LECTURE 2

Source

MapReduce: Simplified Data Processing in Large
Clusters

Jefferey Dean and Sanjay Ghemawat

OSDI 2004

Example Scenario

23andMe

1 Genome data from roughly one million users
125 MB of data per user

1 Goal: Analyze data to identify genes that show
susceptibility to Parkinson’s disease

Other Example Scenarios

-1 Ranking web pages GO 8].6

100 billion web pages

11 Selecting ads to show

Clickstreams of over one billion users

Lots of Datal

Although the derived tasks are simple, Petabytes or
even exabytes of data

0 Impossible to store data on one server

0 Will take forever to process on one server

Need distributed storage and processing

How to parallelize?

Desirable Properties of Soln.

Scalable
Performance grows with # of machines

Fault-tolerant

Can make progress despite machine failures

Simple

Minimize expertise required of programmer

Widely applicable

Should not restrict kinds of processing feasible

Distributed Data Processing

Strawman solution:
Partition data across servers
Have every server process local data

Why won’t this work?

Inter-data dependencies:

Ranking of a web page depends on ranking of pages
that link to it

Need data from all users who have a certain gene to
evaluate susceptibility to a disease

MapReduce

Distributed data processing paradigm introduced by
Google in 2004

Popularized by open-source Hadoop framework

MapReduce represents

A programming interface for data processing jobs

Map and Reduce functions

A distributed execution framework

Map Operation

The Map operation is applied to each “record” to
compute a set of intermediate key value pairs.

Example = Temperature records between 1951 and

1955
Map function needs to be written by the user.

MapReduce Library groups together the values
associated with a key | (e.g. year) and passes them
to the Reduce function.

Reduce Operation

Reduce function also written by user.

Merges together the values provided to form a
smaller set of values

(e.g., Maximum temperature seen in each year)

MapReduce: Word count

11

map (key, value): //filename, file contents
for each word w 1n value:

EmitIntermediate (w, "1");

reduce (key, list (values)): //word, counts
int result = 0;
for each v 1in values:
result += Parselnt (v);

Emit (AsString (result));

Other examples

Distributed Grep
Map: Emits a line if a match is found to a pattern (key)

Reduce: Identity that simply shows the intermediate
data

Count of URL Access frequency

Map: Processes log of web page requests and outputs
<URL, 1>

Reduce: Adds the values for the same URL and outputs
<URL, count>

Execution

Map invocations distributed across multiple
machines

Need automatic partitioning of input data input to M

splits

Parallelly process each split

Reduce invocations are distributed by partitioning
the intermediate key space into R pieces using a
partitioning function (e.g., a hash(key)mod R).

14

MapReduce Execution

Partition

(ky, vy)
(ko) Vo)

(ko V)

Map Coalesce Reduce
(kq, V1) (a, b) (a, b)
L) (a, q) [7L(k], V!
(a, s)
(W, x) c d)
(kir Vi) . < > k2: 2
g es e
o\ e
)|ty ’
' (¢, 1) (Yo r) | (K4, v4)
(a, q) (y: 2)

15

MapReduce: PageRank

Compute rank for web page P as average rank of
pages that link to P

Initialize rank for every web page to 1

Map(a web page W, W's contents)
For every web page P that W links to, output (P, W)

Reduce(web page P, {set of pages that link to P})

Output rank for P as average rank of pages that link to P

Run repeatedly until ranks converge

16

MapReduce Execution

Partition

(ky, vy)
(ko) Vo)

Map Coalesce Reduce
(kq, V1) (a, b) (a, b)
L we (a, q) LKL V)
(a, s)
(W, x) . d)
(kir Vi) . < > k2: 2
s e
(w, p) 3 3
(v, 2) (% v°)
(kiy Vi) (a, s) W, x)

=

|When can a Reduce task begin executing? }

17

Partition

(ky, vy)
(ko) Vo)

(ko V)

(ky, vy)

(kil Vi)

(kil Vi)

Synchronization Barrier

Map

(a, b)
(w, p)

EECS 498 — Lectur!

Coalesce

Reduce

(a, b)
(a, q)
(a, s)

(k' v')

(c, d)
(c, 1)

(k?, v?)

(w, p)

(W, x)

(K, v°)

(v, 1)
(v,)

(k4 v*)

September

11,2017

Fault Tolerance via Master

18
User
Program
(1) fork. . o fo:rk : .(1’)‘ fork
, e
J) assign
n . as'sign reduce . .
) .- map
split O
Sp lit 1 (5) remote read
split 2 MO (4) local write
worker
split 4
Input Map Intermediate files Reduce

files phase (on local disks) phase

(6) write

output
file O

output
file 1

Output
files

Workflow (Map)

MapReduce library in the user program splits input
files into M pieces.

Worker assigned the map task, reads content of
the corresponding input split — parses key/value
pairs and passes the pair to the user-defined Map
function.

The intermediate pair produced by Map stored in
local memory

Workflow (Reduce)

The buffered pairs are partitioned into R regions
using the partitioning function (e.g., the hash)

Locations of these pairs are sent to master who
sends it to reduce workers.

Reduce workers uses remote procedure calls to
read the buffered data.

After reading datq, it groups them according to the
key (sorts).

It iterates over the intermediate data and for each
key encountered.

Failures

Worker failures

Master pings workers periodically.
No response within a certain time indicates failure.

Tasks reset to idle and reassigned.

Note that completed map tasks are re-executed since results
stored on local discs and could become inaccessible.

Master failures (unlikely)

Periodically, checkpoints (later) the master state (which
tasks are idle, in progress, completed) and the identity
of the workers.

Return to the last checkpoint.

