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Abstract—The emergence of Internet of Things (IoT) brings
about new security challenges at the intersection of cyber and
physical spaces. One prime example is the vulnerability of Face
Recognition (FR) based access control in IoT systems. While
previous research has shown that Deep Neural Network (DNN)-
based FR systems (FRS) are potentially susceptible to impercep-
tible impersonation attacks, the potency of such attacks in a wide
set of scenarios has not been throughly investigated. In this paper,
we present the first systematic, wide-ranging measurement study
of the exploitability of DNN-based FR systems using a large scale
dataset. We find that arbitrary impersonation attacks, wherein
an arbitrary attacker impersonates an arbitrary target, are hard
if imperceptibility is an auxiliary goal. Specifically, we show that
factors such as skin color, gender, and age, impact the ability
to carry out an attack on a specific target victim, to different
extents. We also study the feasibility of constructing universal
attacks that are robust to different poses or views of the attacker’s
face. Our results show that finding a universal perturbation is
a much harder problem from the attacker’s perspective. Finally,
we find that the perturbed images do not generalize well across
different DNN models. This suggests security countermeasures
that can dramatically reduce the exploitability of DNN-based
FR systems.

Key Words: face recognition, imperceptible adversarial pertur-
bation, Internet of Things

I. INTRODUCTION

Face-recognition-based biometric authentication has be-
come very popular in Internet of Things (IoT) [25], [32],
[45]. In fact, according to the International Biometric Group
(IBG), face is the second most widely deployed biometric
in terms of market share, right after fingerprints [26]. The
most noteworthy applications using face recognition include
opening doors [15], activating personalized services by auto-
mated identification of users, e.g., smart TV program selector
or pervasive software such as Microsoft’s Kinect [25], [49].

Face Recognition Systems (FRSs) are typically trained on
known faces, and use the trained model to classify test cases
(i.e., when a human presents herself to a camera). The deep
learning paradigm has seen significant proliferation in FRSs
due to its ability to provide high recognition accuracy [30],
[33], [41].

Due to the ubiquity of FRSs in security-critical applications,
their security and reliability have drawn attention and various
attacks have been showcased. Early presentation attacks [1],
[10], [44] impersonate a victim’s identity by presenting a fake

face to FRSs, which could be in the form of photographs,
replayed videos, 3D masks etc., as shown in Fig. 1(a). It has
been recently shown that Deep Neural Networks (DNNs) are
vulnerable to adversarial examples [13], [19], [40]. Adversarial
examples are generated in such a manner that humans cannot
notice adversarially induced perturbations and correctly clas-
sify the images, but the perturbations cause FRSs to misclas-
sify them. Many attack methods [6], [7], [14], [38] have been
proposed to generate adversarial examples for impersonation
attacks, among which, intensity-based adversarial examples
(Fig. 1(c)) can be quickly generated and are effective against
a variety of FRSs [13], [19]. Intensity-based impersonation
attacks add imperceptible perturbation to the original face
images such that the FRSs misclassify the perturbed face
images (adversarial examples) to be that of the victim.

While we defer a detailed discussion of related work to
§ II, we find that none of previous efforts perform an in
depth study on the scope and effectiveness of such intensity-
based impersonation attacks (referred to as impersonation
attacks from hereon). In other words, there seems to be
no answer yet to the question “Can an arbitrary attacker
impersonate an arbitrary victim easily?” The key term here
is easily. Specifically, if an attacker were able to add arbitrary
amount of perturbations to her own image, she certainly
could impersonate any victim. However, this would cause the
attacker to be stand out, i.e., her actions could be perceived by
observers as strange or even suspicious. Thus, the perturbation
has to be imperceptible—the perturbation used must be small
and inconspicuous. The question that is of interest therefore
becomes ”Can the perturbations be kept small in general
settings?”.

Towards answering this question, we undertake an in depth,
systematic measurement study of the exploitability of DNN-
based FRSs, using a very large scale dataset of about 2.6
million images. Our measurement study demonstrates that
several factors influence the imperceptibility of impersonation
attacks. We also find that it is more difficult to fool sys-
tems if the attacker has to account for the variability in her
pose/orientation and other environmental conditions such as
lighting, or use the perturbations generated from one DNN
model to attack a different model. Based on the measurements,
we suggest security countermeasures that could significantly



Fig. 1: Various attacks on Face Recognition Systems. We focus on intensity-based AE attacks in our analysis since they are the kind of
attacks explored the most in the literature. Intensity-based AE attacks are fast to carry out and are proven to have high attack success rates.

enhance the security of FR based IoT access control. In brief,
our contributions in this paper are :

• We perform an extensive measurement study which shows
that the efficacy/imperceptibility of impersonation attacks
depends on several factors such as gender, skin color and
age. We quantify the extent to which each of these factors
affects the attack.
• We perform an in-depth measurement study to understand

the feasibility of constructing universal perturbations that
make the attack robust to different poses or facial orienta-
tions of the attacker. We find that this is much harder in
practice from the attacker’s perspective.
• We show that the use of multiple DNNs for performing FR

(check faces across DNN models) can render imperceptible
impersonation attacks almost infeasible.

II. RELATED WORK

A. DNNs based FRSs

A lot of efforts have targeted the design of highly accurate
FRSs. Traditional methods applied hand-crafted features like
edges and texture descriptors [8], [20], [21], [29], which
have been used for a long time. Due to the convenience of
obtaining large training data and the availability of inexpensive
computing power and memory, the trend towards replacing the
traditional methods by deep learning methods is increasing.
Deep Convolutional Neural Networks (DCNNs) can automat-
ically extract high level representative features from large
datasets and have been shown to be invariant to illumination
variations, brightness variations, age variations and/or facial
orientation [2]. Today the state-of-the-art FR algorithms are
almost all based on end-to-end DCNNs [24], [30], [33], [39],
[41]. We use VGG-Face [30] in our analysis. VGG-Face is

a 39-layer DCNN, and is one of the most well-known and
highly accurate face recognition systems.

B. Presentation Attacks

It is generally believed that DNN-based FRSs have ex-
tremely high recognition accuracy, even better than humans.
However, this is based on the implicit assumption that at-
tackers do not actively attempt to fool the system. Recently
however, there have been extensive efforts reported in the
literature on attacks targeting FRSs [9]–[12], [44].

Many early approaches used by attackers to spoof a FRS, are
based on using fake target faces, which is termed presentation
attack. In general, attackers hold a non-real face of a target
person in front of the camera to evade the FRS. The attackers
could use photographs [1], [23], replayed videos [4], [47],
dummy faces (such as 3D masks) [10], [17], or 3D virtual
reality facial models displayed on a screen [44] as shown
in Fig. 1(a). While these methods are shown to successfully
lead to attacker misclassification as the target identities, such
attacks, they however require the attacker to overtly indulge
in action that may seem strange or even suspicious to nearby
observers.

C. Adversarial Examples for FRSs

More recently, general DNN-based classifiers [22], [40],
[48] have been shown to be vulnerable to adversarial example
attacks. Adversarial Examples (AEs) refer to perturbed inputs,
which are correctly classified by humans, but misclassified by
machine learning systems. In [34], [35], the authors demon-
strate the potential of using adversarial examples to conduct
real face attacks on FRSs, i.e., the attackers use their own
faces to mount attacks. By wearing special glasses (physical
perturbations), the attacker’s face can be misclassified by the
DDN as shown in Fig. 1(b).



(a) original image (b) impersonation attack (c) impersonation attack (d) impersonation attack (e) impersonation attack

Fig. 2: Impersonation attacks using the Fast Landmark Manipulation (FLM) method proposed in [6]. (a) shows the original image; (b)-(e)
show four impersonation attacks, within each the left image is the adversarial example and the target identity is shown in the right image.

In addition to physical AE attacks , various digital AE attack
approaches have been proposed, which can be categorized into
three kinds as follows.
• Intensity-based AE attacks. Imperceptible Perturbations

are added to the images to change the intensity of each
pixel as shown in Fig. 1(c). [13] hypothesizes that DNNs
are vulnerable to AE attacks because of their linear nature
and thus proposed the fast gradient sign method (FGSM)
for efficiently generating perturbations. [19] extends the
FGSM method by applying it multiple times with a
small step size. [28] uses a norm minimization based
formulation, termed DeepFool, to search for adversarial
perturbations by casting it as an optimization problem.
[3] introduces new gradient based attack algorithms that
are more effective in terms of the adversarial success
rates. We use [19] in our analysis since it can generate
adversarial perturbations very fast, which is the key
requirement for large-scale analysis (needed to generate
these perturbations), and at the same time, it achieves very
high attack success rates compared to other fast methods.

• Spatial transformation based AE attacks. As opposed to
manipulating the pixel values, perturbations generated
through spatial transformation could result in large Lp

distance measures, but are perceptually realistic as shown
in Fig. 1(d). [43] estimates the displacement field for all
pixel locations in the input images. [6] first detects key
landmarks of the faces and the displacement field is only
defined for the key landmarks.

• Generation-based AE attacks. [38] utilize generative
models to generate fake face images as shown in Fig. 1(e),
which are visually similar to the original face images,
thus hard to cause noticability; at the same time, these
have similar feature representations as the target faces,
and are thus recognized as the target individuals.

There are two different kinds of attack goals viz.:
• Dodging, where the attacker seeks to have one face

misidentified as any other different face.
• Impersonation, where the attacker seeks to have one face

classified as a specific target victim’s face, which is harder
than the dodging attacks.

While dodging attacks are of interest in evading surveillance,
impersonation attacks, which are much more targeted, are of
more relevance to IoT security. Attackers can leverage this
method to gain unauthorized entry, for instance, by bypassing
a smart locking mechanism. Our work thus focuses on imper-
sonation attacks. The spatial transformation based attacks, that

is, Fast Landmark Manipulation Method (FLM) and Grouped
Fast Landmark Manipulation Methods (GFLM), are proposed
for realizing dodging attacks. We extend these two methods to
the impersonation attack. We observe that FLM gives largely
deformed facial images as shown in Fig. 2, which is not
imperceptible at all. GFLM, which aims to generate more
natural adversarial examples, fails in all the four impersonation
attacks. Therefore, it is evident that these types of attacks are
not appropriate for impersonation and thus, we do not perform
additional measurements on such spatial transformation based
attack methods.

We focus on intensity-based AE attacks in our analysis since
they are the kind of attacks explored the most in the literature.
Intensity-based AE attacks are fast to carry out and have been
proven to have extremely high attack success rates. Unlike
prior works which simply showcase the possibility of such
attacks, we do extensive measurements to provide a detailed
view of the potency of such attacks in various scenarios and
unearth various factors that affect this potency.

III. IMPERCEPTIBLE IMPERSONATION ATTACK

To ensure that an impersonation attack is imperceptible
(i.e., does not raise suspicion for human observers), the
attackers should modify the faces such that visibility of the
modifications is minimal. In this section, we describe the
attack model and how the magnitude of the perturbation are
meatured. The lower the magnitude of the perturbation, the
higher the imperceptibility [34], [40].

A. Attack Model

We assume that the attacker mounts the impersonation
attack after the system has been trained. This implies that the
adversary cannot ”poison” the FRS by altering training data
or by injecting mislabeled data. Rather, the adversary can only
alter the composition of input images based on the knowledge
of the underlying DNN model. Our attack model is consistent
with IoT access control attack scenarios where the attacker
cannot tamper with the manufacturing of the commercial smart
devices. In this paper, we mainly focus on a white-box model
in which the attacker knows the DNN architecture and the
parameters of the FRSs being attacked. This is supported by
the fact that it is possible to train local models that can infer
the functionality of the target FRSs [37] and carry transfer
attacks to the target FRSs. However, in Section IV-E, we
also examine a black-box model by evaluating how well the
perturbed images generated for one model can be successful
in the impersonation attack on another model.



(a) σ = 0 (b) σ = 0.8277 (c) σ = 1.0423 (d) σ = 1.5407 (e) σ = 2.0735 (f) σ = 2.7160 (g) σ = 5.00

Fig. 3: Perturbed images for different levels of perturbation σ. In (g) with large value of σ = 2.7160, patterns are visible on the forehead,
left cheek and nose. (The patterns are more visible in color version.)

(a) (b) (c)

Fig. 4: Perturbed images with restrictions on the location of pixels
to be perturbed. In (a), all pixels are to be perturbed, σ = 2.7160. In
(b), only left half of the image is allowed to be perturbed to achieve
the same goal as (a). In (c), only top left quarter is allowed to be
perturbed to achieve the same goal as (a).

B. Perturbation Vector

Suppose the finite set of people’s identities (i.e., labels) to
be detected by the FRS is C, with |C| = N . Further, suppose
that each input image is given as an RGB vector x and the
ground truth label of x is given by cx ∈ {1, 2, · · · , N}.

A DNN-based FRS implements a high-dimensional non-
linear function which maps an input x to an output probability
vector f(x) of length N , where each element in the output vec-
tor represents the probability that x matches the corresponding
label. In addition, the label that corresponds to the largest entry
in f(x) is output as the recognition result. Consequently, a
correct recognition result is realized when cxth entry of f(x)
is the maximum entry. Thus, the ideal output f(·) is a one-hot
vector, i.e., only the cxth entry has value 1 and all the other
entries are zero.

To impersonate a target ct, the attacker with an input image
vector xa thus finds a perturbation vector r such that ctth entry
of f(xa + r) is the maximum one. To measure the error in the
output of the FRS with the adversarial input xa + r, we adopt
the softmaxloss score [30]. For an input vector xa and a given
label ct, the softmaxloss function is defined as:

softmaxloss(f(xa), ct) = − log(
e<hct ,f(xa)>∑N
c=1 e

<hc,f(xa)>
), (1)

where < ·, · > denotes inner product between two vectors
and hc is the one-hot vector corresponding to label c. Note
that the value of softmaxloss score is low when the DNN
outputs the label as ct and high otherwise. The attacker’s
goal is to achieve a softmaxloss(f(xa + r), ct) that is low
enough such that cxth entry of f(x) is the maximum entry,
while minimizing ||r||. In other words, the attacker solves the
following optimization problem.

r∗ = arg min
r

softmaxloss(f(xa + r), ct) + α||r||. (2)

In (2), α is weight factor used to balance impersonation
error and imperceptibility. As discussed in § II, BIM algo-
rithm [19] as shown in Algorithm 1 is used to solve this
optimization problem.

Algorithm 1 Computing perturbation vector.

1: Input: image xa, target identity ct
2: Output: impersonation perturbation r
3: Initialize r← 0
4: while xa + r is not recognized as ct do
5: ∆r = argmin softmaxloss(f(xa + r + ∆r), ct)
6: Quantize the additional perturbation: ∆r′ ← ∆r
7: Update the perturbation: r← r + ∆r′

8: end while

C. Measuring Imperceptibility

Using (2), the attacker can always find perturbation vectors
that allow desired misclassification of input vectors. However,
the produced attack image, i.e., xa + r∗ is not guaranteed
to be “imperceptible” to humans. In other words, the per-
turbation vector could be too large. This would cause the
produced perturbed image to be quite distinguishable from
the original attacker image. To quantify the effectiveness of
the attack in various settings, we measure per pixel per color
channel magnitude of perturbation using the root mean square
error (RMSE) between the original and perturbed images. In
particular, suppose that the images are of width W , height
H and number of color channels D. Let the total number of
dimensions in an image vector be M = W ×H×D. Given an
input and perturbed image vectors x,x′ ∈ {0, 1, · · · , 255}M ,
the RMSE (we also use the term “noise level”) is given by
the following.

σ(x,x′) =

√√√√ 1

M

M∑
i=1

(x(i)− x′(i))2, (3)

where x(i) is the ith component of x, and σ is in pixel-value
units, where σ ∈ [0, 255].

To get a sense of what values of σ renders a perturbed
attack image easy to identify, we show images of an attacker
with varying levels of perturbation in Fig. 3. We note that for



σ > 2, it is easy to identify the noisy pixels in the perturbed
images.

D. Physical Imperceptibility

If the attackers want to realize this perturbation physically
(via using various paraphernalia such as dummy faces, or 3D-
printed glasses), the amount of perturbation will need to be
limited in terms of either (a) the maximum number of pixels
to which the noise is added, or (b) the locations of those
pixels [34], or (c) both. In Fig. 4, we study the effects of
such limitations. We fix the attacker image and a target label,
and then find the adversarial images when the entire image can
be perturbed, as well as when only the left half and top left
quarters of the image pixels are to be perturbed. As shown
in the figure, the noise level increases significantly and the
pattern is perceptible. Thus, one can expect the attack to be
much harder in these cases. In the rest of the paper, we only
consider scenarios in which the full attacker image is subject to
perturbation. This reflects a worst case scenario analysis from
the defender’s perspective. Even in this scenario, we show that
it can be hard for an attacker to launch the attack in all possible
scenarios.

IV. EXPERIMENTS

In this section, we detail the results of our measurement
study towards getting an in depth understanding of the practi-
cality of imperceptible impersonation attacks on DNN-based
FRS and the factors that influence such attacks.

A. Experimental Setup

The FRS used in our experiments is VGG-Face [30], one
of the most well-known and highly accurate face recognition
systems as discussed in § II. The analysis is based on the
VGG-Face dataset [30], which contains N = 2622 identities of
celebrities, and approximately 1000 facial images per identity;
this translates to a total of about 2.6 million images.

B. Case studies

To begin with, we use the face image of Micheal Crichton
as the attacking image,(i.e., the input) and study whether some
targeted individuals are harder than others to impersonate with
the attacking image. Fig. 5 shows the minimum perturbations
needed for the attacking image to impersonate three different
individuals. We observe that it is rather easy for Micheal
Crichton to impersonate A.J. Buckley. However, when it
comes to impersonating Boris Kodjoe, the perturbation gets
larger and is noticeable by human.

For a more general case study, Fig. 6 shows the noise level σ
needed to achieve a successful attack by each attacker depicted
on the column, to impersonate each target depicted on the
row. It is clear that, different attackers need different values of
σ to successfully impersonate different targets. Interestingly,
the patterns of large perturbations (marked in red) seen in
Fig. 6 suggest that it is easier for the considered attackers
(e.g., who are all male with pale skin color) to impersonate
targets who are also male with pale skin color, as compared

to impersonating other targets. In addition, the noise levels
needed to impersonate target 1 are all large, which is possibly
due to a difference in gender. Furthermore, we see that
impersonating targets 6-10 seems to require larger noise levels.
This can be attributed to differences in skin color, age, or
a combination of both. This motivates our study to further
examine the impact of these factors in Section § IV-C.

Having performed the above preliminary studies, we next
look at the statistical distribution of the ability of an attacker
to impersonate different targets, subject to a constraint on
the noise level σ ≤ σ̄. We define the attack success rate
η(σ̄) as the percentage of target labels which an attacker can
impersonate for a given σ̄. In Fig. 7, we show the success
rates η for three different attackers impersonating all other
remaining labels in the VGG-Face dataset. One can see that
Abbie Cornish (female, white, young) can more successfully
impersonate others, on average, compared to A.R. Rahman
(male, Indian, young) and Aaron Yoo (male, Asian, young).
For example, with the threshold σ̄ = 2, Abbie Cornish can
successfully impersonate 58% of all the labels while A.R.
Rahman achieves a success rate of only 6.5% and Aaron Yoo
achieves a success rate of 17.7%. This could be attributed
to the fact that the VGG-Face dataset contains more white
people than people of other races. We observe that the gender
distribution is almost balanced in the dataset.

To get aggregate results, we randomly sample the VGG-
Face dataset to get a 100-identity subset S. We fix each identity
in S as a specific attacker, and then find the perturbation vector
with each of the remaining labels in S as targets, and we
compute η(σ̄) for each attacker for a range of values of σ̄. We
then repeat this experiment 10 times and compute the average
attack success rate across attackers in all the samples. The
results show that, on average, it is not easy for an attacker to
impersonate any target identity. In particular, with σ̄ = 1.5,
the success rate is only 10.4%. We take a deeper look into
how the success rate breaks down within different groups of
people in the following section.

C. Factors that influence the attack

Next, we take a closer look at the extent to which various
factors, discussed in § IV-B, influence an attacker’s ability to
carry out an imperceptible impersonation attack. Specifically,
we consider different groups of identities based on gender,
skin color, and age attributes. We manually label the dataset
to produce four groups: (a) white young male (100 identities),
(b) white young female (100 identities), (c) black young male
(69 identities), and (d) white old male (100 identities). We
do not consider other attribute combinations, such as black
young female, or white old female, because the majority of the
images in the VGG-Face dataset are for white skin color, and
young people. For group (c), we only have 69 identities due to
limitedness of data points matching such attributes. To reduce
errors in labeling, each of the authors of the paper manually
labeled the dataset independently and we considered only the
images with unanimously common labels in our group dataset.



(a) Impersonating A.J. Buckley, σ = 0.88 (b) Impersonating Adam Buxton, σ = 1.65 (c) Impersonating Boris Kodjoe, σ = 2.26

Fig. 5: Different noise levels needed for Micheal Crichton to impersonate three different identities. It is rather easy for Micheal Crichton to
impersonate A.J. Buckley; and hard to impersonate Boris Kodjoe

Fig. 6: Noise level σ required for an attacker (a-d) to impersonate a target (1-10). It is easier for the considered attackers (who are all male
with pale skin color) to impersonate targets who are also male with pale skin color, as compared to impersonating other targets. The noise
levels needed to impersonate target 1 are all large. Impersonating targets 6-10 seems to require larger noise levels.

Fig. 7: Impersonation attack performance. Abbie Cornish (fe-
male, white, young) can more successfully impersonate others,
on average, compared to A.R. Rahman (male, Indian, young)
and Aaron Yoo (male, Asian, young).

Fig. 8: Cross group impersonation attack performance. It is
easier for an attacker to impersonate a target identity having the
same attributes (gender, skin color, age). Impersonation across
different skin color is the most hardest.

In addition, when labeling, we discard an identity whenever
its attributes are hard to label manually.

To investigate the impact of the aforementioned attributes
on the imperceptible impersonation attack, we conduct four
experiments based on the four groups:

• Take people in group (a) as attackers trying to impersonate
the other people in group (a); this case reflects same group

impersonation measurements;
• take people in group (a) as attackers trying to impersonate

people in group (b); this case represents cross gender
impersonation measurements;

• take people in group (a) as attackers trying to impersonate
people in group (c); this case reflects cross skin color



impersonation measurements;
• take people in group (a) as attackers trying to impersonate

people in group (d); this case counts for cross age imper-
sonation measurements.

In Fig. 8, we plot the average attack success rate versus
different perturbation constraint σ̄, for each of the four afore-
mentioned experiments. We note that it is easier for an attacker
to impersonate a target identity having the same attributes
(gender, skin color, age). For the same group experiment, with
the threshold σ̃ = 1.5, the success rate is 25.65%. Recall that
the aggregate success rate in § IV-B is only 10.4%. Moreover,
as shown in the figure, it is relatively easier for an attacker
to impersonate a target with a different gender or age than to
impersonate a target with different skin color. For example,
with the threshold σ̃ = 2, the success rate for cross skin color
is only 31.85% while the success rate for cross age and gender
are around 40%. These results seem consistent with (and
can be explained by) observations that have been previously
reported in computer vision literature [5], [16], [36], [42].
Specifically, these papers show that in several scenarios, shape
and texture cues suffer from degradation (affecting age or
gender) and the color feature becomes dominant [46]. Thus,
we conclude that the VGG-Face model relies less on features
such as shape and texture as compared to color.

D. Universal Perturbation Results

In a realistic setting, an attacker may want one universal
perturbation to impersonate the target identity for all the face
images captured in different settings such as pose, camera
angle, and lighting conditions. In order to launch the imper-
sonation attack in the presence of these variations, an attacker
will need to find a single perturbation vector r̃ that allows
misclassification of a set of his/her own images Xa of size
K, to the target victim label, thus accounting for as many
conditions as possible. In other words, the attacker needs to
construct a vector r̃ such that f(xa + r̃) = ct, ∀xa ∈ Xa for
some given target label ct.

The approach for calculating r̃ is similar to the one de-
scribed in § III-B. The only difference is that now the objective
function changes to the following.

r̃ = arg min
r

∑
xa∈Xa

softmaxloss(f(xa + r), ct) + α||r||.

(4)
The condition to stop the iterations now requires that all K

images to be misclassified as the target label, upon adding on
the same perturbation vector.

In Fig. 9, we show an example of an attacker with three
images, Xa = {x1,x2,x3}. In Fig. 10, we show the output
perturbed image x1 + r̃ when r̃ is computed using only
image {x1}, images {x1,x2}, and all the images {x1,x2,x3},
respectively. It is evident that the attacker image is more
perceptible as more attack images are considered in computing
the universal perturbation vector r̃.

Fig. 9: A set of face images of Micheal Crichton. X = {x1,x2,x3}

Fig. 10: Universal perturbations visualization. Three perturbations
are universal to different number of attacking images. Left: universal
for {x1}, σ = 1.7509; Middle: universal for {x1,x2}, σ = 3.6027;
Right: universal for {x1,x2,x3}, σ = 7.8877. The perturbations
are more perceptible as more attacking images are considered in
computing the universal perturbation vector.

In Fig.11, we plot the average success rate for an at-
tacker employing universal perturbation. Here, we randomly
sample 100 identities from the VGG-Face dataset and let
them impersonate each other. We conduct this experiment
10 times and average the results. The results show that the
success rate is strictly decreasing when a universal perturbation
vector is required to perturb multiple attacker images. More
importantly, the attackers’ ability to impersonate a given target
is significantly reduced with even slight increases in K. For
example, the success rate with threshold σ̃ = 2 is 39.9% for
K = 1 (the case considered in § IV-B and § IV-C). However,
when we increase K to 2, the success rate drops dramatically
to 2.28% and the success rate when K = 3 is only 0.6%,
which suggests that the impersonations can almost fail all the
time, if the attacker seeks to be imperceptible.

E. Cross Model Measurements

Recently, it has been shown that adversary examples that
are successfully misclassified by one trained DNN model can
also cause misclassifications in other (different) DNN models
that have different hyperparameters [27], [40]. However, it is
unclear whether different models could misclassify the per-
turbed images to the same target classes, which is the key char-
acteristic for determining if white-box impersonation attacks
can easily extend to black-box attacks. To check whether our
perturbed images targeting impersonation generalize across
different DNN models, we fine-tune the AlexNet DNN [18]
on the VGG-Face dataset, and test the impersonation attack
success ratio on the AlexNet model using the perturbed images
generated using VGG-Face model.

We test 10, 000 perturbed images generated by VGG-Face,
and find that none are classified as the victims by the AlexNet,
but most of them are misclassified by the AlexNet. This signif-
icant result indicates that impersonation attacks do not easily
transfer across different DNN models. It will be extremely
hard for the attacker to use the perturbation vectors to fool



Fig. 11: Universal perturbation impersonation attack performance.
K is the number of attacking images to generate the universal
perturbations. The attackers’ ability to impersonate given targets
is significantly reduced when the perturbations are required to be
universal to multiple attacking images.

a DNN model different from the one used to generate them.
Thus cross model validation could significantly enhance the
robustness of face recognition based access control in IoT
systems.

F. Detecting and removing perturbations

Finally, we test whether de-noising [31] (which could be
used by an IoT access control system) affects the potency
of the attack. Three standard de-noising filters are considered
in our experiments: average filter, median filter, and Wiener
filter. We test 100 different perturbed images, and find that all
of them are still misclassified as the targets. This suggests that
de-noising does not hurt the attack. This is because de-noising
filters assume a certain pattern of noise, which is unlikely to be
what is used by the attacker for generating the perturbations.

We conclude that traditional noise detection and de-noising
algorithms are not helpful in countering the imperceptible
impersonation attack since the perturbation generated is struc-
tured.

G. Summary of results

Below is a summary of our take-aways based on the
results in § IV-B to § IV-F. (a) DNNs are vulnerable to
adversary examples. However, in contrast to recent work in
the literature, we find that the average success rates of the
imperceptible impersonation attack are low. (b) Attackers can
achieve better success rates by choosing targets with similar
attributes; in particular choosing targets with same skin color
helps. (c) When variations, such as pose, camera angle and
lighting conditions are considered, the attack is significantly
less successful. (d) Perturbed images do not generalize well
across different DNN models. (e) Current noise estimation and
de-noising methods do not adversely impact the imperceptible
impersonation attack.

V. CONCLUSION

The security of face recognition is an important toptic as
face recognition is more and more used in IoT access control.
In this paper, we perform an in-depth measurement study
of the generality and efficacy of imperceptible impersonation
attacks that have recently gained popularity. Our study is done
using a very large dataset. We find that it is hard for a given
adversary to impersonate an arbitrary target victim without
making perceptible changes to her face. Further, we show that
several factors such as age, race and gender of the attacker and
victim influence the efficacy of the attack and we quantify the
impact of each. We also show that, in a realistic scenario where
the attacker seeks to be robust to different poses or variations
in environmental conditions, the attack becomes more difficult
or even impossible. Based on this, we suggest the use of
cross-model verifications as well as multi-views, which can
potentially counter such attacks very effectively.
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