
FlexiWeb: Network-Aware Compaction 
for Accelerating Mobile Web



What’s the impact of web 
latency ?



100ms 1% 
Delay sales 

Source : 
https://speakerdeck.com/deanohume/faster-mobile-

websites!



100ms 1% 
Delay revenue 

Source : 
https://speakerdeck.com/deanohume/faster-mobile-

websites!



400ms 9% 
Delay traffic 

Source : 
https://speakerdeck.com/deanohume/faster-mobile-

websites!



500ms 25% 
Delay searches 

Source : 
https://speakerdeck.com/deanohume/faster-mobile-

websites!



What does it take to load a web 
page? 

Prompt for Unload

DNS Resolution

TCP Handshake and Connection

Send Request and Wait for Response

Request Sub Resources

Execute Scripts and Apply CSS

X 400

Number of RTTs  dominates the 
web latency 



Existing Approaches ?



Follow the  best practices  

� � 

� � Html, JS,  
CSS 

Text 

Images 

Optimized 

Minified, Gzipped 

� � � 

� � � 

HTTP/2 
SPDY 

New optimizations every few weeks 

. 

. 

. 



Data Compression Proxies  
(or Cloud Assisted Browsing ) 

� 
Compression Proxy 

� 
http website 

Data Compression : OFF 

Data Compression : ON 

Transcoding 
Images

eg. PNG to WebP

Content-aware 
Compression �

eg. minify JS



Data Compression Proxies  
(or Cloud Assisted Browsing ) 

� 
Compression Proxy 

� 
http website 

Data Compression : OFF 

Data Compression : ON 

 Client’s network condition is  
  ignored 
 Static transformation of  
 content 
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•  “Klotski: Reprioritizing Web Content to Improve User Experience on 
Mobile Devices”, NSDI 2015 



Is Compression proxy always 
useful ?



Measurement Study 



Measurement Setup 

Clients : Multiple Android devices with Google 
chrome browser 

Network 
Conditions : 

2 Cellular service 
providers : AT&T and T-
Mobile 

Choose 4 different 
locations ( based on  
similar  RTT and 
throughput values ) 

Network 
Conditions RTT(ms) Throughput 

(Mbps) 
Loss 
Rate(%) 

Excellent 100 5 0.006 

Good 200 2 0.006 

Fair 400 1 0.04 

Poor 600 0.3 0.1 

Source : Measuring Cellular Networks: Characterizing 3G, 4G, 
and Path Diversity, ACITA 2012 



Measurement Setup 

Data Collection : 
Each phone downloads the Alexa’s top 500 websites  
All experiments were performed with cold browser cache 

Page Load Time (PLT) is recorded for each page  

Results are averaged over 10 trials  

Schemes : 

Direct : All the requests are directly sent to the web server 

Compression Proxy ( Google’s data compression proxy) : All the requests 
are sent to the compression proxy 



Data Compression Proxy 
Performance :

Measurement Results 

Gain of 32% in bad 
network conditions

28%  degradation in 
excellent network 
conditions
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Figure 2 (a) Gains from using a commercial compression proxy (Google compression proxy) in downloading Alexa’s top 500 web pages under different client
network conditions. Gains are measured in comparison to a Conventional browser. (b) Average increase in Page Load Time (PLT) in seconds from using
a commercial compression proxy (Google compression proxy) in comparison to a Conventional browser.(c) Gains from using a Proxy Assisted
browser (using our own proxy) in downloading Alexa’s top 500 web pages under different network conditions. Gains are measured in comparison to a
Conventional browser.

a Conventional browser (where all content is retrieved from
the source). We see that the use of the proxy provides an average
gain of about 32% in bad network conditions. In excellent network
conditions, the Conventional browser (no proxy) outperforms
the Proxy assisted browser by about 28%. Figure 2b shows
the average gain in page load times in seconds. We see that the
proxy can increase the page load time by ≈ 4 seconds. According
to prior studies [11] a 1 second delay could potentially result in a
nett loss of 2.5 million dollars in sales for an e-commence website.
It is also seen that a 4 second delay can cause up to 25% increase in
page abandonment. These results clearly demonstrate that the use
of a proxy can significantly hurt performance when network condi-
tions are excellent; however, as conditions degrade, compression at
a proxy can provide significant benefits.

An in-depth study: To get a further understanding of the im-
plications of using a compression proxy, we set up our own proxy
(to emulate the behavior of Google’s proxy) and conduct more in
depth studies.

Compression proxy setup: We set up the compression proxy
on Amazon EC2 to have a controlled environment. The proxy is
located in northern California, relatively close to the geographi-
cal region of the client. We use Google’s open-source compres-
sion proxy module called PageSpeed, which we setup as a forward
proxy [12]. We use the optimization strategies [13] recommended
for reducing page load times. These include combining and minify-
ing JavaScript (JS) and Cascading Style Sheets (CSS) files, inlining
small resources, and others. We configure PageSpeed to dynami-
cally optimize images by removing unused metadata, resizing im-
ages to specified dimensions, and re-encoding images to the WebP
format (which requires fewer bytes than other popular formats such
as JPEG and PNG).

Figure 2c presents the average gain in page load time with the
compression proxy as compared to Conventional browsing (or
direct downloads). We see that the results are very consistent with
what was observed with the real-world compression proxies.

The question that we then seek to answer is: “why does perfor-
mance degrade in excellent network conditions due to the use of a
proxy?" Via a careful study, we find that this is primarily due to
penalties associated with loading content via a compression proxy:
(i) circuitous routing between the client and web servers via the
middlebox, and/or (ii) processing delays at the middlebox.

Penalties due to route stretch: Zarifis et al [9] provide a detailed
analysis of path inflation in mobile networks and suggest that fac-
tors that primarily contribute to the path inflation are diversions
due to (i) ingress points and (ii) peering points. With regards to the

former factor, the device’s carrier network may not have ingress
points to the Internet in the device’s area. With regards to the latter,
the carrier network may connect with a web service provider at a
peering point or Internet exchange point (IXP), which may be at a
location distant from both the mobile device and the web provider.

An analysis of our traceroute data indicates that, in the presence
of a proxy, traversal of multiple peering points (because of three
different networks viz., the carrier network, the network hosting
the proxy and the network hosting the web server, instead of two)
is likely to lead to longer paths. Indeed, we observed that end-
to-end routes in some cases were inflated by up to 8 hops due to
the use of the proxy, which resulted in increases in RTTs by up to
45ms.

For example, when we fetched cnn.com without using the
proxy, from a location in Southern California, the request
for object http://i.cdn.turner.com/cnn/.e/img/4.
0/logos/city_of_tomorrow_bw.png traversed through
AT&T’s core mobile network to a CDN (content distribution net-
work) server which was geographically proximate to the client
(near Los Angeles). We also found that ingress points for AT&T’s
mobile core network were in the same geographical location. When
fetching the same object via the compression proxy, the request
went to the proxy server located in northern California and the re-
quest for the object was forwarded to the CDN located near the
proxy server (northern California). We observe a similar effect
when fetching the same object via Google’s compression proxy; the
request was sent to Google’s compression proxy located in north-
ern California while the closest CDN server was in region Southern
California (Los Angeles).

We wish to point out here that the cellular providers also deploy
(transparent) proxies in their core network. According to [14] how-
ever, only Sprint performs any form of content rewriting. Other
providers (T-Mobile, ATT and Verizon) primarily perform delayed
handshaking, connection persistence and redirection using such a
transparent proxy.

Penalties due to processing overhead: We find that the process-
ing overhead to convert an image to WebP format (the image trans-
formation performed by Google’s compression proxy) ranges from
10ms to 30ms per image, depending on the image’s size; if a web
page contains a large number of objects, the total processing delay
can be significant. In general, when compared to JPEG, the encod-
ing speed for WebP is ≈ 10X slower (and the decoding is ≈ 1.4X
slower) but it does provide ≈ a 30% gain in terms of a size re-
duction, on average [15]. A commercial proxy can reduce the pro-
cessing times by using advanced caching techniques (to amortize



Why does performance degrade in 
excellent network conditions ? 



Measurement Results 

Circuitous Routing 
Paths were inflated by up to 8 hops, which 
increased the RTT by up to 80 ms 

Processing Overhead 
For example, the encoding and decoding of WebP 
is ~10X and ~1.4X slower than JPEG
19 



Measurements: Controlled 
settings 

Set up our own compression proxy on Amazon 
EC-2 

Compression Proxy : Apache + 
mod_pagespeed (with recommended settings) 

Replayed captured webpages to avoid 
change in content 



Measurement Results 

Object Size VS. Average Load Time  

Good/Excellent conditions only fetch objects >30KB via proxy 
Fair/Poor conditions fetch all objects via proxy 

Excellent
 Good
 Fair
 Poor
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Figure 3 Download times of objects under various network conditions (a) Network: Excellent (b) Network: Good (c) Network: Fair (d) Network: Poor

Network Condition 0–1 KB 1–3 KB 3–6 KB 6–10 KB 10–20 KB 20–40 KB ≥ 40 KB
Excellent Direct Direct Direct Direct Direct Proxy Proxy
Good Direct Direct Direct Direct Proxy Proxy Proxy
Fair Direct Direct Proxy Proxy Proxy Proxy Proxy
Poor Proxy Proxy Proxy Proxy Proxy Proxy Proxy

Table 2 Mapping that dictates when to fetch an object directly from the source server and when to fetch it via the proxy
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Figure 5 Average object size of top 4000 Alexa web pages over last 2 years

Dynamically selecting how to fetch an object based on its size
is challenging because any object’s size is not readily available to
the client. After fetching the main HTML file (e.g., index.html) of
a web page, current browsers parse the file to determine the next
object that is to be fetched in order to render the web page. At this
point, the browser only knows the object’s URL; the object size
information is yet unknown. While the browser could try to deter-
mine an object’s size by issuing a HTTP HEAD request [17] to the
web server hosting the object, this would add significant overhead
since it imposes an additional round trip of wide-area communica-
tion for every object.

3.2 Predicting object sizes
To predict the size of an object given only its URL, we rely on
learning and applying a predictive classifier. Based on the objects
that it fetches over time the proxy continually builds this classifier,
and periodically sends its prediction model to the client. The data
from Alexa’s top 4000 web pages gathered by http archive [16],
shows that the average size of web page objects changes only once
every few months (as shown in Figure 5). Thus, it suffices that the
update frequency of the prediction model is set to (say) every few
months.

Training the model: To construct a prediction model, a dataset
to train the model is required. The middlebox records the URLs of
the objects that it fetches and their corresponding sizes, and it feeds
this information as input to a machine learning algorithm to predict
the sizes of objects not seen thus far. Figure 6(a) depicts the distri-
bution of object sizes in such a sample dataset, which comprises all
objects seen on Alexa’s top 4000 websites. We see that over 80%
of objects are smaller than 50 KB. This is also true in the case of
images (Figure 6(b)). Figure 6(c) shows that objects with text con-
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Figure 6 Characteristics of top 4000 Alexa Web pages.

tent (JavaScript, HTML, and CSS) are even smaller. We find that
images are one of the biggest contributors to large web page sizes,
and hence, we looked at the distribution of the sizes of different
image types. Figure 6(d) shows that GIF images are much smaller
in size than PNGs and JPEGs.

Rather than attempt to predict the precise size of every object,
which is likely an impossible task, we leverage the fact that we only
need to map every object to one of the bins in Table 2. Therefore,
the problem at hand is to accurately predict the size range given an
object’s URL.

Extracting features: To perform this classification of ob-
ject URLs to size ranges, we extract various features from
every URL. First, we extract a “bag of words" [18] from
the host name in the URL. For example, the host name in
the URL http://i.cdn.turner.com/cnn/.e/img/3.
0/global/icons/gallery_icon2.png yields the follow-
ing bag of words: {i, cdn, turner, com}. In addition to features
extracted from the host name, we include features from the URN
and the type of content. Hence, the feature set for the above URL
would be domain = {i, cdn, turner, com}, urn = {cnn, .e, img, 3.0,
global, icons, gallery_icon2.png} and type = png.



FlexiWeb : A framework that 
determines both when to use a 
compression proxy and how to 
use it, based on the client’s 
network conditions.



flexiweb : overview 



splitting requests 

Uses measurement based mapping to dynamically send the 
request either directly to the web server or to the proxy.  

Challenge : How to figure out the size of the object 
without downloading it? 

Request Splitting Module 
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Figure 3 Download times of objects under various network conditions (a) Network: Excellent (b) Network: Good (c) Network: Fair (d) Network: Poor

Network Condition 0–1 KB 1–3 KB 3–6 KB 6–10 KB 10–20 KB 20–40 KB ≥ 40 KB
Excellent Direct Direct Direct Direct Direct Proxy Proxy
Good Direct Direct Direct Direct Proxy Proxy Proxy
Fair Direct Direct Proxy Proxy Proxy Proxy Proxy
Poor Proxy Proxy Proxy Proxy Proxy Proxy Proxy

Table 2 Mapping that dictates when to fetch an object directly from the source server and when to fetch it via the proxy
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Figure 5 Average object size of top 4000 Alexa web pages over last 2 years

Dynamically selecting how to fetch an object based on its size
is challenging because any object’s size is not readily available to
the client. After fetching the main HTML file (e.g., index.html) of
a web page, current browsers parse the file to determine the next
object that is to be fetched in order to render the web page. At this
point, the browser only knows the object’s URL; the object size
information is yet unknown. While the browser could try to deter-
mine an object’s size by issuing a HTTP HEAD request [17] to the
web server hosting the object, this would add significant overhead
since it imposes an additional round trip of wide-area communica-
tion for every object.

3.2 Predicting object sizes
To predict the size of an object given only its URL, we rely on
learning and applying a predictive classifier. Based on the objects
that it fetches over time the proxy continually builds this classifier,
and periodically sends its prediction model to the client. The data
from Alexa’s top 4000 web pages gathered by http archive [16],
shows that the average size of web page objects changes only once
every few months (as shown in Figure 5). Thus, it suffices that the
update frequency of the prediction model is set to (say) every few
months.

Training the model: To construct a prediction model, a dataset
to train the model is required. The middlebox records the URLs of
the objects that it fetches and their corresponding sizes, and it feeds
this information as input to a machine learning algorithm to predict
the sizes of objects not seen thus far. Figure 6(a) depicts the distri-
bution of object sizes in such a sample dataset, which comprises all
objects seen on Alexa’s top 4000 websites. We see that over 80%
of objects are smaller than 50 KB. This is also true in the case of
images (Figure 6(b)). Figure 6(c) shows that objects with text con-
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Figure 6 Characteristics of top 4000 Alexa Web pages.

tent (JavaScript, HTML, and CSS) are even smaller. We find that
images are one of the biggest contributors to large web page sizes,
and hence, we looked at the distribution of the sizes of different
image types. Figure 6(d) shows that GIF images are much smaller
in size than PNGs and JPEGs.

Rather than attempt to predict the precise size of every object,
which is likely an impossible task, we leverage the fact that we only
need to map every object to one of the bins in Table 2. Therefore,
the problem at hand is to accurately predict the size range given an
object’s URL.

Extracting features: To perform this classification of ob-
ject URLs to size ranges, we extract various features from
every URL. First, we extract a “bag of words" [18] from
the host name in the URL. For example, the host name in
the URL http://i.cdn.turner.com/cnn/.e/img/3.
0/global/icons/gallery_icon2.png yields the follow-
ing bag of words: {i, cdn, turner, com}. In addition to features
extracted from the host name, we include features from the URN
and the type of content. Hence, the feature set for the above URL
would be domain = {i, cdn, turner, com}, urn = {cnn, .e, img, 3.0,
global, icons, gallery_icon2.png} and type = png.



predicting object size 

How to predict the size range of an object 
using only its URL ? 

Browser downloads the main html file 
(index.html) with object URLs  

•  Issuing a HTTP Head request ? Incurs an additional RTT

Multi-Class Classification Problem : Classifying a 
URL into one of the size ranges

We use Random Forest Classifier to classify 
the objects in different size ranges 



predicting object size 

For example : http://i.cdn.turner.com/cnn/.e/
img/3. 0/global/icons/gallery_icon2.png  
 
Yields following bag of words : {i, cdn, turner, 
com, cnn, .e, img, 3.0, global, icons, 
gallery_icon2, png} 

Feature Extraction :  We extract features 
from the object URL using “bag of words” 
technique 

Occurrence of each word is used as a feature for training the 
classifier  
Client uses the classifier to predict the object size range 



Assessing Network Conditions 

Proxy calculates the median RTT and TCP throughput 
to the client using packets exchanged during the main 
html file download 

Browser always downloads the main html 
file via the proxy 

Proxy sends this “Network Condition Report” back to 
the client via object response headers

Network measurement module tracks RTT, loss rate, 
and TCP throughput to the client. 



Network aware compression 

Images make up around 60% 
percent of the bytes on a 
average web page  

We only focus on adaptively transforming the images on the 
web page

Text and JS are compressed 
similar to traditional proxy 
assisted browsers 

Goal : Adaptively transform a web page’s content to 
deliver the page within the user’s attention span (2 to 
5 sec)  

Source : httparchive.org 



Set of transformations : WebP with 85% quality, 
WebP with 65% quality, WebP with 45% quality, 
WebP with 25% quality, WebP with 5% quality        

Each transformation has an associated cost and utility  

For tractability, we consider limited number of 
transformations   

•  Cost : Time required to download the transformed 
image from the proxy to client  

•  Utility : PSNR of the resulting transformation 

Challenge : How to choose the right transformation based 
on the cost and utility ? 

Network aware compression 



Lets assume that there are N images in a web page 
and a total page load time budget of B seconds 

Goal : Maximize the sum of utilities of all the selected versions of N 
images  

subject to  
(1) Exactly one version of each image can be selected 
(2) Total cost of all the selected versions can not exceed the total budget 

B 

This problem can be mapped to the Online Multi-
Choice Knapsack Problem (MCKP) 

Network aware compression 



Implementation and Setup 

Client Side Implementation : Using Google’s 
Chromium open source android browser 

Proxy Side Implementation : Using mod_pagespeed 
and apache web server 

Controlled Settings : Dummynet to emulate the 
network conditions to reduce the variability   

Network Conditions : 

Cellular Networks : AT&T and T-Mobile 



Implementation and Setup 

WebPage Requested :  Alexa top 500 web sites 
visited by mobile users 

Schemes : 
1. Direct : All the request are directly sent to the web server 
2. Compression Proxy : All the requests are sent to compression proxy  
    (with WebP quality 75%) 
3. FlexiWeb 

Metric :  Page Load Time 



Performance of FlexiWeb 

FlexiWeb provides up 
to 38% gain in 
excellent network 
condition 
8% gain in poor 
network conditions  0
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Figure 9 : (a) Percentage of extra fetched objects in a time budget of 5 seconds (b) Gains in page load times (c) Performance of FlexiWeb on T-Mobile’s
network (d) Performance of FlexiWeb on AT&T’s network (e) Gains with FlexiWeb in mobile settings

of the time, FlexiWeb provides an average percentage gain of 34
% over compression proxy based browsing, in terms of page load
times. In 20% of the cases, it only provides 14% gains. Upon
closer inspection, we found that some paths were experiencing ex-
cellent to good signal strength throughout while others were ex-
periencing low signal strengths much more often than good signal
strengths. It is well known that excellent/good signal strength is
highly correlated with good network conditions (low RTT and loss
rates, high throughputs) while the opposite is true with low/poor
signal strength [32]. In excellent/good network conditions Flexi-
Web significantly outperformed conventional compression proxy
based browsing (since FlexiWeb retrieved most objects in the web
pages directly and only few large objects via the proxy). On paths
where network conditions were bad, both the conventional com-
pression proxy based browser and FlexiWeb, fetched almost all ob-
jects via the proxy. FlexiWeb outperformed conventional compres-
sion proxy based browsing because of its network-aware compres-
sion module.

6 Related Work
Measurement studies: There is prior work on characterizing the
properties of web pages, and protocols that impact mobile web
browsing. The study in [33] shows that optimization of compute
intensive tasks at proxies only offers marginal gains. In [34], the
complexity of web sites is studied via browser-based active mea-
surements. Other studies have evaluated the benefits of existing
mechanisms for improving mobile web performance. Erman et
al. [35] showed that SPDY [36], a recently proposed alternative to
HTTP, does not clearly outperform HTTP over cellular networks.
They identify the disharmony between TCP and cellular networks
as the underlying cause. Similarly, Sivakumar et al. [37] showed
that proxy-assisted thin client browsers, such as Amazon Silk [6],
do not provide clear benefits in terms of page load time and en-
ergy. None of these efforts study the implications of using Proxy
Assisted mobile web browsing in different network conditions,
as we do here.

Client-based solutions: Client-side solutions have been pro-
posed to improve mobile web performance. WebSieve [38] gen-
erates mobile-friendly websites from the original desktop versions.
Zoomm [39] speeds up web page loads by parallelizing the execu-
tion of dynamic components of any web page. Adrenaline [40] par-
allelizes the fetching of web pages by decomposing existing web
pages on the fly into loosely coupled mini pages, and loading mini
pages in parallel via separate processes.

User studies: Lymberopoulos et al.’s user study [41] shows that
mobile web browsing exhibits a strong spatio-temporal signature,
different for every user. Based on this study, they propose a ma-
chine learning based model to accurately predict future web ac-
cesses for a user, and they use this prediction to prefetch content in
a timely manner. Wang et al. [42] show that caching and prefetch-

ing provide very limited benefits for mobile web browsing, but
speculative loading can decrease page load times by up to 20%.

Unlike FlexiWeb, none of the above approaches consider mod-
ifying web clients to dynamically select when to use proxies for
data compaction.

Proxy-based solutions: Due to the computation and bandwidth
limitations on mobile devices, researchers have proposed to offload
various types of functionality from client devices to proxies. For
example, Zhao et al. [3] offload execution of dynamic content to the
proxy, while Cho et al. [43] propose the delegation of DNS lookups
and TCP connection establishment to the proxy. Chava et al. [44]
try to reduce the usage cost incurred by the end-user by computing
a cost quota for each web request, and having a proxy adapt the web
page accordingly. The cost quota for each web request is dynami-
cally calculated based on the pricing plan of the user and her current
data usage levels. Recently, Google [13] and Nokia [45] have in-
corporated data compression proxies in their mobile web browsers;
these proxies (hosted in data centers) are expected to reduce cellu-
lar data usage and speed up mobile web browsing. Wang et al. [2]
propose a framework that allows the execution of “any" portion of
the page load process in the cloud (unlike browsers such as Opera
Mini that only allow fixed parts to be executed in the cloud).

None of these proxy-based solutions are network-aware. While
some of the proprietary solutions are not documented, to our
knowledge, all existing systems always fetch content via the proxy,
unlike FlexiWeb; further, they apply the same content compression
irrespective of network conditions.

7 Conclusions
In this paper, we argue based on an in-depth measurement study
that always using cloud-based middleboxes to assist mobile brows-
ing can be detrimental to performance in terms of web page down-
load times. Our measurements reveal that the middlebox should be
used only when network conditions are bad; otherwise, most ob-
jects in the web page should be directly fetched from the source
web server. Based on this observation we build FlexiWeb, a frame-
work that supports network-aware middlebox usage. In addition,
FlexiWeb also performs dynamic network-aware compression to
provide further performance gains. We demonstrate via extensive
experiments that FlexiWeb outperforms conventional compression
proxy based browsing by decreasing page load times by as much as
42 %, on average.
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of online MCKP

grouped under a classification. Specifically,

Precision(%) =

(
TruePositive

T ruePositive+ FalsePositive

)
× 100.

Figure 8b shows that the accuracy of predicting the size of ob-
jects based on the URL text is quite high. We can predict objects of
size 0 to 1 KB and objects larger than 20 KB with more than 90%
accuracy. We can predict other object sizes with at least 70% accu-
racy. Note that an inaccurate prediction simply causes FlexiWeb to
fetch the object sub-optimally (directly instead of via the proxy or
vice versa). Thus, while it slightly causes a degradation in Flexi-
Web’s performance, it does not disrupt the web browsing process.
Note here that our prediction has high accuracy because we only
seek to predict “the" range into which an object’s size falls, and not
the object’s precise size.

Quantifying the sub-optimality of network-aware compres-
sion: For network-aware compression, we use the modified online
MCKP algorithm shown in Algorithm 1. To illustrate the diffi-
culty of the online transformation selection problem, consider an
end user with a time budget of 5 seconds to download a page. Let
the download of version j of image i be represented by a utility-
cost pair (uij , cij), where uij is the utility (e.g., PSNR or negative
distortion) and cij is the cost. Suppose the first image has two
possible versions with utility-cost pairs (1,1), (2,2), and the second
image also has two versions with utility-cost pairs (2,1),(4,2). If
the user requests for both the images sequentially, then the optimal
(offline) solution is to choose the stream (1,1) followed by (4, 2).
This gives a total utility of 5 with a total cost of 3. However, an on-
line transformation selection algorithm must first choose a stream
from (1, 1), (2, 2), without knowledge of the subsequent request.
Our online MCKP algorithm is likely to choose the transformation
(2, 2) followed by (2, 1), resulting in sub-optimal utility.

Here, we seek to quantify the sub optimality of Algorithm 1.
We select 100 web pages from the Alexa’s top 500 web pages
with varied number and sizes of the objects. We first download
the pages using a modified version of MCKP, called OPT-MCKP.
OPT-MCKP [30] is an offline version of MCKP, where the object
requests are known in advance. With this information OPT-MCKP
can always choose the right transformation. We repeat the same
experiment using our ON-MCKP algorithm (Algorithm 1) . A pop-
ular way to evaluate online algorithms is using what is called the
“Competitive Ratio" [31]. The competitive ratio of an online al-
gorithm for an optimization problem is simply the ratio between
the cost of the solution found by the algorithm and the cost of an
optimal solution. Figure 8c shows the CDFs of Competitive ratio
(converted to percentage) across the 100 pages; we see that 80% of

the time, the page load times with ON-MCKP are within 10%-20%
of that with OPT-MCKP.

Number of objects and web pages downloaded within a time
budget: Next we evaluate FlexiWeb in terms of number of objects
retrieved within a specified time budget of 5 seconds. We compare
the number of requests satisfied by FlexiWeb in comparison with
conventional compression proxy based browsing. Figure 9a depicts
the CDF of the percentage of additional objects retrieved by Flexi-
Web as compared to conventional compression proxy based brows-
ing; we see that FlexiWeb fetches 17% more objects on average,
within the same time budget. FlexiWeb achieves this by fetching
small objects directly from the web server in excellent and good
network conditions; the decrease in per-object download times al-
low the downloading of more objects within the page load time
budget. Even in bad network conditions FlexiWeb fetches 1-2%
more objects on an average than conventional compression proxy
based browsing, but mainly due to network aware compression. An
increase in number of additional fetched objects also translates to
an increase in the number of web pages downloaded in the target
budget. Figure 9b shows the CDF of page down load times of web
pages using regular compression proxy and FlexiWeb. We see that
FlexiWeb can download about 19% more web pages on average,
within a target budget of 5 seconds.

Evaluations on AT &T and T-Mobile’s networks: We evaluate
FlexiWeb on real cellular networks to show that the gains seen in
controlled settings also exist in real cases. From Figure 9c and 9d
we see that FlexiWeb outperforms conventional compression proxy
based browsing in excellent network conditions (by up to 38% with
T-Mobile and 37 % with AT & T) In poor conditions it out performs
the latter by up to 6% with T-Mobile and 2 % with AT & T. The
gains are in between for other network conditions.

Scenarios with mobility: Next, we seek to evaluate FlexiWeb
in scenarios where a passenger accesses web pages while in a mov-
ing car. We choose 20 different paths to capture typical scenarios:
(i) driving on a highway at high speeds and (ii) driving around in a
city at moderate speeds. We used two mobile devices (both HTC
One phones) connected to two laptops via USB, one downloading
web pages via a conventional compression proxy while the other
does so using FlexiWeb. We choose to download Alexa’s top 50
web pages for this experiment. Both the devices are connected to
AT & T’s network. In addition to page load times we also keep
track of signal strengths at both the devices. We start the experi-
ments on both the phones at almost the same time to avoid varia-
tions in network conditions. We measure the average percentage
gains with FlexiWeb while downloading all the web pages. In Fig-
ure 9e, we plot the CDF of this average percentage gain over all
the webpages downloaded on the different paths; we see that 80%

-30

-20

-10

 0

 10

 20

 30

 40

Excellent Good Fair Poor
P

er
ce

nt
ag

e 
G

ai
n

Network Conditions

Request Splitting
Network Aware Compression

(a)

 0

 20

 40

 60

 80

 100

0-1kb
1-3kb

3-6Kb
6-10Kb

10-20Kb

20-40Kb

>40Kb

A
ve

ra
ge

 P
re

ci
si

on
(%

)

Object Size Range

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 50  60  70  80  90  100

C
D

F

Competitive Ratio(%)

(c)

Figure 8 : (a) Impact of request splitting and network aware compression on FlexiWeb’s gains (b) Precision in predicting object sizes (c) Competitive analysis
of online MCKP

grouped under a classification. Specifically,
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Figure 8b shows that the accuracy of predicting the size of ob-
jects based on the URL text is quite high. We can predict objects of
size 0 to 1 KB and objects larger than 20 KB with more than 90%
accuracy. We can predict other object sizes with at least 70% accu-
racy. Note that an inaccurate prediction simply causes FlexiWeb to
fetch the object sub-optimally (directly instead of via the proxy or
vice versa). Thus, while it slightly causes a degradation in Flexi-
Web’s performance, it does not disrupt the web browsing process.
Note here that our prediction has high accuracy because we only
seek to predict “the" range into which an object’s size falls, and not
the object’s precise size.

Quantifying the sub-optimality of network-aware compres-
sion: For network-aware compression, we use the modified online
MCKP algorithm shown in Algorithm 1. To illustrate the diffi-
culty of the online transformation selection problem, consider an
end user with a time budget of 5 seconds to download a page. Let
the download of version j of image i be represented by a utility-
cost pair (uij , cij), where uij is the utility (e.g., PSNR or negative
distortion) and cij is the cost. Suppose the first image has two
possible versions with utility-cost pairs (1,1), (2,2), and the second
image also has two versions with utility-cost pairs (2,1),(4,2). If
the user requests for both the images sequentially, then the optimal
(offline) solution is to choose the stream (1,1) followed by (4, 2).
This gives a total utility of 5 with a total cost of 3. However, an on-
line transformation selection algorithm must first choose a stream
from (1, 1), (2, 2), without knowledge of the subsequent request.
Our online MCKP algorithm is likely to choose the transformation
(2, 2) followed by (2, 1), resulting in sub-optimal utility.

Here, we seek to quantify the sub optimality of Algorithm 1.
We select 100 web pages from the Alexa’s top 500 web pages
with varied number and sizes of the objects. We first download
the pages using a modified version of MCKP, called OPT-MCKP.
OPT-MCKP [30] is an offline version of MCKP, where the object
requests are known in advance. With this information OPT-MCKP
can always choose the right transformation. We repeat the same
experiment using our ON-MCKP algorithm (Algorithm 1) . A pop-
ular way to evaluate online algorithms is using what is called the
“Competitive Ratio" [31]. The competitive ratio of an online al-
gorithm for an optimization problem is simply the ratio between
the cost of the solution found by the algorithm and the cost of an
optimal solution. Figure 8c shows the CDFs of Competitive ratio
(converted to percentage) across the 100 pages; we see that 80% of

the time, the page load times with ON-MCKP are within 10%-20%
of that with OPT-MCKP.

Number of objects and web pages downloaded within a time
budget: Next we evaluate FlexiWeb in terms of number of objects
retrieved within a specified time budget of 5 seconds. We compare
the number of requests satisfied by FlexiWeb in comparison with
conventional compression proxy based browsing. Figure 9a depicts
the CDF of the percentage of additional objects retrieved by Flexi-
Web as compared to conventional compression proxy based brows-
ing; we see that FlexiWeb fetches 17% more objects on average,
within the same time budget. FlexiWeb achieves this by fetching
small objects directly from the web server in excellent and good
network conditions; the decrease in per-object download times al-
low the downloading of more objects within the page load time
budget. Even in bad network conditions FlexiWeb fetches 1-2%
more objects on an average than conventional compression proxy
based browsing, but mainly due to network aware compression. An
increase in number of additional fetched objects also translates to
an increase in the number of web pages downloaded in the target
budget. Figure 9b shows the CDF of page down load times of web
pages using regular compression proxy and FlexiWeb. We see that
FlexiWeb can download about 19% more web pages on average,
within a target budget of 5 seconds.

Evaluations on AT &T and T-Mobile’s networks: We evaluate
FlexiWeb on real cellular networks to show that the gains seen in
controlled settings also exist in real cases. From Figure 9c and 9d
we see that FlexiWeb outperforms conventional compression proxy
based browsing in excellent network conditions (by up to 38% with
T-Mobile and 37 % with AT & T) In poor conditions it out performs
the latter by up to 6% with T-Mobile and 2 % with AT & T. The
gains are in between for other network conditions.

Scenarios with mobility: Next, we seek to evaluate FlexiWeb
in scenarios where a passenger accesses web pages while in a mov-
ing car. We choose 20 different paths to capture typical scenarios:
(i) driving on a highway at high speeds and (ii) driving around in a
city at moderate speeds. We used two mobile devices (both HTC
One phones) connected to two laptops via USB, one downloading
web pages via a conventional compression proxy while the other
does so using FlexiWeb. We choose to download Alexa’s top 50
web pages for this experiment. Both the devices are connected to
AT & T’s network. In addition to page load times we also keep
track of signal strengths at both the devices. We start the experi-
ments on both the phones at almost the same time to avoid varia-
tions in network conditions. We measure the average percentage
gains with FlexiWeb while downloading all the web pages. In Fig-
ure 9e, we plot the CDF of this average percentage gain over all
the webpages downloaded on the different paths; we see that 80%





We show that today’s compression proxies can increase 
mobile web page load times !

Conclusions 

Content transformations should be network aware!

Based on these observations we implemented FlexiWeb, a 
framework that support network aware proxy usage !


