
LECTURE 2 
MapReduce 



Source 

¨  MapReduce: Simplified Data Processing in Large 
Clusters 
¤   Jefferey Dean and Sanjay Ghemawat 
¤   OSDI 2004 



Example Scenario 
3 

 

¨  Genome data from roughly one million users 
¤ 125 MB of data per user 

¨  Goal: Analyze data to identify genes that show 
susceptibility to Parkinson’s disease 



Other Example Scenarios 
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¨  Ranking web pages 
¤ 100 billion web pages 

¨  Selecting ads to show 
¤ Clickstreams of over one billion users 



Lots of Data! 
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Although the derived tasks are simple, Petabytes or 
even exabytes of data 

¨  Impossible to store data on one server 
¨  Will take forever to process on one server 

 

Need distributed storage and processing 
 How to parallelize? 



Desirable Properties of Soln. 
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¨  Scalable 
¤  Performance grows with # of machines 

¨  Fault-tolerant 
¤ Can make progress despite machine failures 

¨  Simple 
¤ Minimize expertise required of programmer 

¨  Widely applicable 
¤  Should not restrict kinds of processing feasible 



Distributed Data Processing 
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¨  Strawman solution: 
¤ Partition data across servers 
¤ Have every server process local data 

¨  Why won’t this work? 

¨  Inter-data dependencies: 
¤ Ranking of a web page depends on ranking of pages 

that link to it 
¤ Need data from all users who have a certain gene to 

evaluate susceptibility to a disease 



MapReduce 
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¨  Distributed data processing paradigm introduced by 
Google in 2004 

¨  Popularized by open-source Hadoop framework 

¨  MapReduce represents 
¤ A programming interface for data processing jobs 

n Map and Reduce functions 

¤ A distributed execution framework 
n Scalable and fault-tolerant 



Map Operation 

¨  The Map operation is applied to each “record” to 
compute a set of intermediate key value pairs. 
¤ Example à Temperature records between 1951 and 

1955 

¨  Map function needs to be written by the user. 
¨  MapReduce Library groups together the values 

associated with a key I (e.g. year) and passes them 
to the Reduce function. 



Reduce Operation 

¨  Reduce function also written by user. 
¨   Merges together the values provided to form a 

smaller set of values 
¤   (e.g., Maximum temperature seen in each year) 
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MapReduce:  Word count 

map(key, value): //filename, file contents 
for each word w in value:   

 EmitIntermediate(w, "1"); 
 

reduce(key, list(values)): //word, counts  

 int result = 0;  

 for each v in values:  

  result += ParseInt(v);  

 Emit(AsString(result)); 



Other examples 

¨  Distributed Grep 
¤   Map: Emits a line if a match is found to a pattern (key) 
¤   Reduce: Identity that simply shows the intermediate 

data 

¨   Count of URL Access frequency 
¤   Map: Processes log of web page requests and outputs 

<URL, 1> 
¤   Reduce: Adds the values for the same URL and outputs 

<URL, count> 



Execution 

¨  Map invocations distributed across multiple 
machines 
¤   Need automatic partitioning of input data input to M 

splits 
n   Parallelly process each split 

¨  Reduce invocations are distributed by partitioning 
the intermediate key space into R pieces using a 
partitioning function (e.g., a  hash(key)mod R). 



MapReduce Execution 
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Partition Map Coalesce Reduce 



MapReduce: PageRank 
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¨  Compute rank for web page P as average rank of 
pages that link to P 

¨  Initialize rank for every web page to 1 
¨  Map(a web page W, W’s contents) 

¤ For every web page P that W links to, output (P, W) 

¨  Reduce(web page P, {set of pages that link to P}) 
¤ Output rank for P as average rank of pages that link to P 

¨  Run repeatedly until ranks converge 



MapReduce Execution 
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Partition Map Coalesce Reduce 

When can a Reduce task begin executing? 



Synchronization Barrier 

September 11, 2017 EECS 498 – Lecture 2 
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Partition Map Coalesce Reduce 



Fault Tolerance via Master 
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Workflow (Map) 

¨  MapReduce library in the user program splits input 
files into M pieces. 

¨   Worker assigned the map task, reads content of 
the corresponding input split – parses key/value 
pairs and passes the pair to the user-defined Map 
function.  
¤   The intermediate pair produced by Map stored in 

local memory 



Workflow (Reduce) 

¨   The buffered pairs are partitioned into R regions 
using the partitioning function (e.g., the hash) 

¨   Locations of these pairs are sent to master who 
sends it to reduce workers. 

¨   Reduce workers uses remote procedure calls to 
read the buffered data. 

¨   After reading data, it groups them according to the 
key (sorts). 

¨   It iterates over the intermediate data and for each 
key encountered.  



Failures 

¨  Worker failures 
¤ Master pings workers periodically. 

n   No response within a certain time indicates failure. 
n   Tasks reset to idle and reassigned. 

n   Note that completed map tasks are re-executed since results 
stored on local discs and could become inaccessible. 

¨  Master failures (unlikely) 
¤ Periodically, checkpoints (later) the master state (which 

tasks are idle, in progress, completed) and the identity 
of the workers. 

¤ Return to the last checkpoint. 


