
LECTURE 3 
Communications 



Why communications? 

¨  When computers need to exchange information to 
perform a computation (joint), they need to 
communicate. 

¨  In this slide set, we will study two types of 
communications: 
¤   Remote Procedure Calls (RPC) 
¤   Message Oriented Communications 

Chapter 4 of book 



What are RPCs? 

¨  Distributed systems are especially suited for providing services (e.g., 
MapReduce) 

¨  Explicit message passing can be used for communications between processes – 
but do not conceal communications. 

¨  How do we access services ?   
¤  Simply allow programs to call procedures that are located execute on other machines 

n  Process 1 on Machine A calls Procedure2 on Machine B.  
n  Blocks and waits for the procedure to return 
n  Continues execution 

¤  Message passing hidden from programmer 

¨  This method is called Remote Procedure Call or RPC for short 
¨  RPC is widely used and forms the basis for communications in many distributed 

systems. 

3 



Challenges 

¨  While the basic idea is simple, hard to implement. 
¨   Procedure executes on a different machine with a 

different address space. 
¨   Passing parameters and results is necessary. 
¨   Fault tolerance and synchronization  
 



Arguments  

¨  Conventionally, arguments are passed by value or by 
reference (pointers).  

 e.g.,  append(data, dBList); 
¤ Copy-by-value or Copy-by-reference 
¤   The data may be values of local variables and dBList 

maybe a pointer to a list. 
¤   These are then pushed to the 
Stack 
¤  Programmer doesn’t need to 
Know what append does. Only 
pass arguments. 

 



Principles of RPC 

¨  The procedure is executed on a remote machine. 
¤   What do we do ? 

¨  There is a different version of append() running on 
the client. 
¤   Called a client stub 

¨  It does not perform an append operation – instead it 
packs the parameters into a message which is sent to 
a server. 

¨   Using send() 



Principle of RPC (2) 

¨  The client then blocks itself until the reply from 
server gets back. 

¨   Server’s OS passes message to a server stub.  
¤ Equivalent to client stub. 
¤ Waits for incoming requests by calling receive() 

¨   Unpacks parameters from message and then calls 
the server procedure in the usual way. 
¤   As if being called directly by the client. 

¨   Performs its work and returns result. 



Principles of RPC (3) 

¨  When the result is received, (using receive()) it 
unblocks the client stub. 

¨   The client stub inspects message, unpacks result, 
and copies it to the caller. 
¤   It returns in the usual way. 
¤ The caller gets control – and all it knows is that the 

data has been appended to dBList. 



Steps of RPC 



Parameter marshaling 

¨  Packing parameters into messages is called 
parameter marshaling. 

¨  Needed because the parameters (e.g., data and 
dBList) sent over the network are correctly 
interpreted. 

¨   Little Endian vs Big Endian byte ordering 
¤   Standardized to Big Endian 

¨   Transform the data to a machine and network 
independent format (essential) 
¤   Can be done with programming support. 



Pointers 

¨  How are pointers or references passed? 
¤   Cannot just forbid pointer and reference parameter 

passing. 

¨   Solution : Copy the entire data structure  
¤ Effectively replaces copy-by-reference to copy-by-

value/restore  (return restores the reference) 
¤   Not semantically exact but good enough 

¨   When client knows that the referred data is read 
only – no need for restore. 



More complex parameter passing 

The Machine A is executing a RPC on Machine C;  There is a local object and a 
remote object. 



Interface Definition Language 

¨  Often specified by means of an Interface Definition 
Language (IDL).  
¤   Example the DCE RPC – from the Open Software 

Foundation 

¨  Defining the message format 
¨   Representation of different (simple) data structures 

such as integers, characters etc. 
¨   Protocol of use (e.g., TCP) 



Stub Generation 

¨  Rules for how to encode. 
¨  Example: Character in rightmost byte of a word, with the following 3 bytes 

empty. 
¨  A float is a whole word 
¨  An array is a group of words equal to the array length; preceded by size. 

 
 



Asynchronous RPC 

¨  Sometimes the RPC does not have to return a result 
to the client 

¨   Blocking an issue 
¨   Asynchronous RPC eliminates this issue. 

¤   Server ACKS request at which point client continues. 

 



Asynchronous RPCs with returns 

¨  Client may not want to wait for the RPC to return 
¤   For example, MapReduce where client interacts with many 

servers simultaneously. 
¨   Combine RPC with callback (a user defined function which 

is invoked upon a certain event like message receipt) 



Multicast RPC 

¨  Allows sending procedure requests to multiple 
servers (e.g., MapReduce) 



Message-oriented communication 

¨  RPC enhance access transparency (not evident to 
user). 

¨  Not sure that the receiving side is executing at the 
time a request is issued. 

¨  Messaging solves this problem 



Sockets 

¨  Many distributed systems and applications leverage 
the underlying transport protocol (TCP). 
¤   Offers reliability 

¨   Uses socket interface 
¨   A communication interface that is exported to the 

user space via APIs. 
¨   Applications can write data that are to be sent 

over the underlying network. 



Socket operations in TCP/IP 

•  Socket operations need to be executed both on the 
client and server sides. 



Server side operations 

¨  Create a socket with the socket() system call  
¨  Bind the socket to an address using the bind() system 

call. For a server socket on the Internet, an address 
consists of a port number on the host machine.  

¨  Listen for connections with the listen() system call  
¨  Accept a connection with the accept() system call. This 

call typically blocks until a client connects with the 
server.   
¤  The server forks off a process which handles the actual 

connection. 
¨  Send and receive data  
 



Client side operations 

¨  Create a socket with the socket() system call  
¨  Connect the socket to the address of the server 

using the connect() system call  
¨  Send and receive data. There are a number of 

ways to do this, but the simplest is to use the read() 
and write() system calls.  
¤   Simply read or write to the socket. 



Example: server 

•  Server adds an * and returns 
data 



Example: Client 

¨  Client reads and prints data that is received 



Pictorial description 



Limitations 

¨  Sockets simple and elegant 
¨   However, limited and when realizing distributed 

computations mistakes are possible. 
¨  Also unicast – one to one and relies on TCP (or 

UDP). 



Messaging patterns 

¨  To make network programming easier, we leverage 
a key observation. 

¨   Messaging applications (or components thereof) 
typically rely on some simple patterns. 

¨  Enhancing sockets for these patterns can ease 
development of distributed applications 
¤   ZeroMQ 



Properties of ZeroMQ 

¨  Uses TCP, but application developer does not have 
to worry about the setting up or maintaining of 
connections. 

¨   Supports many-to-one communications 
¤   A socket can be bound to many addresses 
¤   Server listens to multiple ports using a blocking receive 

operation. 
¨   Also supports one to many: multicast (later) 
¨  Asynchronous:  Sender can continue after submitting 

message to the underlying communication subsystem 



Socket pairing 

¨  ZeroMQ establishes a higher level of abstraction by 
pairing sockets. 

¨   Each pair corresponds to a specific communication 
pattern: 
¤   Request Reply 
¤   Publish Subscribe 
¤   Pipeline 



Request Reply 

¨   Traditional client-server type communications. 
¨   Client uses a request socket (REQ)  to send a 

request message. 
¨   Server uses a reply socket (of type REP).  
¨    Simplifies matters for developers – they do not 

need to call listen or accept 
 



Publish Subscribe 

¨   Clients subscribe to specific messages published by 
servers. 

¨   Only messages to which the client has subscribed 
are transmitted. 

¨   If server publishes messages to which no one 
subscribes, they are lost. 

¨   Thus, this is essentially what is called as a multicast 
from the server to all its subscribing clients. 

¨   Server runs socket type PUB, and client must use 
SUB type sockets 



Example server 

¨  Naïve time server; publishes its current local time using a PUB 
socket. 

¨   Local time published every 5 seconds. 



Example client 

¨  Client creates a SUB socket and connects to the servers PUB socket;  
if the tag is TIME (this is what the client subscribes to), it retrieves the 
time and prints five times. 



Pipeline 

¨  Process seeks to push out results (as opposed to 
pulling as in publish/subscribe) 

¨   Does not care about which other process pulls 
results – the first available is fine. 

¨   A pulling process may get results from multiple 
processes – will do so from the first pushing process. 

¨   Intent:  Keep as many processes working as 
possible, pushing results through a pipeline of 
processes as quickly as possible. 



Message Passing Interface (MPI) 

¨  Sockets deemed insufficient for two reasons: 
¤   Wrong level of abstraction (only receive, send; need finer 

granularity as we will see) 
¤   Designed for communication over networks : general 

purpose and not high speed enough. 
¨   Need for a hardware and platform independent 

interface for communication across a group of processes 
handling a specific task 
¤   MPI or Message Passing Interface 
¤   Takes place within a group  
¤   Process within a group assigned an identifier (group ID, 

process ID) 



Operations in MPI 

¨  Variants offer different levels of synchrony 
¤   Blocking versus non-blocking 

n   For example, MPI_ssend has the process blocking until the message 
transmission starts to the receiver. 

n  MPI_recv is blocking but MPI_irecv is non-blocking 
n  Can pass pointers (reference) to the outgoing message to prevent need 

for copies 



Message Queuing Systems 

¨  Also called Message Oriented Middleware or 
MOM for short. 

¨   Support for completely asynchronous 
communications. 

¨   Buffering capacity for messages (storage) even 
when the sender or receiver is active. 

¨   Persistent and asynchronous : supports message 
transfers that can take minutes. 



Model 

¨  Applications insert messages in specific queues. 
¨   These messages might be forwarded via multiple 

communication servers to the destination server. 
¤   If the destination server is down interim, the message is 

stored at an intermediate server and delivered later  

¨   Each application could have a queue (private) to 
which other applications send messages. 
¤   Sharing queues possible but more complex. 



Possible combinations 



Operations 

¨   Most queuing systems allow a process to have a handler 
that is automatically invoked when a message is inserted 

¨   Callbacks can also be used to start the process in such 
cases. 
¤   Typically implemented using daemon which continuously 

monitors receiver queues 



Architecture 

¨  Commonly there are what are called queue 
managers that handle these application centric 
queues. 

¨   How to name ? 
¤   Need for a contact address 

n   Could use (host, port) but fall back to socket type 
identifiers. 

n   Need naming 
¤ Map of name to address – lookup table ? 

n   When a new queue is added, all tables need to be 
updated. 



Look up depiction 



Overlay Network 

¨   The implicit assumption here is that the queue 
manager of an application A, can directly contact 
the queue manager of an application B. 
¤   Not viable at scale 

¨  This would require special queue managers that 
incorporate routing functionalities. 

¨  So you can envision an application layer network – 
which is called an “overlay”. 



Message Brokers 

¨  Need for translation of message semantics across 
applications. 

¨   For example, one application may have messages 
containing a table from a database where: 
¤   special end-of-record delimiter 
¤   known fixed length 

¨  Recipient may expect a different delimiter and variable 
length fields. 

¨  Message brokers perform translations 
¤   Broker plugins are subprograms that are application 

specific towards achieving this goal. 



Organization of a message broker 



IBM WebSphere 

¨   A practical message queuing system 
¨   A wealth of literature  (see book and referenced 

papers). 
¨   All queues are managed by queue managers. 
¨   Each queue manager is responsible for removing 

messages from its send queues and forwarding to other 
queue managers. 

¨   Likewise, it picks up messages from the network and 
stores in appropriate input queue. 

¨   Message sizes have a maximum size (4 MB), and 
queue (buffer) sizes are specified (2 GB). 



Message channels 

¨  Abstractions of transport layer connections 
¨   Unidirectional reliable connection between a 

sending and receiving queue manager. 
¤   For example, TCP connection 

¨   The two ends of a message channel are managed 
by message channel agents (MCAs) 
¤   Sending MCA: Check send queues,  wrap in TCP/IP 

packet, sending to the receive MCA 
¤   Receiving MCA: Listen, unwrap and store unwrapped 

message in appropriate queue. 



Message channels (cont) 

¨  Both sending and receiving MCAs must be up and 
running. 

¨   When the message is first put in the queue, a trigger  is 
set off – which invokes a handler to start the sending 
MCA. 

¨   One can also start an MCA over the network – a 
control message to a daemon that is listening on the 
other side. 

¨   Channels are stopped automatically when no messages 
dropped in queues for a pre-specified time. 



MCA Attributes 

¨  Attribute values of sending and receiving MCA 
should be compatible. 

¨   One way is to negotiate these before the channel 
set up 
¤   Same transport protocol 
¤   FIFO ordering of messages  (inserted in send queue, 

picked up from receive queue) 
¤   Maximum message length 



General organization depiction 

•  Application uses RPC to communicate with the queue manager 
based on synchronous communication if the latter is on a 
different machine. 



Addressing and routing 

¨  Address in MQ consists of two parts 
¤   Name of queue manager to which the message is to be 

delivered. 
¤   Destination queue under that manager to which the 

message is to be appended. 

¨   In addition, routes are to be specified. 
¨   Use of routing tables – the entry specifies the local 

send queue to which the message is to be appended. 
¤   This specifies which queue manager the message is to be 

forwarded. 



Routing tables 

¨   Routes are explicitly stored in a queue manager 
using routing tables. 

¨   Each entry is a pair  (destQM,  sendQ) 
¤   destQM à  destination queue manager 
¤   sendQ à name of local send queue 

¨   A routing table entry is called an alias in MQ. 
¨   When an intermediate (not destination) QM gets a  

message, it extracts the name of the destQM and 
does a routing table look up to find which send 
queue is to be used (to append the message). 



Alias table 

¨  Each queue manager has a systemwide unique name. 
¨   But changing this name, will affect all applications that 

send messages to it. 
¨   To alleviate problems a local alias for queue manager 

names is isued.  
¨   An alias defined with a QM (say QM1) is another 

name for a different queue manager (QM2), but is 
available only to applications interfacing with QM1. 
¤   Alias allows the use of the same (logical) name for a queue 

even if that queue name changes. 



Example 

 Let us assume an application linked to QMA wants to send a message. 
 It can refer to a remote QM (QMC) refering to an alias LA1. 

QMC 



Example (2) 

 QMA looks up the alias and maps it to QMC.  Route to QMC is found 
in the routing table and indicates message to be appended to SQ1. 

QMC 



Example (3) 

This causes messages to be transferred to QMB.  QMB uses its routing 
table to insert message in SQ1 to be sent to QMC. 

QMC 


