
LECTURE 5
Mutual Exclusion and Election

Shared resources

¨  Processes may need to access the same resources.
¨  Concurrent accesses will corrupt the resource.

¤  Make it inconsistent (consistency later)

¨  Need for solutions that that facilitate coordination
between different processes.

¨  Two different ways:
¤  Token based solutions
¤  Permission based solutions

2

Permission based approaches

¨  Process wanting to access a resource must first
acquire permission from other processes.

¨  How to do so ?
¤  Various ways we will see.

Token-based solutions

¨  Mutual exclusion achieved by using a special
message called a token

¨  Only one token available à anyone who has the
token can access the shared resource.

¨  Avoid deadlocks and starvation
¨  However, challenge when token is lost à process

holding the token can crash

A centralized algorithm

¨  Choose a coordinator (election à later)
¨  A process that seeks to access a resource sends a

message to the coordinator seeking permission.
¨  If no other process is accessing the resource,

permission granted. (use a reply)
¨  If some other process is using the resource –

permission cannot be granted.
¤  How to handle is system dependent.
¤  e.g., just don’t reply so that the requesting process

blocks.

Coordination functions

•  When resource is released, coordinator is notified.
•  Coordinator picks first item off a queue of

waiting requests and assigns resource.
•  Easy to see mutual exclusion guaranteed.
•  No starvation -- process is fair.

How to make it distributed?

¨  Use of Lamport’s clocks
¨  Need total ordering of evens

¤  Unambiguous which happened first

¨  When a process wants to access a resource, it
builds a message which includes:
¤  Name of resource
¤  Process number
¤  current logical time.

¨  Send message to everyone else (broadcast)
¤  Assume reliable transmissions

Receiver functions

¨  If not accessing the resource and does not want to
access it send “OK”

¨  Don’t reply if accessing resource – just queue
request.

¨  If receiver wants to access resource, but has not
done so:
¤  Compare time stamp with its own message (which it has

sent everyone).
¤  If time stamp lower send OK (lowest timestamp wins)
¤  Else, queue request and send nothing.

Example of distributed algorithm

¨  Receiver waits until everyone gives permission.
¨  Once it gets, it accesses resource.
¨  Upon completion of usage, send OK to everyone in queue.

Message complexity

¨  The distributed algorithm guarantees mutual
exclusion without starvation or deadlocks.

¨  Number of messages before resource acquisition:
¤  (N-1) requests to all other processses
¤  (N-1) OK messages from all other processes

Failures

¨  N points of failure
¤  Any process crash is wrongly interpreted as denial of

permission.
¤  Blocks all subsequent attempts by processes to acquire

resource.
¨  Patch:

¤  When a request arrives, receiver always grants or
denies permission.

¤  If nothing is got within a time-out, keep trying until a
reply is obtained, or the receiver is deemed dead.

Token ring

¨  A logical overlay (application level) ring is
formed.

¨  Each process is assigned a position on the ring.
¤  Each one needs to know who is next in line after itself.

Token ring algorithm

¨  P0 is given a token à which allows the process to
access the resource.

¨  Upon completion, it passes it to P1 and the process
continues.

¨  In general if there are N processes, P(k) à P(k+1)
mod N

¨  If a node that receives the token has no interest in the
resource, it simply passes on the token on the ring.

¨  Nodes cannot immediately access the resource for a
second time using the same token.

Issues

¨  Process with token might crash
¤  Hard to detect (process may still be accessing

resource)
¤  Time bounds?

¨  ACKs
¤  If a process has to ACK token receipt – lack of ACKs

could help detect a dead process
n  Remove dead process from the group.

Decentralized algorithm

¨  Each resource replicated N times and each has its
own coordinator.

¨  When a process wants to access the resource, it
needs OKs from m > n/2 coordinators for that
resource.
¤  Majority vote

¨  When a permission has already been granted to a
different process, coordinator tells requester.

Fault model

¨  When a coordinator crashes, it recovers quickly but
forgets its vote (before crash)
¤  Thus, it may incorrectly grant permission again to

another process after recovery.
¨  Recall: m coordinators had granted permission to

the process accessing resource
¨  Let p =Δt/T be the probability of a coordinator

reset. Then, probability k out of m coordinators
reset is

Condition for correctness

¨  Let f coordinators fail; the remaining will be m-f.
¨  In order for this algorithm to work correctly, the remaining

must still constitute the majority.
¤  That is à m – f > N/2 or f < m – N/2

¨  In order for a violation f ≥ m-N/2 and this occurs with a
probability

¨  For typical values of N, m, T and Δt, these are quite small
(e.g., for N= 16, m=9 T= 1 hour, Δt = 30 seconds), the
violation probability is less than 10-18.
¤  Thus it can obe often neglected.

Election algorithms

¨  As discussed, many algorithms require one process to
act as a coordinator, initiator or perform some special
role.

¨  If all processes are the same, how do we select this
coordinator ?

¨  Assume that each process P has a unique identifier id
(P).
¤  Election is to locate the process with the highest ID and

designate it as the coordinator.
¤  Algorithms differ in terms of how they locate this highest ID

Process.

The bully algorithm

¨  There are n processes [P0 … Pn-1].
¨  Let ID of Pk = k.
¨  An election is invoked when a process notices that the

current coordinator is no longer responding to requests.
¨  The process Pk sends an ELECTION message to all

processes with higher identifiers (Pk+1 and so on until
Pn-1)

¨  If no one wins Pk wins and it becomes coordinator.
¨  Else, if one of the higher ups answers, it takes over.

¤  Pk’s job is done.

Example

¨  Process 4 notices that the coordinator is not
responding.

¨  It sends messages to processes 5, 6 and 7.
¨  5 and 6 respond à this is a cue for process 4 to

withdraw.

Example (continued)

¨  Now, 5 and 6 hold an election
¤  5 sends ELECTION messages to 6 and 7
¤  6 sends ELECTION message to 7

Example (contd)

¨  Process 6 tells 5 to stop.
¨  There is no response from 7. This means process 6 has won

the election.
¨  It tellls all other processes (bully them into submission J)

Ring algorithm

¨  Election also could be based on a logical ring
¤  Note the physical topology is not a ring but they are

logically organized that way.

¨  Does not use a token (like in token ring)
¨  Each process knows who is its successor.
¨  When a process notices that the coordinator is not

functioning, it begins an election.

Election process

¨  The process that discovers the failed coordinator builds an
ELECTION message
¤  contains its own ID (creates a list).

¨  Sends to successor.
¤  If successor is down, sender skips and goes to next member along

the ring or one after that and so on – until a running process is
located.

¨  At each step, the process that sends adds its ID to the list in
the message.

¨  When message returns to the process that initiated the
election, it identifies the highest ID and chooses that process
as coordinator.
¤  A new coordinator message is sent to everyone.

Example

¨  The example illustrates what happens when P3 and P6 discover
simultaneously that the previous coordinator P7 has crashed.

¨  Note they converge to the same new coordinator (P6).

