizes the learned information to construct proper analysis environments

}  Evaluation of RootExplorer
◦  Successfully detects malwares with root exploits
◦  Result in no false positives in our test case
◦  Found an application in Android market that contains root exploits

Static Analyzer Dynamic Analyzer

Pre-screening for native code,
packing, dynamic code loading,
device environment detector

app

Native code
detector

Known malware DB
and heuristics for

dangerous native code

Device
detector

Device
initiator

Device/OS info

•  Native Code Detector
•  App matches signatures of known malwares
•  App has any native code/dynamically loading native code
•  Custom heuristics to decide if it contains root exploits

•  Device Detector
•  Parses APK and finds (A) methods that contain code that check the

version of Android or the device name
•  Parses APK and finds (B) methods that contain code that run native

executable code
•  If there is a path between (A) to (B), a new appropriate device is created

•  Device Initiator
•  Modifies Android’s property system accordingly
•  Modifies system files (/proc/version, etc) accordingly

•  Loadable Kernel Module
•  Hooks every system call
•  Tracks only a specific app
•  Communicates with background

service
•  Background Service

•  Decides which action to take
•  Deploys decoy objects
•  Chooses behavior graphs and

preconditions accordingly

