ACORN: Managing Interference in 802.11n WLANs

Mustafa Arslan, Konstantinos Pelechrinis, Ioannis Broustis, Srikanth Krishnamurthy, Sateesh Addepalli, Dina Papagiannaki

ACM CoNEXT 2010

Interference Problem

• Interference: Degradation in wireless network performance due to the noise generated by other devices in the spectrum.

• Delivering high data rates in wireless networks is challenging.

The Case of Noisy Neighbors

CNET:

9:37 a.m.: Google is asking attendees to turn off their cell phones, as the interference has ground this demonstration to a halt. Awkward.

The Case of Noisy I

Veighbors		
	Got Inter for Wi-Fi	ference? Data-c

-Crowding Problems Loom News Reviews How-To's Downloads Shop & Compare Business Center ADDS Social Media Softwar Consumer Advice Games Laptops Operating Systems Security Sign in with F 💟 🔽 💈 in 🕬 or Create a New Account. PCWorld » Networking & Wireless S < 170 🛛 🖸 +1 < 4 -11 Comments Print 614 Email

nd

07.17.07

"I'd say the biggest source of interference today for most people is their neighbors' Wi-Fi networks,"

says Kalle. The problem is that most existing Wi-Fi equipment operates on the crowded 2.4GHz

band. "There are basically three nonoverlapping channels. I always describe it as a three-lane road

in the city of Riverside, California, just got a 9, the city switched on its municipal , delivering free internet service to more miles of the downtown area. According reless service provider that teamed up I the network, the ad-supported service ps download speeds to each resident in the inland empire's capital city, the us, it's a burden. The new network s of interference to the already

The Case of Noisy Neighbors

• How can we deal with interference in indoor wireless networks?

• Using resource allocation to manage the spectrum.

mitigating interference and hence, enabling high data rates.

The goal is to restore the true potential of indoor wireless networks by

Wireless 101

• SINR: Signal to Interference+ Noise Ratio: • How strong is your received signal? • Noise + interference results in poor reception. • Interference is generated by other transmissions. • Modulation: the rate at which you encode and transmit bits • Higher mod (higher SINR required) ==> higher data rate. • The effect of interference • Low SINR ==> low modulation ==> low data rate on the link.

• Goal of CB is to combine two adjacent 20 MHz channels to double the bandwidth (raw transmission rate)

double the bandwidth (raw transmission rate)

• Goal of CB is to combine two adjacent 20 MHz channels to

• Goal of CB is to combine two adjacent 20 MHz channels to double the bandwidth (raw transmission rate)

• Goal of CB is to combine two adjacent 20 MHz channels to double the bandwidth (raw transmission rate)

Fact: CB increases interference (Pelechrinis et. al, Shrivastava et. al.)

• Goal of CB is to combine two adjacent 20 MHz channels to double the bandwidth (raw transmission rate)

- Fact: CB increases interference (Pelechrinis et. al, Shrivastava et. al.)
- Public belief: CB always gives throughput benefits in isolation.

Common Belief About CB

• CB is advertised to be "just great"!

The Ruckus Room

Rants and Raves about Wi-Fi and its Role in the Mobile Internet Revolution

RECENT POSTS

Transmit Beamforming Comes with a Big BUT...

A PUBLIC APOLOGY

Facing Wi-Fi Reality: Vendors Lie (Surprise, Surprise)

802.11ac Boosts Buzz More than

<u>« The Shape of Things to Come? | Main | Demo Diva Raises Ruckus at</u> CableLabs... »

March 01, 2008

802.11n without Channel Bonding is Just Stupid

802.11n is a good choice. 802.11n without channel bonding is not.

Perhaps the most important thing (in addition to MIMO and frame aggregation) that makes 802.11n 802.11n is 40Mhz channelization, aka channel bonding.

ARCHIVES

May 2012

March 2012

January 2012

November 2011

September 2011

August 2011

June 2011

May 2011

March 2011

• Common belief: CB always gives throughput benefits.

• Common belief: CB always gives throughput benefits.

• Common belief: CB always gives throughput benefits.

Fact: CB, when blindly applied, may hurt throughput!
Extensive measurements led to PHY and MAC observations.

• Common belief: CB always gives throughput benefits.

• Fact: CB, when blindly applied, may hurt throughput!

• Auto-COnfiguRation of 802.11N WLANs ✓ First system targeted for 802.11n \checkmark 1.5x - 6x throughput gain per AP

• Extensive measurements led to PHY and MAC observations.

Roadmap

• CB - why and when does it fail? • Experiments to reveal fine-grained observations.

• Designing ACORN • User association, channel selection

• Key evaluation results

CB at the **PHY**

Sub-carrier energy For a given TX power, ene

• For a given TX power, *energy per sub-carrier* is halved.

Sub-carrier energy
For a given TX power, *energy per sub-carrier* is halved.

P₁: energy with 20 MHz and P₂: energy with 40 MHz.
10*log₁₀(P₁/P₂) = 3 dB loss in transmitted energy.

Measured Power Spectral Density

a) without CB

b) with CB

a) without CB

b) with CB

a) without CB

b) with CB

a) without CB

CB increases baud error rate

b) with CB

Measured Bit Error Rates with CB

• For a given TX power, BER is higher when CB is employed.

CB effect as seen by the user: lower thruput

CB effect as seen by the user: lower thruput

CB effect as seen by the user: lower thruput

CB reduces throughput for low-SINR links!

A "bad" node affects everybody's performance

- Assume one AP and multiple clients connected to it.
 - AP serves each client in a fair manner in the long term (equal opportunities for access).
- A low data rate client (i.e. low SINR) has high service time. • Reduces the long-term throughput of other clients of the AP.

• How can we address this? • Use ACORN!

What is ACORN?

- ACORN manages interference in IEEE 802.11n WLANs.
- It assigns 20 MHz or 40 MHz bands to base stations intelligently. • It performs intelligent user-association
 - wherein clients are assigned to appropriate cells to aid frequency band allocation (as above).
- ACORN's key idea:
 - Prevent low SINR clients from joining APs with 40 MHz

- aggregate network throughput is maximized.
 - reduces to graph coloring ==> NP-hard
- throughput increase with that channel.

• Problem: given a network of APs, assign channels s.t. the

- aggregate network throughput is maximized.
 - reduces to graph coloring ==> NP-hard
- throughput increase with that channel.

• Problem: given a network of APs, assign channels s.t. the

- aggregate network throughput is maximized.
 - reduces to graph coloring ==> NP-hard
- throughput increase with that channel.

• Problem: given a network of APs, assign channels s.t. the

- aggregate network throughput is maximized.
 - reduces to graph coloring ==> NP-hard
- throughput increase with that channel.

• Problem: given a network of APs, assign channels s.t. the

- Problem: given a network of APs, assign channels s.t. the aggregate network throughput is maximized.
 - reduces to graph coloring ==> NP-hard
- Iteratively assign each channel to the AP that has the best throughput increase with that channel.

Theoretical BER

- Problem: given a network of APs, assign channels s.t. the aggregate network throughput is maximized.
 - reduces to graph coloring ==> NP-hard
- Iteratively assign each channel to the AP that has the best throughput increase with that channel.

Evaluation through implementation

- 18 node 802.11n testbed.
- Comparison with a legacy auto-configuration system
 - Kauffmann et. al. Infocom'07
 - Legacy user association
 - Minimize total transmission delay.
 - Legacy channel selection
 - Each AP selects a channel with the least interference. • Pick 40 MHz channels all the time (mimic public belief).

Mid-quality client group - AP3 serves one good client

With ACORN, higher congestion at API (per-client throughput is reduced) but aggregate throughput does not change!

Conclusion

- Demonstrated that CB may hurt throughput even in isolation. • User association becomes critical and is coupled with channel
 - width selection.
- ACORN performs both functions in tandem
 - the goal is to maximize network throughput (NP-hard).
 - outperforms state-of-the-art by as much as 6x via careful selection of channel width.