Managing Redundant Content in Bandwidth Constrained Wireless Networks

Tuan Dao, Amit K. Roy-Chowdhury, Srikanth V. Krishnamurthy U.C. Riverside

Harsha V. Madhyastha

University of Michigan

Tom La Porta

Penn State University

Premise

- During natural disasters, people tend to upload redundant images.
 - Strained wireless network becomes congested
 - Suppressing redundant content helps reduce latency in uploading unique and critical content.

Redundancies in other scenarios

- Similar images also uploaded in other scenarios
 - Examples: Concerts, sport events, etc.
- Redundant images can be lazily uploaded (when network is less congested)
 - Reduce network load and speed up transfers

How we manage redundant content

Goal: Accurately and efficiently determine if an image to be uploaded has similar version(s) on server

Uploads image metadata

Roadmap

- Introduction
- Detection of redundancies in images
- Evaluation
- Conclusions

F C F C F F O R N T F O R

Overview of our approach

- 3-phase hierarchical approach:
 - Metadata overhead increases with every phase
 - Proceed to next phase only if classification decision cannot be made

- Fast and easy to calculate (low overhead)
- Effective in determining dissimilar images, but high false positive rate

Phase 2: Use local features

- Use image local features to reduce false positives
- Choosing local features: Trade-off between detection accuracy and overhead

Using image key-points to detect similarity

- Key-points are distinctive patches (*local* features)
- Use ORB algorithm to extract image key-points
 - Two orders of magnitude faster than SIFT
 - Comparable results
- Data to store key-points larger than image content

 Cannot compare image key-points directly

Compact representation of local features

- Bag-of-word (BoW) representation:
 - Represent each image as a histogram of visual words

Using min-hash to approximate similarity

- Min-hash function: hashes a BoW representation into 1 number
 - Assign each visual word W a unique value h(W)
 - Min-hash of image I: m(I) = min { h(W), W ε I }
 - If k equal min-hashes among n total generated min-hashes: similarity (*I*, *I*') ≈ k/n
- Embed geometric information (position in the image) of key-points to reduce *false positive* rate
- Fine-grained information sent to server in phase 2:
 - *k* min-hash values
 - geometric information of k corresponding key-points <.....

11

Phase 3: Solicit user's feedback

- Phase 2 helps achieve very low false positive rate
- Phase 3, which solicits user feedback, boosts true positive rate

Summary of approach

- 1 Upload coarse-grained global features for quick assessment
 - 128-byte color histogram
- 2 Upload fine-grained local features to reduce *false negatives*
 - 1024 bytes for 512 min-hash values
 - For each min-hash, 1 byte for geo-information of the corresponding key-point
- 3 Solicit user feedback to improve *true positives*
 - 5 * 15 KB per thumbnail

13

Roadmap

- Introduction
- Detection of redundancies in images
- Evaluation
- Conclusions

Evaluation overview

- Conducted experiments to demonstrate
 - Detection accuracy: *True Positive* & *False Positive* rates
 - Impact on network performance: reduction in delays and network load
- System setup:
 - 20 Android phone testbed
 - Phones connect to central server through shared WiFi network

Testing and Training datasets

- Two image datasets with ground-truth information
 - University of Kentucky image set: 10,200 images, consists of 2,550 groups of similar images
 - "US cities" image set: 5,000 images, each from a different US city
- Evaluation setup:
 - Phones in testbed upload 1,000 images each from either dataset
 - Remaining images are pre-uploaded to server

One image group in the Kentucky dataset

Detection accuracy

Method	True Positive rate	False Positive rate
1 - Histogram matching	80%	65%
2 - Local features matching	50%	1%
3 – Feedback based on thumbnails		
• 1 thumbnail	59%	1%
• 3 thumbhails	64%	
 5 thumbnails 	69%	
 10 thumbnails 	71%	

Impact on network performance

True Positive rate: ~70%; 50% similar images

18

Conclusions

- Framework for detection of similar images when uncoordinated set of clients uploading to common server
- Leverage, but *intelligently* combine, many state-of-the-art vision algorithms to effectively detect similar images
- Experiments on phone testbed (and using ns3 simulations) to demonstrate impact on increasing network performance
- Future work:
 - Leverage device features (GPS location, camera orientation)
 - Take into account image priority, e.g. resolution, coverage, etc.

Thank you!

Tuan Dao - tdao006@cs.ucr.edu