
LECTURE 2
MapReduce

Source

¨  MapReduce: Simplified Data Processing in Large
Clusters
¤  Jefferey Dean and Sanjay Ghemawat
¤  OSDI 2004

Example Scenario
3

¨  Genome data from roughly one million users
¤ 125 MB of data per user

¨  Goal: Analyze data to identify genes that show
susceptibility to Parkinson’s disease

Other Example Scenarios
4

¨  Ranking web pages
¤ 100 billion web pages

¨  Selecting ads to show
¤ Clickstreams of over one billion users

Lots of Data!
5

Although the derived tasks are simple, Petabytes or
even exabytes of data

¨  Impossible to store data on one server
¨  Will take forever to process on one server

Need distributed storage and processing
 How to parallelize?

Desirable Properties of Soln.
6

¨  Scalable
¤  Performance grows with # of machines

¨  Fault-tolerant
¤ Can make progress despite machine failures

¨  Simple
¤ Minimize expertise required of programmer

¨  Widely applicable
¤  Should not restrict kinds of processing feasible

Distributed Data Processing
7

¨  Strawman solution:
¤ Partition data across servers
¤ Have every server process local data

¨  Why won’t this work?

¨  Inter-data dependencies:
¤ Ranking of a web page depends on ranking of pages

that link to it
¤ Need data from all users who have a certain gene to

evaluate susceptibility to a disease

MapReduce
8

¨  Distributed data processing paradigm introduced by
Google in 2004

¨  Popularized by open-source Hadoop framework

¨  MapReduce represents
¤ A programming interface for data processing jobs

n Map and Reduce functions

¤ A distributed execution framework
n Scalable and fault-tolerant

Map Operation

¨  The Map operation is applied to each “record” to
compute a set of intermediate key value pairs.
¤ Example à Temperature records between 1951 and

1955

¨  Map function needs to be written by the user.
¨  MapReduce Library groups together the values

associated with a key I (e.g. year) and passes them
to the Reduce function.

Reduce Operation

¨  Reduce function also written by user.
¨  Merges together the values provided to form a

smaller set of values
¤  (e.g., Maximum temperature seen in each year)

11

MapReduce: Word count

map(key, value): //filename, file contents
for each word w in value:

 EmitIntermediate(w, "1");

reduce(key, list(values)): //word, counts

 int result = 0;

 for each v in values:

 result += ParseInt(v);

 Emit(AsString(result));

Other examples

¨  Distributed Grep
¤  Map: Emits a line if a match is found to a pattern (key)
¤  Reduce: Identity that simply shows the intermediate

data

¨  Count of URL Access frequency
¤  Map: Processes log of web page requests and outputs

<URL, 1>
¤  Reduce: Adds the values for the same URL and outputs

<URL, count>

Execution

¨  Map invocations distributed across multiple
machines
¤  Need automatic partitioning of input data input to M

splits
n  Parallelly process each split

¨  Reduce invocations are distributed by partitioning
the intermediate key space into R pieces using a
partitioning function (e.g., a hash(key)mod R).

MapReduce Execution
14

(k1, v1)
(k2, v2)

.

.

.

.

.

.

.
(kn, vn)

(k1, v1)
.
.

(ki, vi)
.
.

(kj, vj)
.
.

(a, b)
(w, p)

(w, x)
(y, r)
(c, d)

(y, z)
(a, s)
(c, t)
(a, q)

(a, b)
(a, q)
(a, s)

(c, d)
(c, t)

(w, p)
(w, x)

(y, r)
(y, z)

(k1, v1)

(k2, v2)

(k3, v3)

(k4, v4)

Partition Map Coalesce Reduce

MapReduce: PageRank
15

¨  Compute rank for web page P as average rank of
pages that link to P

¨  Initialize rank for every web page to 1
¨  Map(a web page W, W’s contents)

¤ For every web page P that W links to, output (P, W)

¨  Reduce(web page P, {set of pages that link to P})
¤ Output rank for P as average rank of pages that link to P

¨  Run repeatedly until ranks converge

MapReduce Execution
16

(k1, v1)
(k2, v2)

.

.

.

.

.

.

.
(kn, vn)

(k1, v1)
.
.

(ki, vi)
.
.

(kj, vj)
.
.

(a, b)
(w, p)

(w, x)
(y, r)
(c, d)

(y, z)
(a, s)
(c, t)
(a, q)

(a, b)
(a, q)
(a, s)

(c, d)
(c, t)

(w, p)
(w, x)

(y, r)
(y, z)

(k1, v1)

(k2, v2)

(k3, v3)

(k4, v4)

Partition Map Coalesce Reduce

When can a Reduce task begin executing?

Synchronization Barrier

September 11, 2017 EECS 498 – Lecture 2

17

(k1, v1)
(k2, v2)

.

.

.

.

.

.

.
(kn, vn)

(k1, v1)
.
.

(ki, vi)
.
.

(kj, vj)
.
.

(a, b)
(w, p)

(w, x)
(y, r)
(c, d)

(y, z)
(a, s)
(c, t)
(a, q)

(a, b)
(a, q)
(a, s)

(c, d)
(c, t)

(w, p)
(w, x)

(y, r)
(y, z)

(k1, v1)

(k2, v2)

(k3, v3)

(k4, v4)

Partition Map Coalesce Reduce

Fault Tolerance via Master
18

Workflow (Map)

¨  MapReduce library in the user program splits input
files into M pieces.

¨  Worker assigned the map task, reads content of
the corresponding input split – parses key/value
pairs and passes the pair to the user-defined Map
function.
¤  The intermediate pair produced by Map stored in

local memory

Workflow (Reduce)

¨  The buffered pairs are partitioned into R regions
using the partitioning function (e.g., the hash)

¨  Locations of these pairs are sent to master who
sends it to reduce workers.

¨  Reduce workers uses remote procedure calls to
read the buffered data.

¨  After reading data, it groups them according to the
key (sorts).

¨  It iterates over the intermediate data and for each
key encountered.

Failures

¨  Worker failures
¤ Master pings workers periodically.

n  No response within a certain time indicates failure.
n  Tasks reset to idle and reassigned.

n  Note that completed map tasks are re-executed since results
stored on local discs and could become inaccessible.

¨  Master failures (unlikely)
¤ Periodically, checkpoints (later) the master state (which

tasks are idle, in progress, completed) and the identity
of the workers.

¤ Return to the last checkpoint.

