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ABSTRACT
Power line communications (PLC) offer an immediate means
of providing high bandwidth connectivity in settings where
there is no in-built network infrastructure. While there is
recent work on understanding physical and MAC layer arti-
facts of PLC, its applicability and performance in multi-flow
settings is not well understood. We first undertake an ex-
tensive measurement study that sheds light on the properties
of PLC that significantly affect performance in multi-flow
settings. Using the understanding gained, we design BOLT
, a framework that adopts a learning-based approach to ef-
fectively manage and orchestrate flows in a PLC network.
BOLT is flexible and is agnostic to standards; it can be used
to implement scheduling algorithms that target different per-
formance goals. We implement BOLT on three different
testbeds using off-the-shelf PLC adapters and showcase its
ability to effectively manage flows, delivering several folds
throughput improvement over state-of-the-art solutions.

CCS Concepts
•Networks → Network dynamics; Network experimenta-
tion; Physical topologies;
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1. INTRODUCTION
Power line communications are attractive for providing

backhaul Internet connectivity in settings without an in-built
network infrastructure, especially in third world countries.
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Several retail segments such as healthcare, industrial automa-
tion and warehousing, are increasingly relying on Internet
connectivity [1], [2] and in many such segments, deploy-
ing an Ethernet backhaul from scratch may not be cost ef-
fective. Furthermore, in many such applications, there is a
large amount of local, peer to peer data transfers that are
required (e.g., health records between medical devices and
IT servers and remote patient monitoring feeds in hospitals,
video surveillance data between cameras and storage servers
in retail warehouses) for which, PLC can be attractive.

PLC research is yet to mature: While PLC commercial
adapters are now available for home applications [3], they
primarily target low throughput unsaturated traffic flows. The
viability of using PLC as an alternative for delivering Ether-
net like throughputs in multi-flow settings has received little
attention. Recently, there has been some work done on un-
derstanding the efficacy of the 1901 MAC (Medium Access
Control) protocol, which is the basis for access control in
commercial PLC adapters [4, 5, 6]. These efforts showcase
the short comings of 1901 and suggest the tuning of a few
protocol parameters towards improving its efficiency. How-
ever, tuning of such parameters on commercial adapters is
not viable today. Moreover, 1901 has other performance is-
sues that we showcase later. Thus, we ask the question "How
can we achieve high stable throughputs with PLC in multi-
flow settings in a completely standards agnostic manner?"

Challenges: There are three main challenges that we will
need to overcome to answer the above question. First, the
topology of a PLC network is often unknown since it is
hidden behind walls and the connectivity is typically estab-
lished without communications in mind; in fact, nodes that
are geographically close are not necessarily direct neighbors.
The network structure dictates which transmissions interfere
with each other. While the 1901 MAC resolves this issue to
some extent, it can lead to poor throughput as well as unfair-
ness in many cases. To drastically reduce the ill effects of in-
terference, an understanding of the network topology needs
to be derived. Second, the quality of the PLC channel is time
varying. The impedance loads on the PLC lines vary as elec-
trical devices that are plugged in, and are turned ON or OFF.
This causes the throughputs on certain links to either degrade
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or improve, thereby causing dynamics in the network topol-
ogy. The time scales of these dynamics will influence the
solutions that one can deploy for effective management of
flows. As shown later, the 1901 MAC does not account for
these variations and this contributes to its inefficiency. The
third related challenge is to resolve the first two challenges
in a standards-agnostic way. This requires lightweight solu-
tions above the MAC layer that are sufficiently adaptive so
as to cope with the PLC channel dynamics.

Contributions: (1) Towards addressing the above chal-
lenges, we undertake an extensive application (flow) level
measurement study. While our study leads to many interest-
ing observations, two are especially noteworthy. First, the
study shows that flows do indeed interact in a PLC network
in unpredictable ways. Some flows can co-exist simultane-
ously, and their joint activation can yield significant through-
put gains compared to when they are activated in isolation.
However, in other cases, joint activation of flows can hurt
the throughput compared to when they are sequentially ac-
tivated. Second, the study suggests that the PLC channel is
quasi-stationary. This is an artifact of these variations aris-
ing from electrical devices being turned on/off, which does
not happen at very fine time scales and all that often.

(2) Based on the understanding gained from the above
study, we design BOLT , a flexible framework that appropri-
ately configures the PLC network to derive high throughputs
while adhering to whatever fairness constraints are desired.
Towards this, BOLT does the following:

• Determining flow interactions via calibration measurements
can be expensive; if done naively it can result in an expo-
nential number of measurements. BOLT imposes a log-
ical structure on the PLC network using which, it is able
to drastically reduce the number of such measurements
needed for flow management (now polynomial with re-
spect to the number of nodes in the network).

• BOLT leverages the quasi-stationarity of the PLC chan-
nel to intelligently apply machine learning (ML) classi-
fiers to determine flows that can be simultaneously active,
and their potential throughputs. The approach (i) has high
accuracy with small amounts of training data and (ii) is re-
sistant to noise from the plugging in of electrical devices.

• Finally, based on the above estimation, BOLT aggressively
reuses the available channel capacity by scheduling as many
simultaneous flows as possible (at the granularity of time
epochs) while adhering to desired fairness constraints. This
scheduling is done at the application layer and the goal is
to limit the level of contention that has to be handled by
the 1901 MAC. This will reduce collisions due to hidden
terminals or unnecessary backoffs, both of which if not
dealt with, lead to loss in throughput and unfairness.

(3) We extensively evaluate BOLT on three different testbeds
to show that it provides several fold throughput improve-
ments (1.5x - 8.5x) over the state of the art solutions (includ-
ing those in current day adapters), while remaining standards-

agnostic. Further, we show that the algorithms within BOLT
strike a good balance between performance and complexity.

2. BACKGROUND AND RELATED WORK
In this section, we first provide relevant background on

PLC. Subsequently we discuss related studies.
PLC Channel: PLC operates in the 1.6 and 86 MHz

bands. Its channel [7] is similar to the wireless channel: (a)
the signal is attenuated due to cable losses and, (b) multipath
propagation occurs due to cable branching and unmatched
line ends. The multipath reflections depend on the electri-
cal devices hooked on to the network and their impedance.
Studies such as [8] and [9] have built channel models for
indoor PLC. However, they do not measure or characterize
the properties of interest such as (i) the interactions between
flows in terms of simultaneous activation and (ii) the time
scales of throughput variations due to channel dynamics.

PLC Adapters: Today’s popular PLC adapters are Home-
plug AV1, Homeplug AV2 and HomePlug GreenPHY [3].
Using 1155 OFDM subcarriers and turbo codes, AV1 oper-
ates nearly at the theoretical maximum rate (ranges from 14
to 200 Mbps). AV2 uses an additional bandwidth from 30-86
MHz and a MIMO like PHY to achieve data rates of up to 1.5
Gbps. The MAC protocols used in these adapters, are vari-
ants of 1901 which in turn is based on CSMA/CA [10]. Typ-
ically, each PLC network has a central controller that helps
impose a time-slot structure to facilitate the use of 1901.

Related Work: The work in [10] models CSMA/CA for
PLC. In [11], the authors perform limited experiments to
gather some insights on the throughput of UDP and TCP
over a PLC network. The authors in [12], try to charac-
terize the end to end throughput over PLC. These limited
efforts however, have not explored multi-flow environments
or mechanisms to improve the PLC system performance.

There is recent work on analyzing the throughput perfor-
mance of the PLC MAC protocol (based on IEEE 1901) [6,
5, 4]. The authors show that collisions and unnecessary
backoffs are worse with 1901 as compared to 802.11 [4];
this is because (i) of the large slot duration and (ii) nodes
increase their backoff times when they sense the channel to
be busy (unlike in 802.11), with 1901. The authors argue
that by tuning certain back-off parameters, the throughput of
1901 can be maximized. However, setting these parameters
in commercial devices with no access to the firmware is dif-
ficult. Furthermore, the analysis does not take into account
the loss in performance due to dynamics of plugged in elec-
trical devices. Our goal is to design and develop an adaptive
framework that allows flexibility in such scenarios, and re-
duces MAC contention, by imposing a schedule at a higher
layer.

Note that while techniques from wireless (PHY, MAC)
measurement studies (eg. [13]) can be borrowed and applied
in the PLC context, this would (i) require support from the
PLC adapters (not available today) and (ii) more importantly,
result in changes to the access protocol (the 1901 standard)



Mircowave OFF Mircowave ON
Isolation Contention Isolation Contention

τl1 95 85 29 29
τl2 96 75 92 63

Table 1: Variation in throughput due to connecting and dis-
connecting devices at outlet U.
to address the previously mentioned issues.

3. UNDERSTANDING PLC
To understand the factors that influence PLC throughputs,

we undertake an extensive measurement study with commer-
cial PLC adapters in a multi-flow environment. Our goal is
not to characterize the PLC channel from the physical layer
perspective as in prior efforts, but to understand how channel
dynamics and flow interactions influence throughputs from
an application layer perspective. Our measurements are at
the granularity of flows; flows are from a source to a destina-
tion and could potentially encounter multiple power outlets
en route. Flow contention is handled by the MAC protocol
(1901 based) in all of the experiments reported here.

We perform experiments on three different testbeds. The
first is at an enterprise office setting (ENT), the second is at
a university lab (UNI testbed), and the third is in a residence
(house). Details of the testbed setups are in Section 6. We
employ PLC adapters from multiple vendors for diversity.

How do electrical appliances affect the throughput of a
PLC network?: Switching on electric apparatus (plugged
into power outlets in the PLC network) injects noise onto
the channel [14], which degrades the throughput. Towards
quantifying the performance degradation due to plugged in
electrical devices, we first perform a controlled experiment
where we vary the number of electrical devices that interfere
with PLC transmissions. In Fig. 2, we plot the throughput of
a flow in the presence (or absence) of different apparatuses.
The distance between the source and destination was ≈ 2
m. The electric apparatus (fluorescent lamps, Dell laptops,
small microwave ovens, printer) are connected to a power
outlet that is 80 cm from the destination power outlet. Using
iperf [15], a UDP flow was generated between the source
and the destination. It is hard to a priori know the capacity
of links in a PLC network; wire material and age will dictate
the maximum throughput of a line. Thus, we start with a rel-
atively high UDP flow rate (500 Mbps) and gradually reduce
the rate until we observe no losses (this is the estimated line
capacity). The results are averaged over 20 runs, each last-
ing 60 seconds. As seen from the figure, lightweight devices
such as fluorescent lamps or laptops do not inject much noise
and thus, barely hurt the throughput. However, microwave
ovens or printers (HP LaserJet 4200 in our study) are heavy-
weight in terms of the noise they inject and significantly hurt
the throughput. It is interesting that as the number of de-
vices of a certain type increase, the throughput degradation
appears to be linear; thus, after an initial calibration phase,
the impact of additional devices (of the same type) can be
empirically estimated (although we do not use this property

explicitly in BOLT ). The key takeaway here is, the fact that
different brands/types of electric apparatuses project differ-
ent levels of noise (based on their electric load), makes it
challenging to predict the throughput of a flow.

Microscopic study: Towards understanding the impact of
electrical appliances on 1901, we construct a controlled topol-
ogy with five power outlets as shown in Fig. 3 in a residency;
sources A and C, and destinations B and D, are connected
via AV2 adapters to the outlets as shown. Power outlet U is
unused in one set of experiments (setup 1); in a second set
of experiments (setup 2), an active microwave oven (power
650 watts) is plugged into U (similar effects were seen with
our HP LaserJet 4200 printer but the results are not shown
because of space constraints). The results from the exper-
iments are tabulated in Table 1. The average throughputs
of the flows from A to B and from C to D in isolation are
95 Mbps and 96 Mbps, respectively in setup 1. In setup
2, they are 30 Mbps and 92 Mbps respectively. It is evi-
dent that the flow from A to B is significantly affected by
the microwave oven, but not the one from C to D. When
the two flows are activated simultaneously in setup 1, the
throughputs achieved by the flow from A to B and that from
C to D, are 85 Mbps and 78 Mbps, respectively; notice that
the 1901 MAC decreases the throughputs of the individual
flows, but provides some semblance of fairness. The overall
throughput is higher and thus, this may be desirable. How-
ever, with setup 2, while the throughput of the flow from A
to B remains almost unchanged compared to isolated opera-
tions (29 Mbps), the flow from C to D takes a significant hit
(throughput drops to 63 Mbps) during concurrent operation.
Thus, even though the microwave by itself does not influ-
ence the latter flow, the interactions with the flow that is af-
fected degrades its performance when 1901 is used (the two
flows share the capacity and the flow affected by noise eats
into the capacity of the flow that is relatively unaffected).
Specifically, if the poor quality flow accesses the channel, it
can cause the good quality flow to repeatedly back off. The
overall throughput is still higher than if the flows were se-
quentially activated but this may not always be the case (as
seen in later experiments in uncontrolled settings). Thus,
there is a need to account for these interactions, and depend-
ing on whether the throughput increases or decreases, switch
from concurrent activity to sequential activity or vice versa
when electrical devices are turned ON/OFF.

How can one expect the throughput on a PLC channel
to change with time?: Figs. 4-6 presents the dynamics in
the throughput measured over different time scales in vari-
ous settings. The data is from 150 to 250 arbitrarily cho-
sen flows in three different environments (other flows exhib-
ited similar behaviors): ENT offices, ENT cafeteria and a
UNI laboratory. In Fig 4, we show the average throughput
of the considered flows over hours. The noise due to de-
vices in ENT offices is extremely low compared to that in
the other cases; this is because the electrical equipment here
mostly consists of lamps and laptops. In the cafeteria, the
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throughput is generally lower due to more heavyweight ap-
pliances (e.g., refrigerator) but is generally steady. However,
a throughput degradation is noticed (Fig. 4) due to the usage
of devices such as the microwave oven, coffee maker, etc.
during the lunch period. The throughput in the UNI lab is
again lower compared to the ENT offices due to the presence
of devices such as printers and heavy duty servers which are
typically on. After about 11:00 am, when students start us-
ing their research equipment (e.g., switch on their desktop
machines or other servers) a throughput degradation is seen.

A minute-by-minute depiction of channel fluctuations dur-
ing the lunch period at the ENT cafeteria (12:00 - 1:00 pm)
is shown in Fig. 5. We see that while the average throughput
is similar to that in a relatively static setting (UNI lab), oper-
ation of electric apparatus can cause significant variations in
noise and therefore the achieved throughput, at these short
time scales (order of minutes). Our experiments did not re-
veal any variations at even finer time scales (seconds or mil-
liseconds). We conclude that in general, the PLC channel
experiences only slow fading and is quasi-stationary in na-
ture unlike wireless (with fast fading); however, it can ex-
hibit large variations in short time scales (order of minutes)
in dynamic environments during certain times of the day.

Does proximity between the transceiver pair imply high
throughput?: Next, we measure the throughputs between all
possible pairs from our 16 node UNI testbed. We measure
the geographical distance between a pair of outlets, and the
throughput between the outlets in isolation. We classify the
throughputs into two categories: HIGH if it is > 80Mbps,
and LOW otherwise (the line capacity was ≈ 130 Mbps).
From Fig. 7 we see that proximity does not always translate
to a high throughput. More importantly even distant nodes
could enjoy high throughputs (e.g., when they are more than

Individual Throughput
f1 f2 f3

291 95.6 236

f̃1 f̃2 f̃3

42.9 11.8 11.3

LZF (pairwise)
f1 f2 f3

f1 NA 379 331
f2 379 NA 221
f3 331 221 NA

CZF (pairwise)
f̃1 f̃2 f̃3

f̃1 NA 30.9 18.39
f̃2 30.9 NA 11.6
f̃3 18.39 11.6 NA

Table 2: Throughputs (Mbps) for Fig. 1.

6 or even 12 meters apart). This demonstrates that one can-
not determine which transceiver pairs are likely to be ad-
jacent in the network topology just based on geographical
proximity (e.g., as will be the case in wireless). Note that
wiring diagrams of buildings do not reflect the actual electric
connectivity because of: (i) connecting different apparatuses
changes the actual electric load (ii) repairs and updates of the
electrical wiring constantly change the wiring diagram.

Do flow interactions increase or decrease throughputs
with 1901 ? We consider our ENT setup with interacting re-
gions, shown in Fig. 1. It is obvious that flows that are log-
ically separated in the PLC network (don’t interact) can be
simultaneously active (in fact, 1901 does take care of this).
The scenarios of interest to us are smaller constrained areas,
where flows interact at the MAC layer. We examine if 1901
effectively handles contention in such cases.

We concurrently establish (i) two (ii) three and (iii) four
randomly chosen sets (S) of flows (200 sets in each case) and
examine the aggregate throughputs that are achieved. For the
concurrently chosen flows, the transmitters and the receivers
are distinct. We only establish flows between transceiver
pairs that can directly receive signals from each other. The
aggregate throughput of each set of flows is averaged over
10 runs, each lasting for 30 seconds. All packet sizes are
equal to 1480 bytes. Fig. 8 shows the CDF of the aggre-
gate throughput gain of operating the set S of flows concur-
rently relative to the sum of their individual average through-
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puts i.e., τS

(
∑
i∈S τi
|S| )

, where τi is the throughput of flow i

when operated in isolation and τS is the aggregate through-
put when the flows in set S operate concurrently. We make
many interesting observations: (i) Operating three flows pro-
vides a marginal throughput gain of about 8% in only 10%
of the scenarios. More importantly, invoking three or more
flows concurrently almost always leads to a loss in through-
put (gain < 1) compared to invoking the flows in isolation.
Note that this will be the case with current PLC solutions,
where there is no flow regulation at the application/network
layer and 1901 arbitrates channel access. (ii) Operating a
pair of flows leads to a throughput gain in 60% of the cases,
with 40% of the cases yielding over 25% gain and 10% of the
cases even yielding over 50% gain. (iii) At the same time,
even with pairs of flows, there are several instances (40% of
the cases), where operating the flows in isolation is better.
These trends are consistent across different PLC networks
that we consider (UNI and ENT) and also across different
adapters (results omitted due to space constraints).

Achieving spatial reuse while avoiding pitfalls of contention:
The higher aggregate throughput from operating pairs of
flows concurrently indicates that there is room for spatial
reuse in PLC contention domains (similar to wireless). How-
ever, with an increased number of flows (≥ 3), this oppor-
tunity disappears. Note that the 1901 MAC uses a 2-level
backoff scheme and larger slot times, and these contribute to
inefficiency in its contention process; the impact is exacer-
bated with an increasing number of flows. This was analyzed
in depth by [4]. Another potential cause for the throughput
degradation with increasing number of simultaneous flows
is hidden terminals; here, two transmitters who cannot hear
each other, transmit simultaneously to cause collisions at a
receiver. Unlike in a wireless setting (e.g., WLAN) where
hidden terminals are often in the proximity of each other,
they could be at arbitrary unknown locations in the PLC
topology. To illustrate the ill effects of hidden terminals,
we form a line topology of four nodes. We choose a fixed
flow (from node 1 to 2), and initiate a second flow (from
node 3 to 4) concurrently; the second flow may contend with
the first flow, and depending on the relative positions of the
transceivers may project a hidden terminal. From Fig. 9, we
see that in≈ 42 % of the cases, the throughput degrades sig-
nificantly (by 80 Mbps) and largely results from hidden ter-

minals (owing to the topology). In summary, opportunities
exist for spatial reuse but concurrent flows must be carefully
orchestrated to avoid throughput degradations.

4. ZONING THE PLC NETWORK
For ease of management, we subdivide the PLC network

into what we call zones. A zone is similar to a contention do-
main in a wireless network, but as viewed at a higher layer;
transceiver pairs with common nodes, that can sustain high
throughputs belong to the same zone. If flows in two zones
do not interfere with each other, then the zones can simul-
taneously carry flows with 1901. However, if they interfere
with each other, then the arbitration of channel access across
the two zones is currently handled by 1901. In the following
we consider such coupled zones and show that spatial reuse
could be possible in such zones as well.

Zones: We define a flow, fij as a stream of application
packets that originates from a sender, i, towards a destina-
tion, j. A zone, Z , is defined as a subset of nodes, n ⊆ N ,
such that the average throughput, τ , between its members is
≥ α. Therefore, a node, i ∈ Z iff τij ≥ α, ∀j ∈ Z (j 6= i).
We say that two zones (Z1,Z2) are loosely coupled (LC) if
there are no common nodes between them and the through-
put between any node in the first zone and any node in the
second zone is less than a threshold, η, i.e. τij ≤ η, ∀i ∈
Z1, j ∈ Z2 (0 < η << α). Loose coupling implies that
flows that are fully contained within the two LC zones, do
not strongly influence each other and can probably be ac-
tive simultaneously to provide spatial reuse. In contrast, if
τij > η, we say that zones i and j are strongly coupled (SC)
or just coupled.

Zones can capture the throughput influence flows have on
each other based on their mutual contention/ interaction on
the physical medium. While we discuss how to create and
maintain zones (Section 5) and choose α (Section 6) later,
we reiterate here that a simple clustering of nodes based on
proximity to form zones, is inappropriate as shown earlier.

Classifying flows: Given the zones, the PLC flows can
be classified into two categories: local zone (LZF) and cross
zone flows (CZF). A flow is local if both the source and sink
nodes belong to the same zone, while a flow is considered a
CZF, if the source and sink nodes belong to different zones.
In Fig. 1 (our ENT testbed) each region (see dashed lines)



corresponds to a zone. The throughputs obtained by vari-
ous flows within and across zones is presented in Table 2.
we see that LZFs tend to exhibit higher throughputs than
CZFs. When two flows minimally impact each other, we
call them disjoint flows. Disjoint flows can be invoked con-
currently (reuse) to yield higher aggregate throughput than
the average of the individual flows (as seen in Table 2). For
example, if f1 and f3 are concurrently active they yield an
average throughput of 331 Mbps as opposed to 263.5 Mbps
when they were sequentially invoked. However, this is not
the case for non-disjoint (coupled) flows; for example, con-
current invocation of f̃1 and f̃3 (Table 2) yields an average
throughput of 18.39 Mbps which is lower than the 27.1 Mbps
that is achieved if they are activated sequentially. Next, we
point out here that the automated formation of zones and
identifying disjoint flows is non-trivial.

5. BOLT : SYSTEM DESIGN
In this section, we describe BOLT and its component

functions. BOLT orchestrates an appropriately chosen set of
concurrent flows within a single PLC network (at the gran-
ularity of time epochs) to enable high throughput. It over-
comes the negative effects that arise with 1901 based MAC
protocols during periods of high contention (as discussed
earlier), by controlling the flows that are simultaneously ac-
tive. In brief, BOLT leverages the concept of zones, and
tries to aggressively activate disjoint flows together, while
separating strongly coupled flows in time. It is flexible and
can incorporate any desired fairness requirement. It is also
adaptive to the restructuring of the PLC topology due to elec-
trical devices being turned ON/OFF. It sits at the application
layer and is standards agnostic i.e., works with any off-the-
shelf PLC adapters; thus, it is readily deployable today.

Challenges: Building BOLT in practice has a number
of associated challenges. Specifically: (i) How do we form
zones? Ideally, the zones should include all the nodes that
satisfy the requirements defined earlier (throughput between
each pair within a zone should be ≥ α). However, in prac-
tice, forming ideal zones may be hard and the overhead for
doing so may be prohibitive. (ii) How do we determine
which flows can be activated simultaneously, and which ones
should be isolated from each other ? We need to do this with
a small set of training measurements. In addition, the mea-
surements could be noisy due to switching on/off of electri-
cal apparatuses interim. (iii) Given the flows that can con-
currently be activated, how do we optimally schedule them
to maximize spatial reuse ? (iv) How do we handle the dy-
namics of the PLC channel?

5.1 Overview

Measure 
throughputs 
across links: 
Identify zones 

Novel 
Classification 

and prediction: 
tailored for PLC

Intelligent 
scheduling to 

maximize 
spatial reuse

Figure 10: High Level Operational View of BOLT

BOLT is built with the above challenges in mind. The
quasi-stationary nature of the PLC channel allows BOLT to
adopt a learning approach to accurately predict the through-
put due to interactions between pairs1 of contending flows
with a small set of training measurements. It then efficiently
schedules multiple application layer flows in real-time to-
wards achieving very high spatial reuse. BOLT is primarily
implemented at a central coordinator (CC), which is essen-
tially one of the PLC nodes. BOLT ’s operations consist of
the following (continuously executing) phases (see Fig.10):

(1) Training phase: The CC collects individual flow mea-
surements and uses them to construct zones efficiently. This
allows the CC to later determine a set of disjoint flows that
can be active simultaneously across loosely coupled zones.
Subsequently, an additional small set of real-time through-
put measurements are performed on pairs of flows between
nodes chosen from pairs of strongly coupled zones. These
measurements are then input to the next phase to determine
which flows in SC zones can also be concurrently activated.

(2) Contention inference phase: Using the measurements
from the training phase, features that capture flow interac-
tions are intelligently identified. Subsequently an appropri-
ate set of machine learning classifiers are used to accurately
(i) classify flow pairs into those that yield a higher aggre-
gate throughput during concurrent operation (termed reuse-
friendly) and those that do not, and (ii) predict the resulting
aggregate throughput for flow pairs that are reuse-friendly.

(3) Scheduling phase: Next, BOLT invokes an efficient,
yet flexible, scheduling algorithm at the CC to determine the
set of application flows that should operate concurrently at
the granularity of time epochs. The goal of the scheduler is
to maximize reuse in the PLC network, while at the same
time, ensuring fairness between flows (across epochs). The
schedule is disseminated to the relevant PLC nodes using the
same PLC channel or a side-channel.

Handling Dynamics: The addition or removal of new users
or electrical appliances or changes in the flow throughput,
impact zone construction. This information is fed back to
the CC in BOLT every epoch (Te); in response, CC im-
plements scheduling changes. However, the flow configura-
tions (classification and prediction) themselves are updated
at coarse time scales of tens of seconds or minutes (Tc); this
is sufficient to handle the dynamics in the PLC channel.

5.2 Measurements to train BOLT

The first phase of BOLT involves performing a small set
of measurements. The measurements serve two purposes:
(a) identifying zones and (b) capturing flow interactions.

Identifying Zones in the PLC Network: Using the no-
tion of zones reduces overhead by restricting flow interac-
tion measurements (needed for training). It also helps read-
1Based on our measurement study, we do not consider com-
binations beyond flow pairs in SC zones (as they degrade
performance).



ily identify opportunities for reuse (disjoint flows). Recall
that zones consist of a group of nodes such that the through-
puts achieved between any pair within the group is higher
than a threshold. This threshold, α, implicitly dictates how
large the zones will be. Ideally, given a value of α, the
zones should correspond to the largest cliques such that the
throughput between the members of each clique is> α. This
reduces the number of zones formed and the consequent flow
interaction measurements. Towards determining the zones,
based on the measurements, the central controller forms a
graph G = (V,E) with all the nodes in the vertex set V ;
an edge exists between two nodes if the flow between them
yields a throughput ≥ α. Now, the goal is to find the min-
imum set of cliques that will cover all nodes; this will en-
sure that the largest cliques are classified as zones. Unfortu-
nately, this maps to the NP-hard, vertex clique cover prob-
lem, whose goal is to find the minimum set of cliques that
cover all the vertices in a graph. Thus, we leverage a well-
known lemma [16] to design a simple, greedy algorithm for
zone construction that yields good performance in practice.

LEMMA 5.1. The chromatic number of a graph is equal
to the minimum number of co-cliques (cliques in the comple-
ment graph) needed to cover the vertices of the graph.

The chromatic number refers to the minimum number of col-
ors needed to color a graph. Using the above lemma, we first
construct the complement of graph G, namely G′. Then we
color the vertices of G′. Now, vertices (nodes) belonging to
the same color in G′ form a single zone (clique) in the orig-
inal graph G. Thus, we will have as many zones in G as the
number of colors needed to color G′. However, graph col-
oring is itself a hard problem. Hence, we employ the popu-
lar greedy algorithm (Welsh-Powell algorithm) for coloring,
which at each iteration, picks the vertex (among un-colored
vertices) with the highest degree and assigns it the smallest
color (number) that is not used by any of its neighbors. This
algorithm is known to use at most maxi{min{δi+1, i}} col-
ors, where δi is the degree of node i in the graph (nodes are
ordered based on their degree) [17]. Thus, the algorithm uses
at most ∆ + 1 colors (∆ being the maximum degree in G′)
and hence constructs at most ∆ + 1 zones. Unless the con-
cerned graph exhibits certain structure (e.g., chordal graphs),
it is hard to provide good worst case guarantees for coloring
and hence clique cover problems. However, we show the
effectiveness of our algorithm in practice, in Section 6.

All the nodes measure the link throughputs (every TC
seconds unless significant flow througphut changes are per-
ceived) to their neighbors (the nodes with which they can
communicate) and send this information to the CC. Given
this set of individual flow measurements, the CC simply ex-
ecutes Algorithm 1 for determining the zones.

Measurement of Flow Interactions: In a very naive case,
if one were to consider all combinations of flows to deter-
mine whether or not they yield a throughput gain when jointly
activated, one would end up with an exponential number of

Algorithm 1: Zone Construction

Input: G = (V,N)

Output: ~Z set of zones;
Initialization: G′ = Complement(G) ;
U = V ′ uncolored vertices. C = φ Colored Vertices ;
C = φ set of colors;
while U 6= φ do

v = HighestV alence(U);
Color(v);
C ← UpdateColorSet(C,v) ;
U ← U − v;
C ← C ∪ v;

for ∀c ∈ C do
Zc = φ;
for ∀v ∈ C c = Color(v) do
Zc ← Zc ∪ v ;

possibilities. By only considering pairs of flows (as guided
by our measurement study) we drastically reduce this re-
quirement. In this case, if there are N nodes,

(
N
4

)
· 3 =

O(N4) measurements are needed with a brute force approach;
this is because one can select four nodes to establish a pair of
flows (3 distinct flow pairs for every 4 nodes). The approach
would still incur significant overhead as these measurements
might need to be performed every Tc, and N can be large.

In BOLT , interactions between flows are measured only
across pairs of proactively formed zones. This results in a
total of

(
Z
2

)
·
( 2N
Z
4

)
· 3, which in turn translates to O(N

4

Z2 )
measurements; here, Z is the number of zones and nodes
are assumed to be uniformly distributed across the zones for
simplicity, i.e., NZ per zone). The reduction comes from re-
stricting flow pair measurements to only pairs of zones (flow
pairs, whose four end points are such that they belong to
more than two, i.e., 3 or 4 zones, are not measured). Further,
even for each pair of zones, not all flow pairs (involving both
local and cross flows) in the two zones are measured. Only
a fraction x of the net flow pairs, i.e.

( 2N
Z
4

)
· 3x in the two

zones are picked randomly and measured; this is then used
to construct the flow interaction models (explained in Sec-
tion 5.3). The latter is in turn used to predict interactions
between other flow pairs (spanning more than 2 zones) that
were not measured. Our experiments reveal that the appro-
priate construction of zones (with larger size), allows x to
be as low as 0.1 (10%), while still yielding good prediction
accuracy.

5.3 Flow Contention Inference
At the end of the measurement phase, the CC can deter-

mine the LC and SC zones. Conceivably, links in the LC
zones can be concurrently activated to increase spatial reuse.
The challenge is to determine which links can be concur-
rently activated within and across SC zones to further in-
crease spatial reuse. We discuss our approach for addressing
this challenge in this section (our approach identifies spatial
reuse opportunities across both LC and SC zones).



The quasi-stationary property of the PLC channel moti-
vates the use of machine learning (ML) to learn and predict
the impact of flow interactions. Our approach consists of a
classification and, a prediction stage. The classification stage
determines whether the aggregate throughput from concur-
rently running a pair of flows exceeds the average through-
put over running the flows in isolation. The prediction stage
estimates the aggregate throughput of a pair of flows acti-
vated concurrently, using training data. The two stages are
based on classifier and prediction models used in ML; BOLT
includes a feedback mechanism that recalibrates these mod-
els every Tc to adapt to channel variations.

Classification: Towards identifying flows that can be con-
currently activated, we first identify a set of features that cap-
ture interactions between the transceiver pairs of the flows.
Then, we intelligently use a set of classification models that
take these features as inputs and determine if the flow pairs
are amenable to concurrent activation.

What features to use?: Whether or not two transceiver
pairs (flows) can simultaneously communicate depends on
the interactions between them (carrier sensing, interference,
noise etc. affect these interactions). We consider interactions
(i.e., throughput) between all possible combinations (i.e., ev-
ery pair from the four nodes making up the two flows) as the
basis feature set. Next, we reduce this basis feature set to-
wards making the process faster and more accurate. This
reduction is based on well-known ML techniques (dimen-
sionality reduction). We consistently see that two of these
features get eliminated in our experiments. Specifically, this
reduction is a direct artifact of zoning; since the flow pairs
we consider are between pairs of zones, the interactions be-
tween a transmitter and an unintended receiver can be de-
rived based on the interactions between the two transmitters,
the two receivers, and between the legitimate transmitter-
receiver pairs. We do not elaborate on this here due to space
constraints, but one can easily construct toy examples to see
why this is the case.

The classification algorithm takes the reduced set of fea-
ture values and maps them onto two clusters (one for con-
current, one for isolated). Different classification algorithms
have their pros and cons (based on the ways in which the
clusters are formed). Although the PLC environment is rel-
atively stable, there could be noise in the training set from
electrical devices being turned ON/OFF. Thus, the classifier
needs to be noise resistant. As a design goal, we seek to
make sure that the training data for classification is not large
(and yet achieve good accuracy). Finally, we want the ap-
proaches to be simple and efficient (fast).

Given the above objectives, we intelligently combine three
classifiers to achieve very high accuracy. Our approach, shown
in Fig. 11, first combines the outputs of two well known,
simple classification techniques viz., Classification Trees (CT)
and TreeBagger (TB).If the outputs of CT and TB differ (i.e.,
one suggests concurrent operations while the other contra-
dicts), we choose a third approach namely, the nearest neigh-

Apply CT

Apply TB Matching 
Output?

Apply NN

Input

Decision
Y

N

Figure 11: Classification Process Overview
bor classifier (NN) to resolve the conflict. A description of
these classification techniques can be found in [18].

The rationale for our approach is as follows. CT does
not require a large training set but is sensitive to noise. The
quasi-stationarity ensures low noise most of the time; how-
ever, plugging in devices causes noise which may cause CT
to underperform. Thus, while CT is generally usable, it
needs to be supplemented to deal with the noisy cases. TB
uses innovative ordering to reduce impact of noise; however,
the ordering inherently introduces a sampling bias (meaning
some clusters may have a better chance of being picked). To
reduce bias a larger training set may be needed. Thus, while
it eliminates the issue with CT, it brings up a new problem.
Thus we combine CT and TB and if they yield the same out-
put decision, we can be relatively confident that the decision
is the right one. If however, their outputs contradict, we go
with a third classier for resolution. Here we choose a very
popular generic classifier, viz., NN. NN offers lower accu-
racy than CT and TB (hence it was not chosen in the begin-
ning) with small amounts of training data, but is not sensitive
to noise and does not introduce sampling biases. We could
have used multiple classifiers and used a majority vote at this
stage, but prefer the simpler approach of just using NN since
it offers high enough accuracy with low complexity.

Prediction of aggregate throughput : Finally, BOLT seeks
to estimate the potential aggregate throughput for a given
pair of flows that are activated concurrently (along with the
individual contribution of the flows in the pair); this predic-
tion is later used when scheduling flows. We use boost-
ing tree (BT) [19] as a regression approach for prediction.
Our choice is motivated by the fact that BT is an ensemble
method that fits complex non-linear variables (i.e., features)
to predict outcomes. In addition to being fast, BT is resistant
to missing data (low amount of training data) and eliminates
outliers (due to noise). BT achieves a high prediction accu-
racy by adaptively combining multiple binary trees [19].

5.4 Flow Scheduling
At this stage, the CC knows which flows are reuse-friendly

and the throughput gains from concurrent invocation of such
flows. The scheduler then chooses the active flows at each
epoch to maximize the aggregate throughput while meeting
desired fairness constraints. Such scheduling problems are
typically cast as utility maximization problems, as in

Maximize
∑
f∈F

U(τ̄f ) (1)

where, τ̄f is the average throughput received by flow f in
Tc, and F represents the set of flows. The choice of the util-
ity function, U(), determines the fairness policy. We impose



proportional fairness (U(τ̄f ) = βf log(τ̄f )) [20], but BOLT
can support other fairness policies governed by concave util-
ity functions (e.g., max-min, min potential delay); βf is the
priority weight for a flow (e.g., latency-sensitive flows could
have higher priority). The approach accounts for flow diver-
sity and allocates resources to provide average throughputs
(τ̄f over long-term, Tc) proportional to the flows’ priorities
and transmission rates. Solving the above problem ensures
that the aggregate throughput of flows is maximized in a pro-
portionally fair manner over time scales of Tc.

Per-epoch Scheduling: It has been shown that finding
the optimum solution to the above problem is equivalent
to solving the following per-epoch (Te) scheduling prob-
lem viz., maximizing the aggregate marginal utility in every
epoch, i.e., Maximize

∑
f∈F ∆U(τ̄f ) [20, 21]. ∆Uf is the

marginal utility received by flow f in the epoch and is given
by ∆Uf =

dUf
dTe

=
dUf
dτ̄f
· dτ̄fdTe

=
βfτf
τ̄f

for proportional fair-
ness [21], where τf is the predicted throughput (transmission
rate) for flow f in the current epoch and τ̄f is the long term
average throughput received by the flow f so far. At the end
of every epoch t, the average throughput received by a flow
f is updated as,

τ̄f (t)← (1− 1

Te
)τ̄f (t− 1) + (

1

Te
)τf (t) (2)

where τf (t) = 0 when flow f is not scheduled. Updating the
average throughput through an exponentially weighted mov-
ing average allows for fast adaptation to network dynamics.
By tracking the throughput received by a flow thus far with
τ̄f , the scheduler weights the flow (as 1

τ̄f
) accordingly in the

next epoch to ensure fairness at time scales of Tc.
We now focus on the per-epoch scheduling problem, i.e.

MaximizeS
∑
f∈S

βfτf,S
τ̄f

(3)

Here, βf and τ̄f essentially serve as constant weights for the
flow in the current epoch. Hence, the optimization is w.r.t.
to the flows chosen for schedule (S) in the current epoch;
here, the throughput of a flow (τf,S) chosen in the schedule
depends on other flows in the set S, scheduled concurrently.

Algorithm: We want to select flows and/or flow pairs
for each epoch; the selection must ensure that the chosen
flows do not negatively impact each other. Our schedul-
ing problem can be cast as a maximum weight indepen-
dent set (MWIS) problem as follows. We represent each
individual flow (f ), as well as each of the reuse-friendly
flow pairs (f, g) as a separate vertex on a graph G, with the
weight (wi) of the vertex (i) being the weighted throughput
achieved by the corresponding flow (wi =

βfτf
τ̄f

) or flow pair

(wi =
βfτf,fg
τ̄f

+
βgτg,fg
τ̄g

). Here, τf,fg (τg,fg) is the through-
put of flow f (g) when flows f and g operate concurrently.
Any two vertices whose mutual flows are not disjoint have
an edge between them in G. If two vertices represent a flow
pair each, then each of the flows in one pair must be disjoint
w.r.t. each of the flows in the other pair to avoid an edge in

G. Now, the scheduler seeks to find the subset of flows and
flow pairs that are disjoint, for which the aggregate weighted
throughput is the maximum. This essentially reduces to find-
ing an independent set of vertices (disjoint flows/flow-pairs)
on G with maximum weight and automatically yields the
optimum solution to our per-epoch scheduling problem.

However, finding even a maximum independent set or MIS
(without weights or equivalently unit weights) on general
graphs is NP-hard. Hence, we use a greedy algorithm (in-
spired by those for finding the MIS [16]) that yields efficient
performance in practice. At each iteration, the vertex with
the smallest degree is chosen and added to the independent
set and its edges and neighboring vertices are removed. With
vertices carrying weights in our case, we suitably adapt the
algorithm to pick the vertex (i∗) that yields the smallest loss
in weighted throughput in each iteration,

i∗ = arg min
i
γi, where γi =

∑
j∈N(i)

wj − wi (4)

Note that, when we pick a vertex (flow or flow pair), we
eliminate its neighbors from the schedule and hence their
weight contributions. Thus, at each iteration, the algorithm
strives to pick the vertex that not only contributes maximum
weight by its addition to the schedule but also minimum loss
due to removal of its neighbors. In the end, we are left with
a set of flows and flow pairs that are mutually disjoint and
can be scheduled concurrently in the current epoch to max-
imize the aggregate weighted throughput. At the end of the
epoch, the average throughputs (τ̄f ) of all the flows are up-
dated based on Equation 2, which in turn affects their cor-
responding weights βf

τ̄f
and hence controls the relative flow

priorities (track fairness) for scheduling in the next epoch.
Remarks: When the flow weights are the same, the prob-

lem and our algorithm reduce to that of a MIS and yield a
worst case approximation guarantee of ∆+2

3 [22].

5.5 Discussion:
Our focus in this work is on link-level single-hop flows.

The end-points of a desired flow may not be directly reach-
able from each other and multiple hops may be needed to
establish connectivity. With BOLT , we maximize the link
throughput considering each hop independently. Maximiza-
tion of multi-hop path level throughput is left for future work.

If all nodes are unable to reach a single PLC coordina-
tor, the network may be sub-divided into multiple PLC sub-
networks and a coordinator chosen for each. Then, BOLT
will operate (at the coordinator) within each smaller PLC
sub-network independently to allow for scalability. We be-
lieve that in large PLC networks, with such a sub-division, a
large fraction of nodes in one PLC sub-network possibly can
be made disjoint from those in the other sub-networks (dif-
ferent parts of an enterprise building). We expect the con-
tention between nodes at the edge of these sub-networks to
be small and handled by the 1901 MAC. A careful assess-
ment of how to form such sub-networks is left to the future.
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Figure 12: UNI Testbed.

Training Size 10% 20% 30% 40% 50%
BC 87(3) 89(2) 88(4) 93(3) 95(2)

TB 86(5) 90(2) 91(3) 94(3) 94(1)
NV 76(14) 74(11) 82(4) 79(7) 80(5)
NN 84(4) 87(2) 89(2) 93(3) 95(2)
SV 83(4) 85(2) 86(3) 87(3) 92(3)

CT 85(5) 87(4) 86(4) 93(3) 94(3)

Table 3: Classification accuracy (%):
mean (std dev); ENT dataset

Technique UNI Time ENT Time
LL 13 7 12 7
DT 14 6 11 6
BG 16 6 14 6
BT 11 5 10 4
NE 13 20 12 19
LS 17 6 15 6
RV 15 240 11 238
GR 15 10 12 10
VH 14 15 12 14

Table 4: Prediction error (%) and
training time (msec)

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

Topology

N
u

m
b

e
r 

o
f 

Z
o

n
e

s

 

 

Optimal

Bolt Zones

Figure 13: Sub-optimality of BOLT
’s zone construction.
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Figure 15: Sub-optimality of BOLT
’s scheduler

6. EXPERIMENTAL EVALUATIONS
We implement BOLT and deploy it on three testbeds (an

enterprise, a university and a residence). We evaluate each
of BOLT ’s components as well as its holistic performance.

6.1 Implementation and setup
Testbeds: Our first testbed is in an enterprise and has

eight machines (nodes) running Ubuntu 9.4 with two inter-
faces (a WiFi interface and a PLC interface) and spanning
offices, labs, cafeterias and conference rooms. We experi-
mented with different topologies but the one shown in Fig.
1 was the default topology. UDP flows with payload sizes
of 1480 bytes, were established between node pairs for 30
seconds by default. The second testbed (shown in Fig. 12)
is in a large lab setting at a university and consists of 16 ma-
chines running Ubuntu 14.4. The third testbed consists of 6
nodes, that are deployed at a residence; two of these run OS
X and four run Windows 8. The data collection and schedul-
ing phases of BOLT are implemented in C++. The classifi-
cation and prediction models are implemented with Matlab.
We implement the approach described in [23] to estimate the
average flow throughput (in isolation) via a probing phase.
Note here that we operate the experimental networks at rela-
tively high loads since these are the regimes where the man-
agement of multiple flows becomes important.

Experimental Setup: Each network has an assigned cen-
tral controller (CC) that performs network coordination and
scheduling. The PLC channel itself is used as a control chan-
nel to collect measurements and disseminate schedules. The
overhead for control traffic is extremely small and does not
interfere with ongoing communications; these packets es-
sentially only contain the identifiers of the transceivers, file
sizes in the case of requests, and time epochs assigned in the
case of schedules and are 12 bytes long.

We consider one-hop PLC flows generated using Pareto
and Uniform random variables; they are set-up between two
randomly picked nodes in the test-bed. Later we consider
a gateway model, where all PLC flows converge towards a
common gateway(s) to access the Internet. BOLT schedules
flows at the granularity of epochs of 100 ms. Unless oth-
erwise specified, each experiment lasts for 5-10 minutes and
results are averaged over twenty runs. We consider three lev-
els of traffic load viz., high, medium and low that correspond
to averages of (3,10, >10) flows per time epoch (100 msec).
The average throughput per flow per epoch is our main met-
ric of evaluation. To save space, we mainly present results
from the UNI testbed (unless explicitly mentioned); experi-
ments in other settings yielded similar behavioral results.

6.2 Benchmarking BOLT ’s Components
Zone Construction: In this experiment, we compare the

number of zones formed by BOLT ’s zone construction al-
gorithm with the optimal number of zones in the PLC topol-
ogy. Ideally, node pairs between which the link quality is
good must belong to the same zone. Determining a thresh-
old for classifying a link as a “good quality" link is hard. We
find via several experiments that if a link is able to achieve
75% of the maximum (isolated) link throughputs possible,
it can be classified as a good quality link. Thus, in our UNI
network, we assume a throughput threshold of α = 80 Mbps
for determining the zones (maximum link throughputs are
≈ 100 Mbps). Using a similar approach we find that nodes
in different loosely coupled (LC) zones can establish flows
that can only sustain< 1% of the maximum throughput pos-
sible; correspondingly we set η to be 1 Mbps on the UNI
network. The optimal number of zones is found via an ex-
haustive search across combinations of nodes (possible due
to the moderate-scale topology) and picking the combination



with the least number of zones. We consider ten different
PLC topologies. As seen in Fig. 13, in 8 out of 10 of the
topologies, BOLT constructs the optimal number of zones.
Only in two of the topologies, BOLT employs one addi-
tional zone. Although our current testbed is relatively small,
recall that zones are similar to contention domains in wire-
less; thus, small regions of interacting zones are of interest.
Due to the inherently constrained nature of such interactions,
we believe the efficiency of our zone construction will also
scale to larger topologies.

Picking α: While a smaller value of α reduces the number
of zones (more nodes per zone) and thus decreases the train-
ing measurements needed, it negatively affects the accuracy
of predicting flow interactions. Our choice of α strikes a bal-
ance between accuracy and reducing training measurements.

Classification and Prediction: Since the accuracy of the
classification and prediction models directly impact BOLT
’s performance, we now compare our classifier/prediction
approach against state-of-the-art techniques. First, we com-
pare BOLT ’s classifier (BC ) against five popular classi-
fiers (described in [18]) viz., TreeBagger (TB) , Naive Bayes
Classifier (NV) , Nearest Neighbors (NN) , Support Vec-
tor Machines (SV)and Classification trees (CT). Table 3 de-
picts this comparison w.r.t different training set sizes for the
ENT dataset (results from the UNI dataset were similar and
are thus omitted due to space constraints). By intelligently
combining results of CT, TB and, NN in case of ties, BC
achieves higher average accuracy than any of the five indi-
vidual classifiers in more than 90% of the training scenarios
(CDF over training scenarios not presented here). Further,
with just 10-20% of the training data, BC is able to provide
about 90% accuracy, which is highly promising. The reasons
for BC’s superior performance are as follows. First, by com-
bining the results of TB, CT and NN, BC outperforms each
of these individual classifiers. For SV to be efficient, its pa-
rameters need to be calibrated for each specific topology; us-
ing SV without such customized calibration can cause high
false positives and negatives. In NV, the posterior probability
estimate is negatively affected if there is only a small occur-
rence of a certain class (e.g., an isolated node in a zone).

To evaluate the accuracy of our prediction model using
Boosting trees (BT), we compare it with eight other dif-
ferent prediction models (described in [19]): Least squares
Linear regression (LL) , Decision trees (DT) , Bagging trees
(BG) , Neural networks (NE) , Least Squares Support Vector
Machines (LS), Relevance Vector machine (RV) Gaussian
Process Regression (GR) and, Variational Heteroscedastic
Gaussian Process Regression (VH). In Table 4, we show the
root mean square error (RMSE) rate (%) and training time
(ms) for each technique for the two datasets. The RMSE
captures the accuracy of prediction, while the training time
captures the computational intensity (i.e., the time required
to construct the prediction model). We see that in addition
to its high accuracy, BT’s running time is the fastest.

Scheduling: To evaluate the efficiency of our scheduler,

we create two sets of six flows each. First, we set the prior-
ity coefficient of both flow sets to one (βf = 1, Scenario 1).
Second, we increase the coefficient for the latter set to two,
while keeping that of the first set to one (Scenario 2). We
plot the throughput of two of the flows from each set in Fig.
14 for the two scenarios. In Scenario 1, BOLT ’s sched-
uler loses about 5-10 Mbps in throughput for the individual
flows compared to their throughputs in isolation (total net-
work throughput is higher). This shows that the throughput
loss due to sharing of the PLC medium is minimal, indicat-
ing that the scheduler picks the right set of flows to operate
concurrently (so as to not degrade their individual through-
puts appreciably). Further, the flows receive their average
throughput proportional to their individual epoch through-
puts (proportional fairness is ensured). In Scenario 2, the
higher priority flows have a two-fold increase in their rela-
tive throughputs, at the expense of the flows in the first set.
This means that in a given duration, the first two flows are
able to transfer much more data than the second two flows
(which have lower priority and thus get scheduled less of-
ten). This indicates BOLT ’s ability to differentiate between
flows of different types, thereby allowing it to prioritize and
provide lower latency for real-time flows.
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Scheduler sub-optimality: We now quantify the sub-optimality
of BOLT ’s per-epoch schedule computation (recall that
finding the optimal schedule corresponds to solving the NP-
hard MWIS problem). We consider a topology with a sub-
set of six nodes and establish four flows (arbitrarily chosen)
between these nodes. We choose five such combinations,
Ck, k ∈ {1, 5}. We also exhaustively generate all possible
schedules for each combination, and pick the optimum i.e.,
the one that yields the highest utility (weighted throughput).
We compare this utility against that achieved with BOLT ’s
schedule (priority weights are set to 1). Fig. 15 compares the
utilities for the five combinations in the two cases. We ob-
serve that BOLT ’s (much simpler) scheduler yields utilities
that are at most 5% lower than the optimal.

6.3 Holistic evaluation of BOLT

Impact of Scheduling: We consider two baselines: one
where all given application layer flows are concurrent (state-
of-the-art PLC operation, S1), and another, where such flows
are queued and only one flow is active in any given epoch
(S2). Since no classification/prediction models are required
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Figure 21: Holistic evalua-
tion

for either of these baselines, they can be considered as al-
ternate potential systems for PLC. In both cases, the MAC
protocol based on 1901 in the adapters arbitrates the chan-
nel. In the first experiment, we vary the average packet de-
livery ratio (PDR) and measure the throughput gain of BOLT
over the two baselines. PDR is a function of the channel dy-
namics (eg. electrical apparatuses plugged on/off) that needs
to be controlled to allow for comparison; hence, we control
PDR by manually dropping packets with a certain probabil-
ity at the receiver. We keep the average traffic load to be
three flows per epoch. As shown in Fig 16, we observe that
the throughput gains with BOLT as compared to S1, can be
as high as 8.5x. The gain is higher in bad channel conditions,
where running all incoming flows together (in S1) leads to
aggravated collisions/back-offs. By scheduling the right sets
of flows together, BOLT alleviates this effect and achieves
much higher throughputs. With S2, running individual flows
sequentially avoids the collision/back-off penalty; however,
it also misses out on reuse opportunities that lead to higher
total throughput. The throughput gains with BOLT over S2
are also significant (100-200%) and remain almost constant
across different channel conditions. Here, BOLT ’s gains
are mainly from its ability to leverage spatial reuse.

Impact of Traffic Load: Next, we study the impact of
traffic load in Fig. 17. The average throughput of S1 de-
creases as traffic load increases; more flows increase con-
tention (backoffs) and collisions from hidden terminals. The
average throughput of S2 remains almost constant over dif-
ferent traffic loads since it schedules a single flow in every
epoch and hence does not depend on the number of flows
(but only their individual throughputs). Notably, BOLT ’s
throughput is at least 2.5x that of S1 and 1.5x that of S2.

Impact of variations in the topology size: Next, we ex-
amine how the performance of BOLT changes as the topol-
ogy size is varied; the topologies we consider contain SC
zones. For each topology (of a given size), we divide the
nodes into two equal size sets; the first are the sources and
the second set, the destinations. Thus, the load increases
linearly with the topology size. For each topological size,
we choose 20 randomly chosen configurations (as described
above), and run experiments for 30 seconds each. From
Fig. 18, we see that BOLT maintains a steady throughput
as the topology scales. There is in fact a slight improve-
ment in throughput due to better exploitation of spatial reuse

from the increased number of flows. S1 suffers from colli-
sions/backoffs as the topology (and thus, the corresponding
load) is scaled. The throughputs with S2 remain fairly sta-
ble; however, because of a slightly higher number of poorer
quality links, the throughput takes a slight dip as the topol-
ogy size (and thus, the number of flows) is increased.

Impact of Channel Dynamics: Our next experiments
(Fig. 19) are done during different times of day and capture
the impact of channel dynamics on BOLT ’s performance.
The rate of switching (on/off) of electric apparatuses (which
induces the dynamics) during peak times (arrival of people
to work, lunch time, etc.) is high and at other times (early
morning, at night, etc.) is low. The average throughput of
BOLT does not vary much in either case; it schedules differ-
ent subsets of flows across different epochs and thus copes
with the dynamics. Similarly, S2 has a relatively steady per-
formance as it picks different flows across epochs.

To further illustrate BOLT ’s ability to cope with dynam-
ics, we conduct a controlled experiment on our residential
testbed. Here, we turn on two microwave ovens in an op-
erational PLC network at different times. At each instance,
as shown in Fig. 20, the throughput takes a hit. However,
BOLT quickly isolates the effect of the poor quality links
and the network is reconfigured to restore the throughput to
almost the same levels prior to the oven(s) being turned on.
On the other hand, without BOLT , the poor quality links
further degrade the throughputs that were achieved with just
1901 (which were lower than with BOLT to begin with); the
more the noise the bigger the hit with 1901. This experiment
exemplifies BOLT ’s ability to quickly cope with channel
dynamics to restore throughput. Fairness is compromised a
little in the short term (results not shown due to space con-
straints), but is restored long term as the microwaves go off.

Impact of Classification/Prediction Models: Finally, to
study the impact of the models’ choices on BOLT ’s perfor-
mance, we consider two alternate systems, where we retain
the scheduler in BOLT , but change its classification/prediction
models: (a) Alternative System 1 (AS1): The classification
model is Nearest Neighbor (NN) and the prediction model
is Gaussian Process Regression (GR). (b) Alternative Sys-
tem 2 (AS2): The classification model is Naive based (NV)
and the prediction model is Neural networks (NE). We also
consider a different scenario where all nodes communicate
with two common gateway nodes connected to the Internet.



We stream multiple HTTP pages (CNN, Facebook, Twitter,
Google, Yahoo) through these two gateway nodes. The av-
erage size of the HTTP web pages are 4.4, 1.3, 2.7, 5.4 and
2.4 MB, respectively for these sites. We generate requests
for web pages according a Pareto random variable, and as-
sign the requests to each node randomly. The results are
averaged over 30 runs, each lasting for 1 minute. In Fig.
21, we compare the average throughput of BOLT with that
of AS1 and AS2. We see that the bulk of BOLT ’s gain
comes from its scheduling component. However, its predic-
tion/classification models still offer gains over AS1 and AS2
(15-30%); this shows that the selection of the right classi-
fication/learning models is useful. Specifically, the higher
accuracy from these models contribute to better scheduling
decisions and hence, system throughput. S1 and S2 under-
perform BOLT as well as AS1 and AS2 because of their
sub-optimal scheduling decisions (as seen in prior experi-
ments).

7. CONCLUSIONS
In this paper, we design and implement a standards ag-

nostic framework BOLT , to realize the throughput poten-
tial of PLC, for it to serve as a viable backhaul for local
network connectivity. BOLT aggressively reuses the spec-
trum while avoiding collisions and backoffs to drive the net-
work throughput to near-optimal levels, while enforcing de-
sired fairness requirements. It is lightweight and uses only
a small set of online training measurements. Real-world ex-
periments showcase BOLT ’s ability to improve system per-
formance significantly over state-of-the-art PLC solutions.
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