Internet of Things: Security Issues and Challenges

"Your next car will need a firewall."

- Title of article by Martin Bryant, The Next Web, April 7, 2016

Agenda

- What is the "Internet of Things?"
- How does security change with IoT?
- General notions of security and privacy
- Examples of current state of IoT security
- What research have people done in this area?

IoT Everywhere

- Healthcare
- Education
- Banking
- Agriculture & Farming
- Transportation
- Manufacturing
- Retail

All critical infrastructure sectors

What is a thing?

- No unique definition of a "thing"
 - Networked video cameras
 - WiFi Routers
 - Speakers
 - Drones
 - Cars
 - Refrigerators
 - Coffee machines
 - Smart locks, shutters, toys, and light bulbs

••••• Verizon 🗢 8:28 AM 7 * 🖦	
- 380 °F 360 °F - 0.3 °/s - 340 °F Recipe done in 2 minutes	
Current Step	
Flip the pancake. 3m ago	
Upcoming Steps	
You're done! Remember to turn off the stove. Enjoy your pancakes!	
3m from now	
The heat is a bit too low.	

What is the "Internet of Things?"

- Every "thing" has an IP address
 - Maybe or maybe not?
- IoT =? Smart Environment
 - Smart cities
 - Smart grid
 - Smart health
 - Connected life

Blind Men and the Elephant

- Design of low-power embedded communicating devices
- Scalable infrastructure for connectivity
- Software platforms
- Applications
- Smart end-to-end analytics

Picture Source: http://4.bp.blogspot.com/-gL2fYhYZP68/UHBEQjzWoQI/AAAAAAAEsE/12-xXmcAHY4/s1600/blindmenandelephant.

How about the "Internet" of Things?

- Given: "Things" are connected
- How?
 - Does every "thing" talk with every other "thing"?

- Various paradigms for the network and connectivity
 - High-level view
 - Some details

DIY IoT

SEEED Windows 10 IoT Core Grove Kit Exclusive kit for Windows 10 IoT Core & Raspberry Pi 3 Easy to use: Solder-less, breadboard-less Coming Summer 2016

Source: pcworld.com

Commercial IoT "Solutions"

- Apple's HomeKit
 - Control IoT devices using iOS and apps
- Cisco's Fog Computing
 - Move analytics and computation closer to the edge
- Google's NEST
 - Automation and smart devices

- IBM's NodeRed and Bluemix
 - Processing and analytics of various data pipes
- Intel's IoT platform
 - Software, hardware, reference stack targeting developers
- Microsoft's nitrogen.io
 - Smart device front-ends using Node.js libraries and the Azure cloud platform

Example (3)

- Similar to previous notions of sensor networks
 - Crop monitoring for loan collateral
 - Temperature sensing in a mall
 - Remote healthcare monitoring
- Differences
 - Back-end intelligence and analytics
 - Some crowd-sourcing

Six Pathways

- Device Network
- App & Things (Devices)
- App & Cloud
- Device and Third-Party Services
- Analytics and Presentation
- Third-Party Services

Information Assurance in General

Privacy & Confidentiality Integrity Authentication Non-repudiation Availability

Protection/Prevention Detection Assessment Response

Cryptographic Protocols – General Process

- Usually "two-party" protocols
- Alice and Bob are honest parties
- Oscar is the bad guy somewhere in the middle

Cryptographic Protocols (2)

- At various levels of the protocol stack
- Protecting link, network, and application data

General Process and... IoT??

So...

- Many security challenges
- Subdivision into smaller problems
 - Heterogeneity of devices and platforms
 - Capabilities vary widely
 - Usable security of IoT "systems"
 - IoT devices and systems are complex and (human) users do not comprehend the intricacies

Predominant focus on edge

- Scale (number of devices)
- Resource constraints of devices
- Long device life
- Device cannot be updated
- Key establishment and content delivery to devices
 - Post manufacturing
- Device exploitation
 - Boot process, software bugs
 - Hardware, chip, side-channels
 - Network access

- Use device function to generate high-entropy keys
 - Inter-heart beat times

Physical Layer Security

- Idea
 - Channel between honest communicating parties can be used to establish keys
 - There is "entropy" in the channel to get a set of matching random bits
 - Eavesdropper will see a substantially different channel unless close to one of the honest parties
- Needs authentication to protect against active attacks
 - Can use a trusted third party that is physically close enough

Smart Lock or Am I Simply Lazy?

- D. Strobel, B. Driesser, T. Kasper, G. Leander Oswald, F. Schellenberg, C. Paar, "Fuming Acid and Cryptanalysis: Handy Tools for Overcoming a Digital Locking and Access Control System," Available at <u>https://eprint.iacr.org/2013/598.pdf</u>
- G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, D. Wagner, "Smart Locks: Lessons for Securing Commodity IoT Devices," *Asia CCS*, June 2016.
- D. Coldewey, "Smart' locks yield to simple hacker tricks," TechCrunch, August 8, 2016.

Image Source: http://images.fanpop.com/images/image_uploads/Lazy-being-lazy-137901_800_600.gif

History

- Remote keyless entry
 - Used in cars (Keeloq), has many vulnerabilities
- Why smart locks?
 - Convenience
 - Fine grained controlled access!
 - Data!

The Story of Smart Locks

- Many types
 - Some connect only through Bluetooth to App
 - Others connect via WiFi
- Easy ones
 - Quicklock, iBluLock, and Plantraco transmit passwords in plaintext over Bluetooth
 - Others fall for replays (Ceomate, Elecycle)
- Security through "obscurity"
- Most advertised themselves as "locks" when discovered through wardriving

SimonVoss System (1)

- Uses a "digital key"
 - Press key to hear two beeps
 - Then manually opening the lock is allowed for a few seconds
- Security through obscurity crypto protocol is proprietary
- Many modes, but connects to a server using 868 MHz wireless links
 - Locks can be configured at the server
- Opening of locks is logged

32

Digital Cylinder

SimonVoss Flaws (now perhaps fixed)

- Chip was reverse engineered to discover proprietary security mechanisms
 - Uses modification of DES
- Each lock stores four *identical* 128-bit keys that allows discovery of any transponder's key
 - Hardcoded keys are easy to clone if discovered
- Uses challenge-response protocol (IDs are in plaintext)
 - Up to 88 challenge bits remain unchanged in each exchange!
- Key can be discovered in a few seconds using a PC

Examples of problems

- After getting access, if a phone is switched to airplane mode, it retains access for ever!
 - State consistency attack
- Unintentional unlocking
 - If in BLE range, automatically the lock opens
 - Physical attackers may enter using this feature
 - Geofencing does not always work
- Relay attacks are possible

IoT "System" - Sources

- (1) Video Camera Security and the recent Mirai attack
- (2) Transparency S. Beran, E. Pignotti, and P. Edwards, "Interrogating Capabilities of IoT Devices," 5th International Provenance and Annotation Workshop, Cologne, Germany 2014
- (3) Cloud/Authorization S. Cirani, M. Picone, P. Gonizzi, L. Veltri, G. Ferrari, "IoT-OAS: An OAuth-Based Authorization Service Architecture for Secure Services in IoT Scenarios," IEEE Sensors, Vol. 15, No. 2, Feb 2015.
- (4) Cloud Commissioning T. Hardjono and N. Smith, "Cloud-Based Commissioning of Constrained Devices using Permissioned Blockchains," IOTPTS, 2016.
- (5) Privacy/Integrity N. Davies and others, "Privacy Mediators: Helping IoT Cross the Chasm," ACM HotMobile, 2016

The Mirai Attack

- Sources:
 - (1) Laura Hautala, "Why it was so easy to hack the cameras that took down the web," CBS News, October 25, 2016
 - (2) Mikey Campbell, "Mirai-based DDoS attack highlights benefits of Apple's secure HomeKit platform," Appleinsider.Com, October 21, 2016
 - (3) HoneyPots Y. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, C. Rossow, "IoTPOT: Analyzing the Rise of IoT Compromises," WOOT 2015
 - (4) J. Obermaier and M. Hutle, "Analyzing the Security and Privacy of Cloud-based Video Surveillance Systems," IOTPTS, 2016
 - Other news sites

What happened to Dyn

- Dyn provides DNS services to 6% of Fortune 500 companies
- At least three waves of DDoS attacks on Dyn
 - Morning, noon, and later afternoon
- Twitter, Netflix, Spotify, Visa, AirBnB were among the affected sites
- The attacks came from "things" infected by the Mirai malware

What "things" were infected?

- Mostly DVRs and IP cameras made by Xiongmai
 - Directly connected to the Internet with an IP address and with access to large bandwidth
 - Registries may list the IP addresses
- How were they attacked?
 - Telnet/SSH backdoor with "hardcoded" password
- Mirai created botnets of up to 100,000 "things"
 - Later used to attack Dyn

Security Problems with Cloud Based Video Surveillance Systems (1)

- Cameras that allow access to video through the Internet using a cloud server or gateway
 - Local Attacker
 - Guest in a hotel or an employee with local *network* access but not physical access
 - Remote Attacker
 - · Can reach cloud servers, but not the camera through the Internet
- Cameras use TLS or SSL, sometimes proprietary protocols to talk with cloud server
 - One camera with proprietary protocol used common pre-shared keys in all cameras!
 - Those using TLS simply used an ID based on MAC address to get access to server!

Security Problems with Cloud Based Video Surveillance Systems (2)

- All cameras could be reached through the local network using HTTP for their configuration
- Weak login credentials
 - Example: If MAC address is 01:23:45:67:89:AB, the password is BA9876543210 in base 64 encoding with a known padding
 - Attacker can view and record video streams once password is revealed
- If camera is impersonated to cloud, user may be alarmed or service may be denied

Honeypots for IoT

- Japanese group implemented a Honeypot for IoT devices that emulates Telnet services of various IoT devices
 - Goal was to analyze Telnet based scans (think Mirai mostly DVRs and IP cameras were attacked)
 - Emulated different CPU architectures (ARM, PPC)
 - Discovered that common behavior is to do DoS attacks
- Increased scans and attacks from January 2014-January 2015
 - 4 malware families, reconnaissance and malware infection were done by *different* hosts in coordination

Transparency

- Who "owns" the devices?
 - Manufacturer, OS Vendor, App Developer, Service Provider, Me?
- What are the devices doing?
 - What information are they gathering?
 - What data are they manipulating?
 - Who gets access to the data? What is shared?

Transparency (2)

- Trusted Tiny Things project
- Developed an ontology using OWL (Web Ontology Language)
- Allows discovery of
 - who is behind the activity of an IoT device
 - what activity(ies) an IoT device is (capable of) performing
- Hope
 - Now find out if the devices are doing the things they should be doing
- Cons
 - No verification of whether the reports are fabricated or modified

Privacy

- Many problems with privacy in IoT
- General agreement users own their data
 - But do they really?
- Among various ideas
 - Set up a "local" intelligence (maybe a laptop)
 - This is called a "privacy mediator"
 - The local intelligence can add noise to the data, blur pictures, etc. as needed
 - Avoid sending "raw" sensor data to the cloud
 - User has control over the fidelity of data

Other Sources

- Enabling Things to Talk and the IoT Architecture Project: available at http://www.iot-a.eu
- S. Ray, A. Raychowdhury, Y. Jin, "The Changing Computing Paradigm with Internet of Things: A Tutorial Introduction," *IEEE Design and Test*, March/April 2016
- J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, "Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions," *Elsevier Future Generation Computer Systems*, Vol. 29, pp. 1645-1660, 2013
- J. Bughin, M. Chui, J. Manyika, "An Executive's Guide to the Internet of Things," *McKinsey Quarterly*, August 2015

http://www.arm.com/products/security-on-arm/trustzone

Recent trends

- Forrester 2017 prediction
 - "Hackers will continue to use IoT devices to promulgate DDoS attacks"
- ARM puts security into its chips through its TrustZone technology
 - Secure and not software/data are hardware separated
- Akamai state of the internet report has started highlighting IoT related attacks
 - Example of Spike DDoS toolkit targeting Linux on ARM chips
- Calls for standardizing IoT security