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Premise

During natural
disasters, people tend
to upload redundant
Images.

Strained wireless
network becomes
congested

Suppressing redundant
content helps reduce

latency in uploading
unique and critical
content. o




Redundancies in other scenarios

® Similar images also uploaded in other scenarios
® Examples: Concerts, sport events, etc.

® Redundant images can be lazily uploaded (when
network is less congested)

® Reduce network load and speed up transfers




How we manage redundant content

Goal: Accurately and efficiently determine if an image to be
uploaded has similar version(s) on server

Uploads image metadata

Server sends response

Key challenge:
Trade-off be
overhead an

Uncoordinated
clients
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Overview of our approach

® 3-phase hierarchical approach:

® |Metadata overhead increases with every phase

® Proceed to next phase only if classification decision
cannot be made




"\ «')

Phase 1: Use global color histografﬁ\

Compare image
global feature

Normalize
byte hist

Upload coarse-grained global feature
of the negeiEn
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Candidz
image

®* Fast and easy to calculate (low overhead)

Proceed to
Phase 2

® Effective in determining dissimilar images, but high
ositive rate '




Phase 2: Use local features
® Use image local features to reduce false positives

® Choosing local features: Trade-off between detection
accuracy and overhead

Combine state-of-the-
art vision approaches to
derive high accuracy

Compute and upload fine-grained with low overhead

local features

Move to Suppress/
ase 3 defer upload




Using image key-points to detect simil;é'\\rwity

® Key-points are distianiVe;;.l.f
patches (/ocal features)

® Use ORB algorithm to
extract image key-points

® Two orders of magnitude
faster than SIFT

® Comparable results

® Data to store key-points
larger than image content

- Cannot compare image
key-points directly




Compact representation of local feature'é\

® Bag-of-word (BoW) representation:
® Represent each image as a histogram of visual words

Keypoint extraction A Keypoint
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® Min-hash function: hashes a BoW representation into 1 number
® Assign each visual word W a unique value h(W)
® Min-hash of imageI. m(I) = min { h(W), Wel} <= :
e |f k equal min-hashes among n total generated min-hashes: -
similarity (I, I’) = k/n

® Embed geometric information (position in the |mage)
of key-points to reduce false positive rate

® Fine-grained information sent to server in phase 2:
® k min-hash values :
® geometric information of k corresponding key-points <---...... :




Phase 3: Solicit user’s feedback

® Phase 2 helps achieve very low false positive rate
® Phase 3, which solicits user feedback, boosts true positive rate

User visually
compares image
thumbnails

Return image thumbnails of top-k

Images
S§nd feedback

—S

Upload Suppress/
image defer upload

YES




Summary of approach ........

(1) Upload coarse-grained global features for quick assessment
® 128-byte color histogram
(2) Upload fine-grained local features to reduce false negatives

® 1024 bytes for 512 min-hash values
® For each min-hash, 1 byte for geo-information of the corresponding

key-point
(3) Solicit user feedback to improve true positives
® 5* 15 KB per thumbnail
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Evaluation overview

® Conducted experiments to demonstrate
® Detection accuracy: True Positive & False Positive rates
® [mpact on network performance: reduction in delays and network load

® System setup:
® 20 Android phone testbed
® Phones connect to central server through shared WiFi network

(((.))) 100 Mbps
- A
6 Mbps




Testing and Training dataset
® Two image datasets with ground-truth information .

® University of Kentucky image set: 10,200 images, consists of
2,550 groups of similar images

® “US cities” image set: 5,000 images, each from a different US city
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¢ Evaluation setup:

® Phones in testbed upload 1,000 images each from either dataset
® Remaining images are pre-uploaded to server

One image group in the Kentucky dataset




Detection accuracy

Method True Positive rate False Positive ra

1 - Histogram 80% 65%
matching
2 - Local features 50% 19,
matching

3 - Feedback based
on thumbnails

* 1 thumbnail 599,
« 3 thumbnails 64%, 1%
* 5 thumbnails 699,

« 10 thumbnails 719,




Average Image Upload

Delay (seconds)

Impact on network performance
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Conclusions i

Framework for detection of similar images when
uncoordinated set of clients uploading to common server

Leverage, but intelligently combine, many state-of-the-art
vision algorithms to effectively detect similar images

Experiments on phone testbed (and using ns3 simulations)
to demonstrate impact on increasing network performance

Future work:
® | everage device features (GPS location, camera orientation)
® Take into account image priority, e.g. resolution, coverage, etc.




Thank you!
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