LECTURE 5

Shared resources

Processes may need to access the same resources.

Concurrent accesses will corrupt the resource.

Make it inconsistent (consistency later)

Need for solutions that that facilitate coordination
between different processes.
Two different ways:

Token based solutions

Permission based solutions

Permission based approaches

Process wanting to access a resource must first
acquire permission from other processes.

How to do so ¢

Various ways we will see.

Token-based solutions

Mutual exclusion achieved by using a special
message called a token

Only one token available = anyone who has the
token can access the shared resource.

Avoid deadlocks and starvation

However, challenge when token is lost = process
holding the token can crash

A centralized algorithm

Choose a coordinator (election =2 later)

A process that seeks to access a resource sends a
message to the coordinator seeking permission.

If no other process is accessing the resource,
permission granted. (use a reply)

If some other process is using the resource -
permission cannot be granted.

How to handle is system dependent.

e.g., just don’t reply so that the requesting process
blocks.

Coordination functions

R E - ®EE . @

Request Release

Request OK
auest y

< No reply OK
e Queue is @ 2 e
. / empty
Coordinator

(a) (b) (c)

* When resource is released, coordinator is notified.

* Coordinator picks first item off a queue of
waiting requests and assigns resource.

* Easy to see mutual exclusion guaranteed.

* No starvation -- process is fair.

How to make it distributed?

Use of Lamport’s clocks

Need total ordering of evens

Unambiguous which happened first
When a process wants to access a resource, it
builds a message which includes:

Name of resource

Process number

current logical time.

Send message to everyone else (broadcast)

Assume reliable transmissions

Receiver functions

If not accessing the resource and does not want to
access it send “OK?”

Don’t reply if accessing resource — just queue
request.

If receiver wants to access resource, but has not
done so:

Compare time stamp with its own message (which it has
sent everyone).

If time stamp lower send OK (lowest timestamp wins)

Else, queue request and send nothing.

Example of distributed algorithm

Accesses
resource

0 /O
N OK
8 12 OK “)K
L] ‘\} ,("\ Accesses
<1>< 12 2> > <1/ OK 2) <1> (2> resource
12

(a) (b) (c)

1 Receiver waits until everyone gives permission.

1 Once it gets, it accesses resource.
1 Upon completion of usage, send OK to everyone in queue.

Message complexity

The distributed algorithm guarantees mutual

exclusion without starvation or deadlocks.

Number of messages before resource acquisition:
(N-1) requests to all other processses

(N-1) OK messages from all other processes

Failures

N points of failure

Any process crash is wrongly interpreted as denial of
permission.

Blocks all subsequent attempts by processes to acquire
resource.

Patch:

When a request arrives, receiver always grants or
denies permission.

If nothing is got within a time-out, keep trying until a
reply is obtained, or the receiver is deemed dead.

Token ring

A logical overlay (application level) ring is
formed.

Each process is assigned a position on the ring.

Each one needs to know who is next in line after itself.

B loken

Cononon o0

Token ring algorithm

PO is given a token = which allows the process to
access the resource.

Upon completion, it passes it to P1 and the process
continues.

In general if there are N processes, P(k) 2 P(k+1)
mod N

If a node that receives the token has no interest in the
resource, it simply passes on the token on the ring.

Nodes cannot immediately access the resource for a
second time using the same token.

Issues

Process with token might crash

Hard to detect (process may still be accessing
resource)

Time bounds?

ACKs

If a process has to ACK token receipt — lack of ACKs
could help detect a dead process

Remove dead process from the group.

Decentralized algorithm

Each resource replicated N times and each has its
own coordinator.

When a process wants to access the resource, it
needs OKs from m > n/2 coordinators for that
resource.

Majority vote
When a permission has already been granted to a
different process, coordinator tells requester.

Fault model

When a coordinator crashes, it recovers quickly but
forgets its vote (before crash)

Thus, it may incorrectly grant permission again to
another process after recovery.

Recall: m coordinators had granted permission to
the process accessing resource

Let p =At/T be the probability of a coordinator

reset. Then, probability k out of m coordinators
reset is

Plk] = (’Z),;k(1 — p)m—k

Condition for correctness

Let f coordinators fail; the remaining will be m-f.

In order for this algorithm to work correctly, the remaining
must still constitute the majority.

Thatis > m-f>N/2 or f<m-N/2
In order for a violation f = m-N/2 and this occurs with a
robabilit
" D v {1

For typical values of N, m, T and At, these are quite small
(e.g., for N= 16, m=9 T= 1 hour, At = 30 seconds), the
violation probability is less than 108,

Thus it can obe often neglected.

Election algorithms

As discussed, many algorithms require one process to
act as a coordinator, initiator or perform some special
role.

If all processes are the same, how do we select this
coordinator ¢

Assume that each process P has a unique identifier id
(P).

Election is to locate the process with the highest ID and
designate it as the coordinator.

Algorithms differ in terms of how they locate this highest ID
Process.

The bully algorithm

There are n processes [PO ... Pn-T1].
Let ID of Pk = k.

An election is invoked when a process notices that the
current coordinator is no longer responding to requests.

The process Pk sends an ELECTION message to all
processes with higher identifiers (Pk+1 and so on until
Pn-1)

If no one wins Pk wins and it becomes coordinator.

Else, if one of the higher ups answers, it takes over.
Pk’s job is done.

o & € @ 5
<Electon >@ ®/ @
DY, © @ o @

a) (b)
Process 4 notices that the coordinator is not
responding.
It sends messages to processes 5, 6 and 7.

5 and 6 respond =2 this is a cue for process 4 to
withdraw.

Example (continued)

7 Now, 5 and 6 hold an election
5 sends ELECTION messages to 6 and 7
6 sends ELECTION message to 7

Example (contd)

oo

®
® o ©
(d) (e)

1 Process 6 tells 5 to stop.

1 There is no response from 7. This means process 6 has won
the election.

o It tellls all other processes (bully them into submission ©)

Ring algorithm

Election also could be based on a logical ring

Note the physical topology is not a ring but they are
logically organized that way.

Does not use a token (like in token ring)
Each process knows who is its successor.

When a process notices that the coordinator is not
functioning, it begins an election.

Election process

The process that discovers the failed coordinator builds an
ELECTION message

contains its own ID (creates a list).

Sends to successor.

If successor is down, sender skips and goes to next member along
the ring or one after that and so on — until a running process is
located.

At each step, the process that sends adds its ID to the list in
the message.

When message returns to the process that initiated the
election, it identifies the highest ID and chooses that process
as coordinator.

A new coordinator message is sent to everyone.

(6.0,1] 6.0,1,2] 6,0,1,2,3]

y [3.456.0.1] [3,4,5,6,0,1,2] (3] i)

6.0] '5[3',,_5_6.0] [3.4])[6,0.1,2,3.4]
' [3.4,5,6] '
--- Yy
‘_ k

6] (6.0,1,2,3.4.5]

1 The example illustrates what happens when P3 and Pé discover
simultaneously that the previous coordinator P/ has crashed.

1 Note they converge to the same new coordinator (P6).

