
IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022 9749

BigEye: Detection and Summarization of Key
Global Events From Distributed Crowdsensed Data

Abdulrahman Fahim , Ajaya Neupane, Evangelos E. Papalexakis, Member, IEEE, Lance Kaplan , Fellow, IEEE,
Srikanth V. Krishnamurthy, Fellow, IEEE, and Tarek Abdelzaher , Fellow, IEEE

Abstract—Social media postings using smartphones (referred
to as crowd-sensed data) can often facilitate real-time detection
of key physical events in applications like disaster recovery or
in smart cities. These postings also often contain visual content
(e.g., images) that can be used to obtain zoomed-in views of such
events. These crowd-sensed data are likely to be of large volume
and distributed across a plurality of producers (e.g., cloudlets).
Blindly transferring this large volume of raw data from the
producers to a consumer will induce information overload and
consume very high bandwidth. The problem is exacerbated in
scenarios with limited bandwidth (e.g., after a disaster). In this
article, we design BigEye, a novel framework that only trans-
fers very limited data from the distributed producers to a central
summarizer, and yet supports: 1) highly accurate detection and
2) concise visual summarization of key events of global interest.
In realizing BigEye, we address several challenges including:
1) identifying events that have the highest global interest via
the transfer of appropriate limited metadata from the produc-
ers to the summarizer; 2) reconciling metadata that could be
inconsistent across the producers; and 3) the timely retrieval of
visual summaries of the key events given bandwidth constraints.
We show that BigEye achieves the same accuracy in detecting
key events, as a system, where all data are available centrally
while transferring only 1% of the raw data volume. Compared to
the baseline approaches, BigEye’s parallelized transfer of visual
content reduces the average delay by 67%.

Index Terms—Crowd sensing, data summarization, distributed
event detection, resource constrained networks, smart cities,
social sensing, visual summaries.

I. INTRODUCTION

PEOPLE share and disseminate postings on real-life events
on social networks via smartphones (which can be

considered the de facto most widely used IoT devices today).
Such postings provide an inherent sensing capability [1]
(defined as crowdsensing or social sensing in [2]). Specifically,
as pointed out in prior papers [1], [3], [4], user posts relating

Manuscript received August 31, 2021; revised December 17, 2021; accepted
January 19, 2022. Date of publication February 1, 2022; date of cur-
rent version June 7, 2022. This work was supported in part by the
DEVCOM Army Research Laboratory under Agreement W911NF-09-2-0053,
and in part by NSF CPS under Grant 1544969. (Corresponding author:
Abdulrahman Fahim.)

Abdulrahman Fahim, Ajaya Neupane, Evangelos E. Papalexakis,
and Srikanth V. Krishnamurthy are with the Department of Computer
Science and Engineering, University of California at Riverside, Riverside,
CA 92521 USA (e-mail: afahi002@ucr.edu).

Lance Kaplan is with the Signal and Information Processing Division, U.S.
DEVCOM Army Research Laboratory, Adelphi, MD 20783 USA.

Tarek Abdelzaher is with the Department of Computer Science, University
of Illinois at Urbana–Champaign, Urbana, IL 61820 USA.

Digital Object Identifier 10.1109/JIOT.2022.3148000

to real-time information about events (e.g., protests and earth-
quakes) on social media networks, can be considered as
IoT sensor outputs that provide knowledge of interest with
regards those events. In fact, news reports suggest that Harvey
storm victims used social media to communicate about critical
events [5] during/after the disaster. We also point out that it is
quite common for such user postings (e.g., using Twitter) to
contain images that can be used for composing zoomed-in (or
more informative) visual summaries of key events.

In scenarios like disaster aftermaths, one can visualize
crowdsensed data to be dispersed across a set of geograph-
ically distributed “producers,” because of the strained infras-
tructure. For example, one can envision the user postings (we
also call them microblogs) within a local geographical region
to be sent (streamed) to a common server (e.g., a cloudlet [6]
or a local server [7], [8]), which can be considered to be a pro-
ducer. While using microblogs as IoT-sensed outputs toward
detecting physical events has received some recent attention
(e.g., [3] and [4]), these prior efforts assume that all crowd-
sensed data are available centrally instead of being distributed
across geographically spread producers; the latter is a more
accurate representation of what happens in practice.

Blindly transporting all the raw data from such producers to
either the consumer, or to a central entity for analytics will not
only cause an information overload at that entity but also strain
the network in terms of bandwidth consumption potentially
resulting in network congestion. In addition, a large part of this
voluminous data will have redundant information, and might
not contribute to extracting useful information (e.g., detect-
ing events of interest). The problem of data transportation is
exacerbated in scenarios such as natural disasters wherein it
is very common for network infrastructure to be damaged; in
such cases, the available bandwidth is constrained significantly
making it prohibitive to transfer raw data. Again, going back to
the example of the tropical storm Harvey, the failure of several
cell towers [9] strained the available bandwidth. Because of
this, it becomes imperative to only retrieve small amounts of
data from the distributed producers, and yet be able to detect
events of global significance with high accuracy. Our work
targets this important problem.

Specifically, in this article, we design an IoT service, we
call BigEye, using which global events can be detected
with very high accuracy, by only sharing very small amounts
of information (metadata) between the distributed producers
(with raw crowdsensed data) and a central entity (which we
call summarizer). Once global events are detected, BigEye

2327-4662 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0801-8737
https://orcid.org/0000-0002-3627-4471
https://orcid.org/0000-0003-3883-7220

9750 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

facilitates the transport of limited content in the form of
images/videos to the summarizer, which then composes a
visual summary from the same detected events to provide
the appropriate information to gain insights with regards to
these events of interest. These summaries can then be sent to
a consumer (e.g., search and rescue personnel after a disas-
ter). We implement BigEye using Twitter (which provides
user postings of the type of interest) as a proxy, and showcase
its benefits. Thus, without loss of generality, in the rest of this
article, we refer to user postings as tweets.

Challenges: The challenges in designing BigEye are mul-
tifold. First, each producer only has a local view of events
and, thus, is unable to by itself determine which events are of
global significance. On the other hand, transferring all local
data from all producers to the central summarizer is prohibitive
and wasteful. The challenge then is “how do we identify key
global events by only transferring limited metadata from each
producer to the summarizer?” Second, multiple producers may
detect the same global event via sensed triggers, but there
is no easy way to determine that the triggers correspond to
the same event. Unless we are able to make this determina-
tion, redundant content (e.g., unnecessary visual data) may
be retrieved by multiple producers. Thus, “how do we recon-
cile (possibly inconsistent) metadata from multiple producers
that correspond to a common event?” Finally, once the events
are detected, we seek to retrieve a limited amount of visual
content with minimum latency from the multiple producers to
compose a summary. The challenge here is to identify “which
producer will send what content in order to maximize the level
of parallelization of retrieval, given that the bandwidths to the
different producers could be different.”

Approach in Brief: Briefly, with BigEye, each producer
first individually identifies local events likely to have global
importance (or interest) using a metric which is called the
local information gain. The producer then pushes metadata
pertaining to these local events to a central summarizer. The
summarizer then assesses the need for any additional meta-
data and pulls the same from the proper subset of producers.
As one of our contributions, we formally show that via an
appropriate choice of the number of local events at each pro-
ducer, we can guarantee that the detected key global events are
identical to the ones detected if all the data are made available
centrally. Once the global events are detected, BigEye uses a
lightweight method to reconcile common events across a plu-
rality of producers. Finally, using lightweight measurements
of bandwidths to the various producers, it uses an intelligent
algorithm to parallelize the transfer of visual content from
the producers to compose visual summaries of all such events
within a very short time (ideally, we want to do this in min-
imum time but we show this is NP-hard). This article is an
extension of our work [10], where, in this work, we introduce
all BigEye modules and show its overall merits.

Summary of Our Contributions: A summary of our contri-
butions in this article are as follows.

1) We propose a method within BigEye that allows the
detection of key global events when the crowdsensed
data are distributed across multiple distributed produc-
ers. Via the transfer of just 1% of the data from the
producers to a central summarizer (in the form of

metadata), we show that BigEye is able to detect all
key global events that would have been detected if all
the data was available centrally.

2) BigEye includes a module that reconciles events across
producers without having to transfer the entire con-
tent corresponding to these events to the central entity
(Section V). We call this “consolidation” of events
across producers. We show that consolidation further
reduces the communication costs by 60% on average.

3) We show that we can map the problem of select-
ing visual objects with the highest scores to be sent
from each producer to the summarizer, such that we
ensure a certain number of visual objects per event
while minimizing latency, to a multidimensional knap-
sack instance [11]; this is an NP-Hard problem. Given
this, we design an online algorithm that: a) dynamically
estimates bandwidth to each producer and b) fetches
visual objects in parallel greedily from the producers
given these estimates. Our experiments show that com-
pared to baseline approaches, BigEye’s parallelized
transfer of visual content reduces delay by 67%.

II. BASELINE CASE: CENTRALIZED DETECTION

We first provide a description of a baseline method which
allows global event detection when all the data are centrally
available. The approach is largely based on the approach
(called Storyline) by Wang et al. [4]. We start by describ-
ing the “information gain metric” used to detect global events
in Storyline in this section. In Section IV, we show how we
can transition from this global metric to an appropriate local
metric that facilitates the detection of key global events in the
distributed settings that we are interested in.

“Information gain” is a commonly used metric for detecting
discriminative features [12]. In Storyline, this metric is used to
measure the burstiness in the co-occurrence of pairs of uncom-
mon words (keyword pair) in a stream of tweets (microblog
objects are used as sensor outputs) between two time epochs.
The keyword pairs are considered to be discriminative features
and to be associated with physical events of interest. For exam-
ple, given a key physical event where “a drunk driver kills a
running dog on the bridge,” the microblog data would expe-
rience a bursty surge in the keyword pair (driver, drunk) at a
specific time epoch. The approach enables event demultiplex-
ing, i.e., identifying separate events that belong to the same
global scope. For example, in a disaster scenario, one might
be interested in distinguishing between multiple areas with
humans in distress (and not identify them as the same issue) so
that the human responders can take proper actions. Formally,
the information gain associated with a keyword pair sz, across
time windows k − 1 and k is given by [4]

infoGain = H(Y)− H(Y|sz). (1)

In the above equation, H(Y) and H(Y|sz) are computed as
follows:

H(Y) = − Nk

Nk + Nk−1
log

Nk

Nk + Nk−1

− Nk−1

Nk−1 + Nk
log

Nk−1

Nk + Nk−1
and (2)

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

FAHIM et al.: BigEye: DETECTION AND SUMMARIZATION OF KEY GLOBAL EVENTS FROM DISTRIBUTED CROWDSENSED DATA 9751

Fig. 1. High level depiction of BigEye with its modules.

H(Y|sz) = − Nz
k

Nz
k + Nz

k−1
log

Nz
k

Nz
k + Nz

k−1

− Nz
k−1

Nz
k−1 + Nz

k
log

Nz
k−1

Nz
k + Nz

k−1
(3)

where Nk is the number of tweets in the current (kth) time
window, and Nk−1 is the number of tweets in the imme-
diately previous time window, k − 1. Nz

k and Nz
k−1 are the

number of tweets that contain the keyword pair sz in the
current and previous time window, respectively. Note that,
roughly, these expressions characterize the entropy (condi-
tional entropy) relating to the occurrence of tweet volume
(number of tweets with the specific keyword pair) in consec-
utive time windows. More details can be found in [4] and are
omitted in the interest of space. A threshold is chosen, and all
keyword pairs whose information gains are higher than that
threshold are considered to have associated physical events
that are of interest.

III. OVERVIEW AND ASSUMPTIONS

We envision that BigEye is used in an architecture that
comprises a set of producers, a summarizer, and one or more
consumers (users). BigEye seeks to identify key events of
global interest, occurring at specific time windows of fixed
duration (we also call these windows epochs). A producer is an
entity that collects sensed data from within a local region (e.g.,
a microblog repository). Let m be the number of producers;
each producer is denoted by Pi, where i = 1, 2, . . . , m. In
BigEye, we assume that the time epochs are synchronized
across all producers (we assume that protocols such as NTP
can enable this [13]); without loss of generality, we denote the
index of the time window of interest by k.

The summarizer is a central entity (e.g., a server) that
receives appropriate data from all the producers, identifies
key events, and composes a summary. We assume that all the
producers are connected to the summarizer via a network of
arbitrary topology. The transfer of all local data from m pro-
ducers to the central summarizer is considered to be large and
prohibitive in terms of bandwidth consumption (either because
of limited bandwidth, congestion, or both). This will typically
be the case in scenarios such as disaster recovery, wherein
loss of infrastructure can induce significant constraints on the
available bandwidth (e.g., fewer functional base stations or
access points). Blindly sending the large volume of data can
have significant consequences. First, because of the sheer vol-
ume, significant delays may be experienced. This, in turn,
induces significant delay in aggregating the data of interest (or
importance) from the multiple producers. This, in turn, delays
the inferences relating to events detection, which can cause
response delays (especially in disaster scenarios when fast
response is critically). We point out that if instead, inferences

are based on partially received data, suboptimal decisions may
be made and the response resources may be directed at less
than critical points of need.

Without fine-grained information relating to the events
of interest, the summarizer may experience confusion with
respect to multiple events, often categorizing them to be the
same. This increases the rate of false negatives (some of
these may be missed completely). It is also possible that the
false-positive rates relating to events could increase due to
decisions made with coarse grained information. In this work,
we propose, BigEye, a system that deals with the aforemen-
tioned conditions and is able to detect events accurately with
low latency. Furthermore, it has the ability to disambiguate
events that occur across a wide reach (referred to as global
events), thereby allowing their precise identification for proper
response delivery.

In BigEye, each producer identifies a set of local events
that are likely to be of global interest or importance. It gen-
erates appropriate metadata corresponding to these events,
and pushes the metadata to the summarizer. While multiple
producers may report the same global event albeit with
inconsistent metadata, BigEye allows the summarizer to rec-
oncile/consolidate such events. With BigEye, the summarizer
also triggers the intelligent retrieval of visual content from
the appropriate producers to compose visual summaries of all
the key events within a very short time. These precise visual
summaries will enable disambiguation across events, thereby
allowing response delivery to all events that are of importance.
A depiction of the modules and composition of BigEye is
shown in Fig. 1.

A consumer or user is connected to the summarizer, and
queries for summaries of key events. We assume that a query
provided by a user belongs to a specific scope (e.g., protest,
army conflicts, etc.) and the producers collect the data that
match such queries.1 Each producer observes postings com-
posed of short descriptions of their context with attached
multimedia (videos/images) (e.g., tweets). BigEye takes this
information as an input and produces summaries that are com-
posed of global events of interest plus a visual summary that
provides additional context which provide detailed information
and also allow disambiguation of similar but separate events.

Motivating Our Vision: To exemplify our vision, we
describe an example where our framework can find application
and help significantly. A rescue operator is interested in iden-
tifying/detecting the key global events in a disaster affected
area. Let us recall the previously mentioned example relating
to hurricane Harvey, wherein the victims posted tweets relat-
ing to their surroundings, with textual and visual content. The
postings are sent to the nearest cell tower or cloudlet (we refer

1The communications between the user and the summarizer are out of the
scope of this article.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

9752 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

TABLE I
KEY NOTATION

to these as producers in this article); because of bandwidth
constraints, carrying a possibly a large sets of tweets with
visual content beyond this local infrastructure in near real-
time will be problematic. Thus, a central controller where the
rescue operator (user) resides might not be able to receive this
information, or process it in a timely manner. Here, is where
BigEye comes into place; it enables the rescue operator who
only has limited connectivity to the producers, to identify the
key global events without retrieving the raw generated data
in its entirety, from the producers. For example, the global
event may be a “major flooding in a specific street or neigh-
borhood,” “pets are in danger in a certain area” or “the 911
network has broken-down.” The rescue operator can then take
proper action, based on the detected “event-level” information.

The key notations used in this article are summarized in
Table I.

IV. DISTRIBUTED EVENT DETECTION

Compared to prior approaches (in particular, the baseline
described in Section II), BigEye distinguishes itself in that
it applies in a realistic scenario where the crowdsensed data
are dispersed across a plurality of geographically distributed
producers. If one was to blindly transport all the raw data that
are available at these producers to a central summarizer (which
can then create summaries as discussed before), the bandwidth
consumed will be prohibitive, especially in scenarios such as
disaster recovery. Because of this constraint, when building
BigEye, we try to answer the question “How can we deter-
mine the events that are of global significance without having
to transfer all raw data to the central summarizer?”

The information gain metric previously discussed in
Section II is based on an underlying assumption that the entire
raw data are centrally available. However, this assumption does
not hold and each producer only has a local view. Thus, needed
is an approach wherein the significance of a local event can be
estimated with respect to its the global importance (i.e., will

Fig. 2. H(Y|s) with varying ps. p0
s and p1

s are two intersecting points with
H(Y)− threshold.

a local event also be flagged as a key global event if the data
was available centrally?). If all the producers were to simply
report the “number of tweets” to the summarizer, in the two
consecutive time windows of interest (say k− 1 and k), H(Y)

can be computed. However, the challenge lies in computing
H(Y|sz) globally since: 1) all keyword pairs and the associated
tweets are not known centrally and 2) each producer will only
see part of the data and can only compute H(Y|sz) based on its
local data set. To address these issues, we first map a global
requirement on information gain (and, thus, H(Y|sz)) to a local
requirement at each individual producer. Later, we reconcile
inconsistencies by having the summarizer pull appropriate data
from a subset of producers.

What values should the global H(Y|sz) take to achieve high
information gain? Before, we describe our approach in more
detail, we first ask the above question. As pointed out above,
H(Y) only depends on the number of tweets in consecutive
time windows. Thus, the discriminatory term that dictates the
information gain with respect to a keyword pair (say sz) is
H(Y|sz). It is obvious that the lower the value of this term,
the higher the information gain associated with the keyword.
With reference to (3), let us define ps = [Nz

k/(N
z
k + Nz

k−1)].
Then, [Nz

k−1/(N
z
k−1+Nz

k)] = 1−ps. In Fig. 2, we plot H(Y|sz)

as a function of ps. We see that the lowest values of H(Y|sz)

(yielding the highest information gain) are achieved when ps is
very small or very large (approaches 1). Since ps corresponds
to the probability of having a high number of tweets in frame
k relative to the previous frame, it must be large (not small) in
order to reflect a new event of interest (otherwise, it indicates
an event that was of interest in frame k−1 but has died down).
In other words, the takeaways from the above discussion are:
1) H(Y|sz) must be small (say some small value ε) and 2) the
corresponding probability ps as defined above must be large
(we require it to be > 0.5).

Let r be the ratio of occurrence of a keyword pair in the
current time epoch to the corresponding occurrence in the
previous time epoch. Let p∗s be the value of ps that makes
H(Y|sz) = ε. Since we cannot directly obtain p∗s in a closed
form by solving H(Y|sz) = ε, we numerically solve it using
the Newton method [14] and from among the results, choose
the value that is > 0.5. From p∗s , we compute (Nz

k/Nz
k−1) and

denote it as r∗. r∗ is the minimum (global) threshold with
respect to the ratio of occurrences of a keyword pair in consec-
utive time epochs, that must be met if the associated keyword
pair is to signify an event of interest. In other words, if for a
keyword pair r ≥ r∗, then that keyword pair is a discriminative
pair. Next, we provide a formal proof of this claim.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

FAHIM et al.: BigEye: DETECTION AND SUMMARIZATION OF KEY GLOBAL EVENTS FROM DISTRIBUTED CROWDSENSED DATA 9753

Lemma 1: Any pair with ps ≥ p∗s has a ratio of occurrence,
r greater than or equal to r∗.

Proof:

ps = Nz
k

Nz
k + Nz

k−1
(4)

psN
z
k − Nz

k = −Nz
k−1ps (5)

Nz
k

Nz
k−1
= ps

1− ps
. (6)

Note that r is nothing but (Nz
k/Nz

k−1). If we can show that
[ps/(1− ps)] is a nondecreasing function, i.e., [ps/(1− ps)] ≥
[p∗s /(1 − p∗s)] if ps ≥ p∗s , then we can infer that r ≥ r∗ if
p ≥ p∗s . Let us denote [ps/(1 − ps)] by F(ps). We show that
F(x) ≤ F(y) for 0 < x ≤ y < 1. We need to show that

x

1− x
≤ y

1− y
or (7)

x(1− y) ≤ y(1− x) or (8)

x− xy ≤ y− xy or (9)

x ≤ y (10)

which is true by assumption.
Choosing a Local Threshold: Given the global threshold r∗,

we need to derive an appropriate local threshold; each producer
would estimate r with respect to each keyword pair and if this
r is lower than the local threshold one can deem that those
keyword pairs are not of global interest. In order to retrieve
all the discriminative pairs of global interest (those that would
have been detected if all data was available centrally) we need
to be conservative, i.e., the choice of the local threshold must
account for the worst case scenario. By doing so, we can
achieve the same precision and recall values with BigEye,
compared to a centralized baseline (discussed in Section II).
We point out here that one may experience an outlier case,
where there are no (zero) tweets with a keyword pair in win-
dow (k−1) but a significant number in window k; to avoid the
divide by zero possibility, we assume that each pair appears
at least once at each time window; this fix has almost no
influence on the ratios that we are trying to compute.

Given the above threshold and based on the following the-
orem, we choose the local threshold to be (r∗/m) if there are
m producers.

Theorem 1: If a keyword pair has a global ratio of occur-
rence r which is ≥ r∗, the local ratio of occurrence of that
keyword pair must be larger than or equal to (r∗/m) at one or
more of m producers.

Proof: Let the number of occurrences of a keyword pair
in the current and previous time windows be Nz

k and Nz
k−1,

respectively. The ratio of occurrence of the pair at the global
level (Nz

k/Nz
k−1) ≥ r∗.

Case 1 ([Nz
k/m] Is an Integer): Let the number of occur-

rences of the pair in the current time window (window
k) at the local producers be the following: (Nz

k/m) + c1,
(Nz

k/m) + c2, . . . , (N
z
k/m) + cm, where ci and (Nz

k/m) are
integers.

The summation of all the occurrences, across all producers
should be equal to the global count Nz

k, i.e., ([Nz
k/m]+ c1)+

([Nz
k/m]+ c2)+ · · · + ([Nz

k/m]+ cm) = Nz
k.

Thus, m(Nz
k/m)+∑

i ci = Nz
k; hence,

∑
i ci = 0.

Case 1A (Pi With ci ≥ 0): The ratio of occurrence of the
keyword pair of interest at Pi is ([(Nz

k/m)+ ci]/Nz′
k−1), where

1 ≤ Nz′
k−1 ≤ Nz

k−1. Here, Nz′
k−1 is the number of occurrences

of the keyword pair in the previous time window [(window
(k − 1)] at Pi; naturally, this is ≤ the global count in that
window.

The next step shows that the theorem holds regardless of
the value of Nz′

k−1

Nz
k

m + ci

Nz′
k−1

= Nz
k

mNz′
k−1

+ ci

Nz′
k−1

≥ Nz
k

mNz′
k−1

≥ Nz
k

mNz
k−1

.

But [Nz
k/(mNz

k−1)] ≥ (r∗/m) and hence, the local rate of
occurrence at Pi is higher than (r∗/m).

Case 1B (Pi With ci < 0): Since
∑

i ci = 0, there must be
at least one other producer with cl > 0, l �= i; Case 1A will
now apply to that producer l.

Case 2 ([Nz
k/m] Is Not an Integer): If all occurrences

at local producers are �(Nz
k/m)	, their summation becomes

smaller than Nz
k. Hence, the number of occurrences with

respect to at least one of the producers, denoted as Pi, must
be ≥
(Nz

k/m)�. In other words, the ratio of occurrence at Pi

is [
(Nz
k/m)�/Nz′

k−1], where 1 ≤ Nz′
k−1 ≤ Nz

k−1. Similar to the

previous case, [
(Nz
k/m)�/Nz′

k−1] ≥ (r∗/m).
Distributed Event Detection Algorithm: Based on the above

findings, BigEye applies the following algorithm for dis-
tributed event detection.

1) Each producer computes the ratio of occurrences of
keyword pairs available locally and transmits the pairs
having ratios larger than or equal to (r∗/m) to the
summarizer.

2) The summarizer sends a list of the received pairs to
all the producers and inquires about the occurrences of
those pairs at the producers. Any producer that had iden-
tified that keyword pair, but had not reported it (because
it did not meet the threshold) now reports the number of
occurrences of that pair. Once this information is avail-
able, the summarizer computes the global ratios of all
pairs received in step (1).

3) The summarizer filters out pairs with the global ratios
less than the global threshold, r∗.

Theorem 1 proved that any globally significant keyword pair
“will” be reported by at least a single producer in the first step
above. This proves the following lemma.

Lemma 2: BigEye’s distributed detection algorithm
achieves 100% precision and recall, relative to centrally
available data.

Discussion: The performance of our algorithm degrades
when the local threshold is very small. When the local thresh-
old becomes very small, the number of keyword pairs sent
by the producers to the summarizer increases drastically.
Specifically, this happens when the number of producers m
is very large or the global threshold r∗ is very small, or
both. When the local threshold becomes very small (say has
a value 1) each producer sends all the pairs; to avoid division
by 0 we had implicitly set the ratio of occurrence of any pair

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

9754 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

at a local producer to be greater than or equal to 1. However,
in practice, these cases are not of interest. A very large set of
producers will imply that the local data consists of small sets
and, thus, it will be hard to detect events that are of global
interest. A very small threshold will also fail in discriminating
between key events of interest and others.

V. EVENT CONSOLIDATION

Different discriminative pairs detected by the summarizer
(based on local reports from the producers) may refer to the
same physical event. This is because a single event can be
characterized by multiple discriminative keyword pairs. We
demonstrate this phenomenon using an example. The dis-
criminative keyword pairs (boy, drowning) and (boat, rescue)
could refer to the same event where a drowning boy in a
river, was rescued by a fishing boat. Because these allude to
the same event, we need to merge the key word pairs and,
thus, avoid the unnecessary retrieval of redundant visual sum-
maries pertaining to this same physical event. For merging
similar events, BigEye packs microblogs containing specific
“keyword pairs” into clusters. To consolidate two keyword
pairs representing the same event, the similarity between two
clusters represented by these keyword pairs is computed. If
the similarity score is larger than a given threshold both the
clusters pertaining to the keyword pairs are consolidated.

Assessing this similarity in a distributed setting is challeng-
ing. Naively sending the entire cluster of words associated
with a keyword pair to the summarizer for computing simi-
larity scores defeats the purpose of reducing communication
costs. Thus, BigEye consists of an approach to consolidate
events across producers, in bandwidth constrained distributed
environments. The approach consists of two steps described
below.

Step I: In the first step, BigEye tries to consolidate key-
word pairs representing similar events at the local producers.
Specifically, it consolidates events corresponding to “keyword
pairs,” the clusters associated with which have content that
are very similar. It uses the Jaccard distance [15] to mea-
sure the similarity between the two clusters (events). Previous
work [4] has reported that the Jaccard distance outperforms
other similarity metrics for event consolidation in this way.

Returning to our earlier example, “a drowning boy was res-
cued by a fishing boat in the river” has the discriminative
keyword pairs (boy, drowning) and (boat, rescue). One can
expect that the similarity score between the two local clus-
ters of the corresponding discriminative keyword pairs (boy,
drowning) and (boat, rescue) to be high (we find such scores to
be consistent with what is observed in the case when all data
are available centrally). Based on this, the similarity between
clusters of microblogs is computed at each local producer. If
the distance between any two clusters of events exceeds a cer-
tain threshold with regards to the Jaccard distance, the local
producers notify the central summarizer that they should be
consolidated.

Note here that such approaches (although not identical to
what we propose) have been previously used in event detec-
tion [4], [16]. In our case, we start by having a number of

clusters equal to the number of detected keyword pairs; after
the consolidation phase, we end up having only C clusters of
microblogs representing the physical events. Our algorithm is
similar to the one used in [4] for consolidating similar events.

To assess the similarity between microblogs belonging to
two clusters, we measure the similarity between the words
belonging to the two sets of microblogs. Specifically, we mea-
sure the ratio of the number of unique words that are present in
“both” sets of microblogs to the total number of unique words
in both sets. This metric referred to as Jaccard similarity [15]
has been reported to outperform other metrics in assessing
the similarity of data sets, and in particular for event consol-
idation [4]. At summarizer, if the majority of the producers
(≥50%) indicate that two keyword pairs should be consol-
idated, the summarizer sends feedback to all the producers
to merge the contents associated with these keyword pairs.
This helps to consolidate highly similar events at individual
producers, without sending the entire cluster contents to the
summarizer.

Step II: In the second step, BigEye further tries to con-
solidate global events that do not have very high similarity
locally at individual producers, and were not consolidated in
step I. To achieve this objective, it seeks to only exchange
minimal information with the summarizer to limit bandwidth
consumption. Specifically, it employs minHash [17] and local-
ity sensitive hashing (LSH) [18] functions at each producer,
to convert a cluster of words represented by a discrimina-
tive keyword pair into a set of hash integers. minHash and
LSH are techniques commonly used to measure the similar-
ity of large documents within reasonable running times [18],
[19]. The probability that hashes of two sets are similar is
equivalent to the corresponding Jaccard similarity of the same
sets [19], [20]. Each producer transmits the computed hash
values to the summarizer. The summarizer compares the hash
values across clusters to measure the similarity globally. The
bandwidth consumed on sharing the value generated by min-
Hash is significantly smaller than the bandwidth consumed on
sharing the entire cluster to the summarizer (as will be shown
in Section VII). At this point, BigEye has tried to reconcile
the possibility that a single global event of interest was per-
haps identified as different events because there were multiple
keyword pairs from tweets that were used as discriminatory
features for this event. While we are not able to completely
eliminate a single event being wrongly classified as multiple
events, this process drastically reduces the possibility.

VI. COMPOSITION OF VISUAL SUMMARIES

The final module of BigEye deals with the retrieval of a set
of multimedia objects (e.g., images) from producers to visually
summarize an event; the goal is to achieve this retrieval in
the minimum amount of time. Without loss of generality, we
assume that the number of objects (fixed) required to compose
a visual summary for each detected event, is set a priori (e.g.,
by a consumer) and that this number is the same for all events
of interest. Without a priori knowledge of what events occur,
this ensures that every event is summarized fairly, with no
priority of one event over others. However, by applying proper

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

FAHIM et al.: BigEye: DETECTION AND SUMMARIZATION OF KEY GLOBAL EVENTS FROM DISTRIBUTED CROWDSENSED DATA 9755

weights it is easy to extend the approach to account for cases
wherein events are to be prioritized.

A summary should include multimedia objects that best
describe the corresponding event of interest. Thus, we assign
a score to each object based on a set of features (e.g., retweet
count, favorite count, etc.). We denote this set of selected fea-
tures as f1, f2, . . . , fF and the score associated with each item is
equal to fj = γ1f1+γ2f2+· · ·+γFfF, where j is the item index.
The summarizer then looks for a set of multimedia objects that
maximizes f =∑

fj

maximize
n∑

j=1

fjxj

subject to
n∑

j=1

w1
ijxj ≤ Bi, i = 1, . . . , m

n∑

j=1

w2
ejxj ≤ Ce, e = 1, . . . , E

w1
ij =

{
wj, j ∈ Pi

0, otherwise

w2
ej =

{
1, j ∈ Ce

0, otherwise
xj ∈ {0, 1}, j = 1, . . . , n. (11)

The objects to be retrieved may be of heterogeneous sizes;
wj denotes the size of an object j. Let the bandwidth between
a producer and the summarizer be Bi, where i is the pro-
ducer index. We denote the number of images to be retrieved
from each cluster (event) by Ce. The total number of events is
denoted as E. Since there is a bandwidth constraint imposed
by the network, retrieving the images with the highest qual-
ity (score) may induce large delays. Selecting what to send
from each producer to maximize the objective function while
respecting the bandwidth and the event coverage constraints
is an NP-Hard problem [21]. This is because the problem can
be mapped to a multidimensional knapsack instance as shown
in (11). The optimization problem aims to maximize the objec-
tive function by picking up the multimedia objects with the
highest scores subject to a set of constraints—the bandwidth
between the producer and the summarizer, and the number of
images belonging to a certain event should not exceed the limit
that is imposed. This is akin to filling up a multidimensional
knapsack with objects subject to constraints on the knapsack
sizes.

Online Algorithm: Solving the above optimization problem
is not trivial for two reasons. First, as mentioned above, it is
known that knapsack is an NP-Hard problem [21] and, thus,
obtaining the optimal solution would require an exponential
running time. Second, in real-world scenarios, the bandwidth
allocated to a producer is not known a priori. The estimated
bandwidth in the idle state is different from the available band-
width in real time, as the producers might share the same paths
and, thus, affect the bandwidths available to each other (in
addition to traffic dynamics). Thus, the optimization problem
needs to be solved online. Generally, this problem is known
in the literature as the knapsack of unknown capacity [22].

As evident from the problem formulation, there is a trade-
off between the retrieval time and the quality of the retrieved
items (the total score). We design our algorithm such that it
is flexible to allow the operator to favor the quality over time
or vice versa. First, each producer sends the metadata (size
and score) of multimedia objects to the summarizer. Next, the
summarizer sorts the objects based on a rank given by the
ratio, [(1 + Lfj)/wj]. This ratio captures the relation between
the score of the object and its size. L is a normalizing factor
that can allow favoring one metric (e.g., score) over the other
as desired by the deployer. For example, if L = 0, the algo-
rithm retrieves the objects with the smallest sizes which lead
to shorter retrieval times but can cause poor quality objects to
be retrieved.

Initially, when no bandwidth estimates are available,
BigEye obtains an initial estimate of the bandwidth between
each producer and the summarizer, using the iperf utility [23].
Next, the algorithm updates this bandwidth estimate during
execution as follows. It considers a fixed period of time
(denoted by T), and the summarizer retrieves the maximum
number of multimedia objects from each producer, which are
retrievable within this period. Partially retrieved objects (com-
plete retrieval not possible in T) are not counted. Based on the
objects retrieved and their sizes, from a producer, the summa-
rizer estimates the bandwidth to that producer (data retrieved
divided by T).

At any given point, the summarizer has the sorted objects as
described earlier, and the bandwidths to each of the producers.
It then tries to pull up an object from producers in order from
the ranked list. For each object, the summarizer first checks if
the object is still relevant (meaning that the necessary number
of objects have already been received for the corresponding
event). If not, the object is discarded. Otherwise, it checks if
the retrieval of the object violates the bandwidth constraints
to the corresponding producer (i.e., can the object be retrieved
within T seconds, given the estimate of the bandwidth to that
producer). If there is no violation, the object is retrieved from
the producer and the bandwidth to that producer is decreased
by the size of the object. In particular, if the estimate of the
available bandwidth to producer Pi was Bi and the object size
was wj, B−i is updated to Bi = Bi−wj. Furthermore, the num-
ber of objects that is needed for the summary corresponding
to that event (say e) is decreased by 1 (i.e., Ce = Ce − 1).

For each new time period, the producer’s bandwidths are
implicitly updated during the above process. The summarizer
repeats these steps until the total number of required objects is
retrieved for all events (

∑
e Ce = 0). The procedure is formally

summarized in Algorithm 1.

VII. IMPLEMENTATION AND EVALUATIONS

The implementation and experimentation environments are
described first in this section. Subsequently, our evaluations of
BigEye are provided. Each module is evaluated separately
to showcase the benefits of each. We consider the holistic
performance of our system at the end of the section. To
emulate a network, we use Mininet [24], a popular software
defined network (SDN) emulator. To show the realism of our

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

9756 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Algorithm 1: Multimedia Objects Retrieval

Function Calibrate (ReceivedObjects[i])
Bandwidth[i] ← ∑

wj, j ∈ ReceivedObjects[i]
BestBw[i] ← Bandwidth[i]

end
for i in I do

MaxBW[i] ← iperf (Pi, summarizer)
end
Bandwidth ← MaxBw
BestBw ← Bandwidth
objects ← sorted (objects, 1+Lfj

wj
)

while
∑

e Ce �= 0 do
forall j in objects do

i← j ∈ Pi

if Bandwidth[i]- wj ≥ 0 & Ce- 1 ≥ 0 then
Bandwidth[i]= Bandwidth[i]- wj

Ce = Ce - 1
RequestObject(j, Pi)

end
end
wait (timeWindow)
Bandwidth ← BestBw
for i in I do

if connection(summarizer,Pi) intercepted then
Calibrate(ReceivedObjects[i])

end
end
if set of transmitting producers changes then

Bandwidth ← MaxBw
end

end

approach, we use the NDN test-bed topology to represent
the network [25]. This topology is used in a real deploy-
ment where distributed producers are connected. We change
the default latencies and bandwidth per link in some experi-
ments to showcase and demonstrate the scenarios of interest
(bandwidth constrained environment).

We use the ONOS SDN controller [26] to manage the
communication and routing between producers and the sum-
marizer (and vice versa). Each producer receives microblogs
(e.g., tweets) of interest, and by using BigEye, the necessary
computations and communications are performed at both the
producer and summarizer sides, as described in the aforemen-
tioned three stages of the system. Finally, BigEye outputs a
summary of the global events of interest plus a concise visual
summary (the holistic output of the approach is discussed in
Section VII-G).

A. Data Set Collection and Distribution

We collect tweets using Apollo [27], a framework that
retrieves information from Twitter using Twitter API. The
framework allows its users to collect tweets that match key-
words of interest such as “disaster” and “wild fires.” The
collected data sets are cleaned by removing: 1) retweets;
2) stop words and special characters [28]; and 3) URLs.
Subsequently, we apply stemming [29] to the collected data.

We note that this is a common practice in data mining
applications. We use the Python-NLTK tokenizer [30] and
the Porter stemmer [29], which are common tools used for
these purposes. The collected data sets are summarized in the
following:

1) Protest: This data set is collected using the keyword
“protest.” The data set has tweets related to protests and
it was collected from March 18, 2018 to April 18, 2018.
It consists of approximately 300K tweets after applying
the aforementioned filtering methods.

2) Florence: The data set contains information about the
Hurricane that occurred in the Carolinas in 2018. The
data set was collected using the keywords “hurricane”
and “florence” from September 14, 2018 to September
24, 2018. It contains approximately 100K tweets after
conducting the aforementioned filtering methods.

To emulate a scenario in real time, the data are streamed and
fed to the producers with respect to the time stamps collected
from the tweets. For the purpose of experimentation in this
article, we choose a window size of 24 h. The term instance
refer to the data corresponding to each such window size.
Thus, for the above data sets, we have 40 instances in total.
The data sets are distributed over multiple producers with two
different scenarios that are described below.

1) Natural Distribution: In practice, the tweets are posted
by Twitter users from different geographical locations. One
can use those locations to cluster the tweets into different
geographical zones, which can be later associated with the
producers. However, not all tweets contain associated geolo-
cation information; in fact less than 2% of tweets have this
information [31]. This makes the problem of simulating exact
real-word geographical distribution of tweets hard. So, the
addresses of users (which can be obtained from users pro-
files) are used to mimic the geographical distribution of tweets
(tweets from the same user are assumed to be made from
his/her profile’s geolocation information). Using this approach,
we are able to retrieve 70% and 60% of this information,
from users associated with the Florence and Protest data sets,
respectively. We are unable to decipher the rest because some
users had provided vague addresses (e.g., “space” and “floor”).
We use an API provided by HERE.com to convert the pro-
vided addresses to geolocations (composed of latitude and
longitude) [32].

As mentioned earlier, we used the NDN topology, which
reflects a real-world network (real server locations); we assume
each tweet is sent to the nearest physical producer (assum-
ing that each server is a producer). Fig. 3 shows an example
demonstrating the approach. We extend the same idea when
a variable number of producers (different from the original
number of servers in the NDN-topology) is considered, from
as follows. First, each tweet is assigned to its nearest producer
and among all producers we select the top m (ones that receive
the most number of tweets) producers. Next, we assign tweets
to the nearest producer from these top selected m produc-
ers. For tweets where we could not retrieve the geographical
locations, they are assigned randomly to a producer.

2) Synthetic Distribution: To further evaluate the
performance of BigEye, we consider the uniform and
skewed distribution of tweets across multiple producers.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

FAHIM et al.: BigEye: DETECTION AND SUMMARIZATION OF KEY GLOBAL EVENTS FROM DISTRIBUTED CROWDSENSED DATA 9757

Fig. 3. Map of the United States, representing two hours of tweets collected
from the Florence data set. Blue dots represent producers and red dots repre-
sent the locations of tweets. Each tweet (red dot) is sent the nearest producer
(blue dot).

1) Skewed Distribution: The distribution of the data over
the producers follows a Gaussian distribution with μ =
(Nk/m) and σ 2 = β ∗ μ; we vary the β to control the
skew.

2) Uniform Distribution: The distribution of the data over
the producers follows a uniform distribution.

We also collect the images associated with the tweets and
stream them on the producers according to the selected distri-
bution. For tweets scores, we select three features (fj as dis-
cussed in Section VI): 1) retweet count; 2) favorite count; and
3) follow ratio defined as (# of followers/# of following).2

We also select L to be 1. Twitter allows users to post more
than one multimedia object in a single tweet. We treat each
as an independent object while giving each the same score as
their associated tweet. Twitter API keeps multiple versions of
the videos each with different quality. To avoid redundancy,
we pick only a particular version randomly. We note that the
higher the quality of a video or image, the higher its size.

B. Evaluation Parameters

Our evaluations of the performance of BigEye consist of
a comparison with an approach wherein all data are made
available centrally. Our evaluations are on the data sets that
were discussed in the prior section. We stream each data set
separately, in line with our assumption (streaming data are
aligned with the scope of a realistic scenario) in Section III.
The results that we obtain are then integrated before we discuss
them for two reasons. First, we find that the performance with
BigEye is consistent across both data sets, when the data are
distributed over geographically separated producers, compared
to when the data are centrally available. Second, the generality
of BigEye ensures that its behavior with any crowdsensed
data set, belonging to a particular scope, is consistent. As a
consequence of these two reasons, an independent discussion
of the details of the performance of each data set provides no
new information, and is wasteful of space.

Our experiments are performed with all instances from
all of the data sets (40 in total), considered one at a time.
For statistical significance, experiments are repeated 50 times.
BigEye’s three components are integrated holistically; how-
ever, first we independently evaluate each component to pro-
vide microscopic views of the benefits of each. The following
describe for these module specific set ups.

2Assessing how good the selected features are in practice is beyond the
scope of this article.

Distributed Event Detection Module: As described in
Section IV, we find that our method always yields the same
precision and recall with respect to detection of key events,
as that of an ideal system which considers that all data can
be made available centrally. We experimentally validated this
and do not further showcase the event detection accuracy in
the interest of space.

To evaluate if the number of keyword pairs that are returned
by BigEye to the summarizer is reasonable, we compare the
number with the best case scenario. In particular, we con-
sider an oracle that does a brute force search, considering
all possible subsets of the keywords pairs sent (the ranked
orders of those pairs are still maintained), and checks if any
of those subsets yields the same precision and recall as our
approach (and the central approach). We choose the smallest
subset among these as the best possible scenario (we label it
as oracle prediction in the results that we present). In other
words, instead of choosing a threshold (r∗/m), we find a the
smallest value l ≤ m such that choosing (r ∗ /l) results in the
detection of all events of interest.

Consolidation of Events: Our proposed distributed consol-
idation is evaluated next. Specifically, BigEye’s approach is
compared with a case all the data associated with the clusters is
sent to the summarizer which then applies a consolidation. We
denote the baseline as central consolidation. We point out that
this is the consolidation used in the prior work Storyline [4],
where the data are centrally made available and similarity
assessment is based on Jaccard distance.

The metrics of interest are accuracy (defined next) and the
amount of data sent from the producers to summarizer for the
purposes of consolidation. Accuracy is defined to be the ratio
of the number of keyword pairs that are grouped correctly
(the events are correctly consolidated) to the total number of
keyword pairs. Two keyword pairs are incorrectly grouped if:
1) these pairs belong to the same event but are put in different
groups and 2) they belong to different groups (events) but
are consolidated into the same group. We also compare the
amount of sent data from the producers to summarizer with
our approach (in bytes), with the other approach.

Composition of Visual Summaries: We assess the “quality”
from BigEye’s visual summary module with respect to the
centralized case (where no bandwidth constraints are present).
In particular, if data are located centrally, the summary can
be composed using the objects that have the highest associ-
ated scores. However, objects with the highest scores are not
always retrieved in BigEye to meet timeliness constraints
as discussed in Section VI. To evaluate the impact of this,
we evaluate the quality which is defined as the ratio of the
summation of the scores of the multimedia objects retrieved
with BigEye, to the corresponding sum score achieved in the
centralized case.

We also evaluate the delay in retrieving the visual objects.
Formally, this delay is defined as the time it takes for the
summarizer to receive the data used for the visual summary
from the producers. Specifically, the metric we use is the aver-
age delay incurred in receiving 1 MB of data (we normalize
this since the sizes of the visual summaries could be differ-
ent for different events). We compare the delay of BigEye’s

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

9758 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Fig. 4. CDF of the number of detected discriminative pairs with different
global thresholds.

Fig. 5. Performance of our distributed event detection with varying number
of producers.

visual summary module with the following baseline (denoted
as baseline). Each producer is assigned the job of sending
information related to a specific event. If the number of events
are more than the number of producers, the events are evenly
distributed across the producers. If a producer is assigned more
than an event, the resources are shared equally between them
with no priority given to one over the other. Our goal here is
to showcase the efficacy of our parallelization approach with a
second approach (the baseline) that also parallelizes transfers
but is not bandwidth aware (does not take into account the
different bandwidths to the different producers).

C. Results on Distributed Event Detection

First, we evaluate our distributed event detection module
using the aforementioned metrics. We recall our discussion in
Section IV [H(Y|sz) was to be a small value ε], and select ε

to be 0.08, 0.09, and 0.1 (r∗ = 100, 87, and 76, respectively).
Here, we also refer the reader to Table I since the notation
therein is used in the discussion.

Effect of r∗ on the Total Number of Pairs Retrieved by the
Summarizer: We plot the CDFs of the number of events (corre-
sponding to identified discriminative key word pairs) detected
with each value of r∗ in Fig. 4. As one might expect, as r∗
increases, the number of pairs retrieved decreases (with higher
r∗ only the most significant events are detected). This effect
is also seen in Fig. 5.

Effect of Increasing Number of Producers: In Fig. 5, we
plot the ratio of the number of retrieved keyword pairs to the
total number of keyword pairs identified, versus the number

Fig. 6. Performance of our distributed event detection with different data
distributions.

of producers. We assume that the data are distributed as per
the natural distribution. As one might expect, the number of
key-words pairs returned to the summarizer increases when as
the number of producers, m, increases. This is because (r∗/m)

decreases, i.e., a lower or more conservative (local) threshold
is used at each of the producers. It is worth noting that with
small r∗ = 76, (H(Y|sz) = 0.1) and large m = 18, the total
number of received pairs is less than 1% of the total number
of keyword pairs considered globally.

Comparison With Oracle: Next we examine how the number
of keyword pairs retrieved with BigEye compares to what is
obtained by an oracle, when the data are spread across the
producers as per the different data distributions (discussed in
Section VII-A). For the skewed distribution, we choose μ =
(Nk/m) and σ 2 = 0.5 ∗ μ; this ensures a high skew. We fix
ε = 0.09 (r∗ = 87), and m to be 10.

In Fig. 6, we plot the CDF of the ratio of the number of pairs
received at the summarizer to the number of global discrimina-
tive pairs with both BigEye and the oracle-based approach
described earlier. We see that the performance of BigEye
is similar to that of the oracle when data are dispersed as
per the natural distribution. However, when the distribution is
skewed, the performance of the BigEye degrades compared
to the oracle. This is because the producers with large numbers
of tweets have a large number of keyword pairs that pass the
conservative threshold selected by BigEye; thus, they end up
sending a large number of pairs that are not useful in detecting
key events.

D. Results With Regards to Consolidation

Next, we evaluate the benefits from BigEye’s consolida-
tion module. In our evaluations we use the same ε values
mentioned earlier in Section VII-C. Recall that BigEye con-
solidates events over two steps. In the first step, we consider a
similarity requirement of 0.99 (Jacquard distance) to consol-
idate events at individual producers. For the second step, we
consider three minHash signatures of length 64, 128, and 256
integers. We consider different minHash signatures as it has
been reported that the length of generated minHash signatures
affects the similarity scores [19]. We also vary the consolida-
tion thresholds that are used centrally from 0.4 to 0.9 with a
stepsize of 0.1.

In Fig. 7, we compare BigEye’s consolidation approach
with different minHash lengths. We observe that the similarity

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

FAHIM et al.: BigEye: DETECTION AND SUMMARIZATION OF KEY GLOBAL EVENTS FROM DISTRIBUTED CROWDSENSED DATA 9759

Fig. 7. Distributed consolidation accuracy with respect to centralized
consolidation (Storyline [4]).

Fig. 8. Bandwidth savings from BigEye’s distributed consolidation
approach in terms of total amount of data sent from producers to summarizer.

estimation improves as the length of the minHash signature
increases (less collisions). Similar phenomena have also been
reported in the previous literature [19]. We observe that for
a minHash signature of length 128, almost 85% of instances
show a consolidation accuracy of larger than 70% of what is
achieved if all data were available centrally. BigEye provides
consistent consolidation accuracies irrespective of the number
of producers.

We show next the consolidation benefits in terms of the
reduction in the volume of data sent from producers to sum-
marizer in bytes, compared to sending all keywords in the
clusters (needed for central consolidation); Fig. 8 shows that
our approach reduces the communication costs significantly
compared to that baseline approach, and in particular the
average cost by 60% (fewer bytes).

E. Results on Visual Content Retrieval

Next, we evaluate the performance of BigEye’s visual
summary module with respect to the baseline approach dis-
cussed in Section VII-B.

Delay Performance With Different Numbers of Producers:
We evaluate the performance of BigEye’s final module with
different numbers of producers (we consider two, six, and
ten producers). We assume that the data are distributed uni-
formly over these producers. We plot the CDFs of the average
delay (over the instances) with BigEye and the baseline in
Fig. 9. First, we observe that our approach outperforms the

Fig. 9. Delay in visual content retrieval with different number of producers.

Fig. 10. Summarization quality of visual summary with different number of
producers.

baseline by approximately 67% on average. Furthermore, we
also see that the delay decreases as the number of producers
increases initially. This is because of the increased paralleliza-
tion in retrieval that is possible due to this. However, the
benefits reach a point of diminishing gains. Specifically when
the number of producers increases beyond a certain number
(e.g., above 6 and 10 in Fig. 9) because of limitations in
the NDN network structure very little additional paralleliza-
tion is possible (the producers share common paths). We have
manually constructed a tree network where each producer is
connected to the summarizer with a dedicated link. In this case,
we do observe significant performance enhancements between
the cases of six and ten producers since parallelization is now
viable. We omit showing these results to conserve space.

Impact on Summary Quality: We plot the CDF of the qual-
ity of the visual summaries obtained with different numbers of
producers versus the baseline approach in Fig. 10. We see that
the best quality is achieved when there are only two produc-
ers. Typically, if all data are at a single producer, it is natural
to pick the objects with highest scores (fj/wj) according to the
global sorted list shown in Algorithm 1. However, when the
number of producers increases and we try to achieve paral-
lelization of transfers, the highest ranked objects in the global
list are not always retrieved. In particular, if a single producer
has most of the highest ranked objects, we will retrieve objects
of inferior quality from other producers. In other words, the
summarizer pulls other objects (with lower rank) from other
producers, which, in turn, affects the achieved quality (the
tradeoff is the reduction in terms of the delay).

Data Requirement to Compose Summaries: Next, we eval-
uate the performance of BigEye when the user imposes
different requirements on the number of objects that are
needed in the visual summary. Specifically, we impose require-
ments of (25%, 50%, and 75%) of the total number of
multimedia objects (corresponding to each detected event) to
compose the summary. We use the skewed data distribution
with β = 1 (very skewed distribution). This means that a small

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

9760 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

Fig. 11. Delay in visual content retrieval with different number of objects
required to compose summary.

Fig. 12. Summarization quality of visual summary with different numbers
of required objects.

Fig. 13. Performance of the distributed event detection module with multiple
data sets (scalable setting).

subset of the producers has a large number of multimedia
objects, while others have only few. We fix the number of
producers to be 6. As shown in Fig. 11, when the required
number of objects is only 25% of the total, the lowest delay is
achieved. As evident, as this requirement increases, the delay
increases. In fact, because of the skewed distribution, when we
need 75% of the objects, the summarizer is forced to abandon
parallelization and retrieve all objects from the producers with
the large number of objects. This drastically affects the delay.

Fig. 12 shows, as one might expect, that the quality of
the composed summary improves as the number of required
objects to compose the summary increases. However, this
improvement is not drastic. This is because the first objects that
are retrieved have the highest scores; later objects contribute
less and less to the quality of the summary.

F. Scalability

To showcase BigEye’s scalability where the generated data
are much larger, we use a data set collected on election day
in the United States. It consists of around six million tweets
and we clean it up as we discussed earlier in Section VII-A.
We point out here that the data sets used in the results shown
earlier (Florence and Protest) are small in comparison to the

Fig. 14. Bandwidth savings from BigEye’s distributed consolidation with
multiple data sets (scalable setting).

Fig. 15. BigEye’s distributed consolidation accuracy with multiple data
sets (scalable setting).

Election data set (by a factor of about ≈ 20). We select global
thresholds such that an approximate constant number of top
events (10 and 30) are retrieved, and assess the performance
of our modules. Specifically, we examine how the results scale
with the data set size (in comparison to the smaller ones). We
point out here that tuning the global threshold to get the exact
same number of events across all data sets is hard; thus we
choose thresholds such that the ratio of events retrieved across
each pair of data sets varies between 0.9 and 1.1 (i.e., the num-
bers are approximately 10 or 30 but not exact). We select the
number of producers m to be 10 and a hash of length 128. The
accuracy of our distributed event detection module remains at
100% like in the case where all the data are available centrally
(similar to the results reported earlier) even when the data set is
large. The ratio of the received keyword pairs (after processing
by BigEye) to the total number of keyword pairs is drastically
smaller with the Election data set (only 0.002%) in compari-
son with the Florence hurricane and Protest data sets as shown
in Fig. 13. One might expect this to be the case since the total
number of keyword pairs is much larger in comparison to the
candidate discriminative keyword pairs [with a local ratio of
occurrence larger than (r∗/m), the local threshold]; recall that
only these candidates are sent from the producers to the central
controller. In large data sets (e.g., the Election data set), the
total number of keyword pairs is much larger than the corre-
sponding number in smaller data sets (e.g., Florence); since we
choose a target number of top events to be detected, the ratio
of candidate discriminative key word pairs to the total number
of keyword pairs becomes drastically smaller. Thus, the take-
away is that one can expect even further reductions in overhead
with BigEye as the data set sizes grow, because of large

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

FAHIM et al.: BigEye: DETECTION AND SUMMARIZATION OF KEY GLOBAL EVENTS FROM DISTRIBUTED CROWDSENSED DATA 9761

TABLE II
FLORENCE HURRICANE SUMMARIZATION

TABLE III
PROTEST SUMMARIZATION

reductions (if we seek to detect a certain target number of top
events).

We next evaluate our second module (consolidation) with
a large data set in terms of both bandwidth savings and con-
solidation accuracy. With the new larger data set, the number
of words that mapped on to each event increases significantly;
thus, BigEye’s approach of sending a fixed hash represen-
tation of the event contents (as compared to sending the raw
words corresponding to the event) reduces the overall pro-
portion of transmitted data in comparison to the smaller data
sets as shown in Fig. 14. However, as shown in Fig. 15,
we see that with the Election data set, we have a slightly
lower consolidation accuracy in comparison with the results
obtained with the other data sets. This is because the used
hash length is small (only 128) and, hence, it is not sufficient
to capture the similarity between the detected events in this
large data set. As indicated earlier, a possible way to enhance
the consolidation accuracy is to increase the hash length (see
Fig. 7). This is because the similarity estimation improves
as the length of the hash increases [19]. To verify that this

is applicable on large data sets, we increase the hash length
to 256 and run BigEye with the Election data set and we
achieve consolidation accuracy of 90% when the number of
events equal to 30.

G. Holistic Output of BigEye

Next, we show the holistic output of BigEye. We select
random instances from three data sets. We use the previously
mentioned Protest and Florence data sets, and a new data set
(called the disaster data set [33]) that is available for public
use to further show the merits of our proposed framework.
The summaries are composed of: 1) the discriminative key
word pairs; 2) textual summaries (complete tweets) describing
the observed events; and 3) the visual summaries (we select
the best images to avoid cluttering). The discriminative pairs
and the textual summaries of the three data sets are shown
in Tables II–IV, and the corresponding visual summaries are
shown in Figs. 16–18. To elaborate, we will go through a sam-
ple of the results associated with Protest data set. On March 30,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

9762 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

TABLE IV
DISASTER SUMMARIZATION

Fig. 16. Florence data set.

Fig. 17. Protest data set.

two major protests were detected. The first related to teachers
in Kentucky schools, who were protesting against a pension
bill which forced schools to close (an image of the protest is
shown). The second event is related to a protest in Gaza where
seven people were killed and dozens were injured. One can
easily understand and differentiate between these by following
the textual summaries of the events and their corresponding
visual summaries.

VIII. RELATED WORK

Postings on social networks have been recently used as
sensor outputs [34], [35] that can be used to discern events.

There exist some prior studies on detecting events from such
sensors’ data (with goals aligned with those of BigEye).
Allan et al. [36] used the term frequency (tf) and inverse
document frequency (idf) features to build a query represen-
tation for content from news stories and identified an event,
when the similarity score of new news story was less than
a given threshold in comparison to any previous news query
in memory. Similarly, Shamma et al. [37] used a normalized
tf to identify peaky topics, the terms which are particu-
lar to a time window, to detect highly localized events of
interest. Benhardus and Kalita [38] also used tf–idf analy-
sis and relative normalized tf analysis, on twitter documents
to identify trending topics. However, these approaches were

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

FAHIM et al.: BigEye: DETECTION AND SUMMARIZATION OF KEY GLOBAL EVENTS FROM DISTRIBUTED CROWDSENSED DATA 9763

Fig. 18. Disaster data set.

reported to be inefficient in differentiating between separate
event instances [4]. Moreover, unlike tf–idf, BigEye works
by only computing information gain over two consecutive time
windows.

Text stream clustering has also been applied for event detec-
tion. Ordonez [39], Zhong [40], and Aggarwal and Yu [41],
used optimizations of k-means algorithms to cluster data
streams for events detection. Similarly, communication pat-
terns [42], social network topological features [43], language
specific features [44]–[46], and location of tweets [47]–[49]
have also been used by researchers for clustering data to
detect events. Nevertheless, precisely defining the number
of clusters (k) for online streaming data is not feasible.
Researchers have also used topic modeling for event detec-
tion [50]–[52]. However, topic-based approaches have been
reported to be inefficient in identifying events happening in
parallel instances [4]. Unlike these methods, BigEye detects
events by measuring the temporal bursts in the word-pairs
that do not co-occur frequently. BigEye’s event detection
approach is closely related to Storyline that was proposed
by Wang et al. [4]. However, unlike BigEye, Wang et al.
only focused on event detection when data are centrally
located.

A different line of work considers the problem of
truth finding in social sensing blogs [53], [54]; however,
these only work when all the data are made available
centrally unlike BigEye. In contrast, BigEye is tar-
geted for a distributed setting, wherein the data are dis-
tributed across multiple producers that are geographically
separate.
BigEye centers around the detection of global events by

only sharing minimal amounts of information between dis-
tributed producers and a central summarizer. There have been
some prior works on selectively sending information to a cen-
tral entity [55]–[57]. There are also related works focusing
on calibrating distributed sensors with the objective of find-
ing global measurements from those sensors (e.g., measuring
urban air pollution) [58], [59]. However, unlike BigEye, these
approaches do not focus on event detection. Closely relevant
to our study is the study by McCreadie et al. [60]. Unlike
BigEye, they do not consider bandwidth constraints and only
try to minimize the event detection time by distributing the
computational costs of processing documents across multiple
machines.

IX. CONCLUSION

In this article, we addressed the important problem of
detecting global events from crowdsensed data. Toward this,
we designed and implemented BigEye, a system that enables:
1) the detection of key global events based on distributed
crowdsensed data that exist at geographically spread out pro-
ducers and 2) the crafting of visual summaries that provide
concise zoomed-in views of such events. BigEye distin-
guishes itself in that it is extremely thrifty in terms of the
bandwidth that it consumes, i.e., very little of the raw crowd-
sensed data from the producers needs to be transferred to
a central entity for both event detection and the subsequent
visual summarization. Despite its thriftiness, it is able to
achieve 100% precision and recall compared to approaches,
where all crowdsensed data are made available centrally. Via
emulations of realistic scenarios, we showed that BigEye
only consumes 1% of the crowdsensed data for detecting key
global events, and its parallelization of visual content retrieval
reduces the average delay by 67% compared to baseline
approaches.

ACKNOWLEDGMENT

The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of the DEVCOM Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstand-
ing any copyright notation here on.

REFERENCES

[1] D. Wang, T. Abdelzaher, and L. Kaplan, Social Sensing: Building
Reliable Systems on Unreliable Data. Waltham, MA, USA: Morgan
Kaufmann, 2015.

[2] B. Guo et al., “Mobile crowd sensing and computing: The review of an
emerging human-powered sensing paradigm,” ACM Comput. Surveys.,
vol. 48, no. 1, p. 7, 2015.

[3] M. I. Ali et al., “Real-time data analytics and event detection for IoT-
enabled communication systems,” J. Web Semantics, vol. 42, pp. 19–37,
Jan. 2017.

[4] S. Wang et al., “StoryLine: Unsupervised geo-event demultiplexing in
social spaces without location information,” in Proc. 2nd Int. Conf.
Internet Things Des. Implement., 2017, pp. 83–93.

[5] “Harvey Victims are Using Social Media When 911 Fails.” Nypost.
[Online]. Available: https://nypost.com/2017/08/28/harvey-victims-are-
using-social-media-when-911-fails/ (accessed Sep. 2018).

[6] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

9764 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 12, JUNE 15, 2022

[7] “Twitter Adding More Data Center Space (Again).”
DataCenter Knowledge. Sep. 2011. [Online]. Available: https://
www.datacenterknowledge.com/archives/2011/09/19/twitter-adding-mo
re-data-center-space-again (accessed Oct. 11, 2018).

[8] “Moscow Says Twitter Ready to Store Data of Users on Russian Servers
Despite Concerns Over Surveillance.” Telegraph. Nov. 2017. [Online].
Available: https://www.telegraph.co.uk/news/2017/11/08/moscow-says-
twitter-ready-store-data-users-russian-servers-despite/ (accessed Oct. 11,
2018).

[9] “Tropical Storm Harvey Takes out 911 Centers, Cell Towers,
and Cable Networks.” Ars Technica. [Online]. Available:
https://tinyurl.com/yu6ven52 (accessed Aug. 2018).

[10] A. Fahim, A. Neupane, E. Papalexakis, L. Kaplan, S. V. Krishnamurthy,
and T. Abdelzaher, “Edge-assisted detection and summarization of key
global events from distributed crowd-sensed data,” in Proc. IEEE Int.
Conf. Cloud Eng. (IC2E), Prague, Czech Republic, 2019, pp. 76–85.

[11] S. Hanafi and A. Freville, “An efficient tabu search approach for the
0–1 multidimensional knapsack problem,” Eur. J. Oper. Res., vol. 106,
nos. 2–3, pp. 659–675, 1998.

[12] Y. Yang and J. O. Pedersen, “A comparative study on feature selection
in text categorization,” in Proc. ICML, vol. 97, 1997, pp. 412–420.

[13] D. Mills et al., “Network time protocol,” IETF, RFC 958, 1985.
[14] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming,

vol. 116. New York, NY, USA: Springer, 2008.
[15] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu,

“Using of Jaccard coefficient for keywords similarity,” in Proc. Int.
MultiConf. Eng. Comput. Sci., vol. 1, 2013, pp. 1–5.

[16] W. Feng et al., “STREAMCUBE: Hierarchical spatio-temporal hashtag
clustering for event exploration over the Twitter stream,” in Proc. IEEE
31st Int. Conf. Data Eng., Seoul, South Korea, 2015, pp. 1561–1572.

[17] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher, “Min-
wise independent permutations,” J. Comput. Syst. Sci., vol. 60, no. 3,
pp. 630–659, 2000.

[18] T. Haveliwala, A. Gionis, and P. Indyk, “Scalable techniques
for clustering the Web (extended abstract),” in Proc. 3rd Int.
Workshop Web Databases (WebDB), 2000. [Online]. Available:
http://ilpubs.stanford.edu:8090/445/

[19] J. Leskovec, A. Rajaraman, and J. D. Ullman, Finding Similar Items,
2nd ed. Cambridge, U.K.: Cambridge Univ. Press, 2014, pp. 68–122.

[20] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity joins,”
in Proc. 32nd Int. Conf. Very Large Data Bases, 2006, pp. 918–929.

[21] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Berlin,
Germany: Springer, 2004.

[22] Y. Disser, M. Klimm, N. Megow, and S. Stiller, “Packing a knap-
sack of unknown capacity,” SIAM J. Discrete Math., vol. 31, no. 3,
pp. 1477–1497, 2017.

[23] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “CORE:
A real-time network emulator,” in Proc. IEEE Mil. Commun. Conf.
(MILCOM), San Diego, CA, USA, 2008, pp. 1–7.

[24] “Mininet.” Mininet.org. [Online]. Available: http://mininet.org/ (accessed
Jun. 2018).

[25] “Named Data Networking.” NDN-Testbed. [Online]. Available:
https://named-data.net/ndn-testbed/ (accessed Jun. 2018).

[26] “ONOS SDN.” ONOS Project. [Online]. Available:
https://onosproject.org/ (accessed Jun. 2018).

[27] “Moscow Says Twitter Ready to Store Data of Users on Russian
Servers Despite Concerns Over Surveillance.” Apollo. Nov. 2014.
[Online]. Available: http://apollo2.cs.illinois.edu/index.html (accessed
Oct. 11, 2018).

[28] A. Rajaraman and J. D. Ullman, Data Mining. Cambridge, U.K.:
Cambridge Univ. Press, 2011, pp. 1–17.

[29] M. Porter. “The Porter Stemming Algorithm.” Jan. 2016. [Online].
Available: https://tartarus.org/martin/PorterStemmer/ (accessed Oct. 11,
2018).

[30] “NLTK 3.3 Documentation.” NLTK Tokenizer. [Online]. Available:
https://www.nltk.org/api/nltk.tokenize.html (accessed Oct. 11, 2018).

[31] Z. Cheng, J. Caverlee, and K. Lee, “You are where you tweet: A content-
based approach to geo-locating Twitter users,” in Proc. 19th ACM Int.
Conf. Inf. Knowl. Manag., 2010, pp. 759–768.

[32] “Location Data Processing.” Here.com. [Online]. Available:
https://www.here.com/ (accessed Jun. 2018).

[33] Jan. 2021, “Disaster Tweets Dataset,” Kaggle. Accessed: Jan. 5, 2021.
[Online]. Available: https://www.kaggle.com/vstepanenko/disaster-
tweets

[34] D. Wang et al., “Using humans as sensors: An estimation-theoretic per-
spective,” in Proc. 13th Int. Symp. Inf. Process. Sens. Netw. (IPSN),
Berlin, Germany, 2014, pp. 35–46.

[35] D. Wang, L. Kaplan, H. Le, and T. Abdelzaher, “On truth discov-
ery in social sensing: A maximum likelihood estimation approach,” in
Proc. 11th Int. Conf. Inf. Process. Sens. Netw., Beijing, China, 2012,
pp. 233–244.

[36] J. Allan, R. Papka, and V. Lavrenko, “On-line new event detection and
tracking,” ACM SIGIR Forum, vol. 51, no. 2, pp. 185–193, 2017.

[37] D. A. Shamma, L. Kennedy, and E. F. Churchill, “Peaks and persistence:
Modeling the shape of microblog conversations,” in Proc. ACM Conf.
Comput. Supported Cooperative Work, 2011, pp. 355–358.

[38] J. Benhardus and J. Kalita, “Streaming trend detection in Twitter,” Int.
J. Web Based Communities, vol. 9, no. 1, pp. 122–139, 2013.

[39] C. Ordonez, “Clustering binary data streams with K-means,” in Proc.
8th ACM SIGMOD Workshop Res. Issues Data Min. Knowl. Discov.,
2003, pp. 12–19.

[40] S. Zhong, “Efficient streaming text clustering,” Neural Netw., vol. 18,
nos. 5–6, pp. 790–798, 2005.

[41] C. C. Aggarwal and P. S. Yu, “A framework for clustering massive text
and categorical data streams,” in Proc. SIAM Int. Conf. Data Min., 2006,
pp. 479–483.

[42] F. Chierichetti, J. M. Kleinberg, R. Kumar, M. Mahdian, and S. Pandey,
“Event detection via communication pattern analysis,” in Proc. ICWSM,
2014, pp. 1–10.

[43] C. C. Aggarwal and K. Subbian, “Event detection in social streams,” in
Proc. SIAM Int. Conf. Data Min., 2012, pp. 624–635.

[44] P. Giridhar, S. Wang, T. F. Abdelzaher, J. George, L. Kaplan, and
R. Ganti, “Joint localization of events and sources in social networks,”
in Proc. IEEE Int. Conf. Distrib. Comput. Sens. Syst. (DCOSS), 2015,
pp. 179–188.

[45] I. Tien, A. Musaev, D. Benas, A. Ghadi, S. Goodman, and C. Pu,
“Detection of damage and failure events of critical public infrastructure
using social sensor big data,” in Proc. IoTBD, 2016, pp. 435–440.

[46] K. Watanabe, M. Ochi, M. Okabe, and R. Onai, “Jasmine: A real-time
local-event detection system based on geolocation information propa-
gated to microblogs,” in Proc. 20th ACM Int. Conf. Inf. Knowl. Manag.,
2011, pp. 2541–2544.

[47] A. Boettcher and D. Lee, “EventRadar: A real-time local event detection
scheme using Twitter stream,” in Proc. IEEE Int. Conf. Green Comput.
Commun., Besancon, France, 2012, pp. 358–367.

[48] C. Li, A. Sun, and A. Datta, “Twevent: Segment-based event detection
from tweets,” in Proc. 21st ACM Int. Conf. Inf. Knowl. Manag., 2012,
pp. 155–164.

[49] M. Walther and M. Kaisser, “Geo-spatial event detection in the Twitter
stream,” in Proc. Eur. Conf. Inf. Retrieval, 2013, pp. 356–367.

[50] J. H. Lau, N. Collier, and T. Baldwin, “On-line trend analysis with
topic models: #Twitter trends detection topic model online,” in Proc.
COLING, 2012, pp. 1519–1534.

[51] Y. Hu, A. John, D. D. Seligmann, and F. Wang, “What were the tweets
about? Topical associations between public events and Twitter feeds,”
in Proc. ICWSM, 2012, pp. 1–8.

[52] X. Zhou and L. Chen, “Event detection over Twitter social media
streams,” VLDB J. Int. J. Very Large Data Bases, vol. 23, no. 3,
pp. 381–400, 2014.

[53] Y. Li et al., “A survey on truth discovery,” ACM SIGKDD Explorations
Newslett., vol. 17, no. 2, pp. 1–16, 2016.

[54] H. Shao et al., “Truth discovery with multi-modal data in social sensing,”
IEEE Trans. Comput., vol. 70, no. 9, pp. 1325–1337, Sep. 2021.

[55] K. Khalil, A. Aqil, S. V. Krishnamurthy, T. Abdelzaher, and L. Kaplan,
“NEST: Efficient transport of data summaries over named data
networks,” in Proc. IFIP Netw. Conf. (IFIP Networking) Workshops,
Zurich, Switzerland, 2018, pp. 1–9.

[56] Y. Ma, Y. Guo, X. Tian, and M. Ghanem, “Distributed clustering-based
aggregation algorithm for spatial correlated sensor networks,” IEEE
Sensors J., vol. 11, no. 3, pp. 641–648, Mar. 2011.

[57] H. Gupta, V. Navda, S. Das, and V. Chowdhary, “Efficient gathering
of correlated data in sensor networks,” ACM Trans. Sens. Netw., vol. 4,
no. 1, p. 4, 2008.

[58] C. Xiang, P. Yang, C. Tian, H. Cai, and Y. Liu, “Calibrate without cal-
ibrating: An iterative approach in participatory sensing network,” IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 2, pp. 351–361, Feb. 2015.

[59] S. Moltchanov, I. Levy, Y. Etzion, U. Lerner, D. M. Broday, and
B. Fishbain, “On the feasibility of measuring urban air pollution by
wireless distributed sensor networks,” Sci. Total Environ., vol. 502,
pp. 537–547, Jan. 2015.

[60] R. McCreadie, C. Macdonald, I. Ounis, M. Osborne, and
S. Petrovic, “Scalable distributed event detection for Twitter,” in
Proc. IEEE Int. Conf. Big Data, Silicon Valley, CA, USA, 2013,
pp. 543–549.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

FAHIM et al.: BigEye: DETECTION AND SUMMARIZATION OF KEY GLOBAL EVENTS FROM DISTRIBUTED CROWDSENSED DATA 9765

Abdulrahman Fahim received the B.Sc. degree in
electrical engineering from Nile University, Giza,
Egypt, in 2014, and the M.Sc. degree in wire-
less communications from the Wireless Intelligent
Networks Center, Nile University, in 2016. He is
currently pursuing the Ph.D. degree in computer sci-
ence with the University of California at Riverside,
Riverside, CA, USA.

In 2014, he joined the Wireless Intelligent
Networks Center, Nile University as a Research
Assistant. His research interests are networks,

network security, machine learning applications, and RFID networks.

Ajaya Neupane received the Ph.D. degree in com-
puter science from the University of Alabama at
Birmingham, Birmingham, AL, USA, in 2017.

He is currently a Senior Staff Researcher with
Palo Alto Networks, Santa Clara, CA, USA. In this
role, he is building robust machine learning models
to detect malicious activities and prevent network
attacks. He was a Postdoctoral Researcher with the
University of California at Riverside, Riverside, CA,
USA, before joining Palo Alto Networks. He has
published more than 20 peer-reviewed papers, with

a “Distinguished Paper Award” at NDSS’14. Besides machine learning and
cybersecurity, he is interested in sports and hiking.

Dr. Neupane received the Outstanding Doctoral Student Award for his Ph.D.
degree.

Evangelos E. Papalexakis (Member, IEEE)
received the Diploma and M.Sc. degrees in
electronic and computer engineering from the
Technical University of Crete, Chania, Greece, in
February 2010 and July 2011, respectively, and the
Ph.D. degree from the School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, USA,
in August 2016.

He is an Associate Professor with the CSE
Department, University of California at Riverside,
Riverside, CA, USA. Broadly, his research interests

span the fields of data science, machine learning, artificial intelligence, and
signal processing. His research involves designing interpretable models and
scalable algorithms for extracting knowledge from large multiaspect data
sets, with specific emphasis on tensor factorization models, and applying
those algorithms to a variety of real-world problems, including detection
of misinformation on the Web, explainable AI, and gravitational-wave
detection.

Dr. Papalexakis’s work has appeared in top-tier conferences and journals
and has attracted a number of distinctions, including the 2017 SIGKDD
Dissertation Award (runner-up), the Number of Paper Awards, the National
Science Foundation CAREER Award, and the 2021 IEEE DSAA Next
Generation Data Scientist Award.

Lance Kaplan (Fellow, IEEE) received the B.S.
degree (Distinction) in electrical engineering from
Duke University, Durham, NC, USA, in 1989, and
the M.S. and Ph.D. degrees in electrical engineer-
ing from the University of Southern California,
Los Angeles, CA, USA, in 1991 and 1994,
respectively.

From 1987 to 1990, he worked as a Technical
Assistant of the Georgia Tech Research Institute,
Atlanta, GA, USA. He held a National Science
Foundation Graduate Fellowship and the USC

Dean’s Merit Fellowship from 1990 to 1993 and worked as a Research
Assistant with the Signal and Image Processing Institute, University of
Southern California, from 1993 to 1994. Then, he worked as a Staff with
the Reconnaissance Systems Department, Hughes Aircraft Company, Los
Angeles, from 1994 to 1996. From 1996 to 2004, he was a Faculty Member
with the Department of Engineering and a Senior Investigator with the Center
of Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta.
He is currently a Team Leader of the Context Aware Processing Branch,
DEVCOM Army Research Laboratory, Adelphi, MD, USA. His current
research interests include information/data fusion, reasoning under uncertainty,
network science, resource management and signal and image processing.

Dr. Kaplan was a three time recipient of the Clark Atlanta University
Electrical Engineering Instructional Excellence Award from 1999 to 2001.
He has been serving for the VP Publications of the IEEE Aerospace and
Electronic Systems (AES) Society since 2021 and as for VP Conferences
of the International Society of Information Fusion (ISIF) since 2014.
Previously, he served as the Editor-in-Chief for the IEEE TRANSACTIONS

ON AEROSPACE AND ELECTRONIC SYSTEMS from 2012 to 2017, on the
Board of Governors for the IEEE AES Society from 2008 to 2013 and from
2018 to 2020, and on the Board of Directors of ISIF from 2012 to 2014. He
is a Fellow of MSS and ARL.

Srikanth V. Krishnamurthy (Fellow, IEEE)
received the Ph.D. degree in electrical and computer
engineering from the University of California at San
Diego, San Diego, CA, USA, in 1997.

From 1998 to 2000, he was a Research Staff
Scientist with the Information Sciences Laboratory,
HRL Laboratories, LLC, Malibu, CA, USA. He is
currently a Professor of Computer Science with the
University of California at Riverside, Riverside, CA,
USA. His research interests are in network, com-
puter system and ML security, and computer and

wireless networks.
Prof. Krishnamurthy was a recipient of the NSF CAREER Award from

ANI in 2003. He was the Editor-in Chief of ACM MC2R from 2007 to 2009
and is currently the Associate Editor-in-Chief of the IEEE TRANSACTIONS

ON MOBILE COMPUTING.

Tarek Abdelzaher (Fellow, IEEE) received the
Ph.D. degree from the University of Michigan at
Ann Arbor, Ann Arbor, MI, USA, in 1999.

He is currently a Professor and a Willett Faculty
Scholar with the Department of Computer Science,
University of Illinois at Urbana–Champaign,
Champaign, IL, USA. He has authored/coauthored
more than 300 refereed publications in real-time
computing, distributed systems, sensor networks,
and control. His research interests lie broadly in
understanding and influencing performance and

temporal properties of networked embedded, social and software systems in
the face of increasing complexity, distribution, and degree of interaction with
an external physical environment.

Prof. Abdelzaher served as an Editor-in-Chief for the JOURNAL OF REAL-
TIME SYSTEMS and an Associate Editor of multiple journals, including the
IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, ACM Transaction on Sensor
Networks, ACM Transactions on Internet of Things, ACM Transactions on
Internet Technology, and Ad Hoc Networks. He is a Fellow of ACM.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on July 05,2022 at 22:55:06 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

