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Abstract—Recently, tuning the clear channel assessment (CCA)
threshold in conjunction with power control has been considered
for improving the performance of Wireless LANs. However, CCA
tuning can be exploited by selfish nodes in order to obtain an unfair
share of the available bandwidth. In particular, by increasing the
CCA threshold, a selfish client can manipulate the carrier sensing
mechanism to ignore the presence of other transmissions on the
medium; consequently, it increases the probability of accessing
the medium and therefore obtains a higher, unfair share of the
available bandwidth. In this paper, we propose a novel approach
to detect this misbehavior in WLANs. A key insight that leads to
our approach is that a misbehaving node that has increased its
CCA is unlikely to recognize low power receptions as legitimate
packets; by intelligently sending low power probe messages, an AP
can detect a misbehaving node with high probability. In a nutshell,
our contributions are as follows: (a) We are the first to quantify
the impact of selfish CCA tuning via extensive experimentation (b)
We propose a novel lightweight scheme for detecting selfish nodes
that inappropriately increase their CCA thresholds; we call our
scheme CMD (for Carrier sensing Misbehavior Detection) (c) We
perform extensive evaluations on an indoor 802.11 WLAN testbed
to demonstrate that CMD detects misbehaving users with very
high accuracy (approximately 95 % of the time). Furthermore, it
only incurs a false positive rate of less than 5 %1.

I. INTRODUCTION

It is well known that the distributed coordination function
(DCF) of the IEEE 802.11 MAC protocol provides long term
fairness to the users that are in the proximity of one another and
share the wireless medium [1]. Recently, there have been many
approaches that advocate the joint tuning of the transmission
power and the clear channel assessment (CCA) threshold to
improve spatial reuse and thereby, the achievable capacity in a
WLAN [2][3]. Tuning the CCA threshold opens the door for
a new kind of selfish or malicious behavior. By increasing the
CCA threshold, a “misbehaving” user2 will cause the carrier
sensing at the MAC layer to ignore the transmissions of other
users with which, it shares the medium. As a consequence,
(a) it may initiate transmissions when other transmissions are
in progress thereby increasing collisions and, (b) it will not
freeze its back-off counter while other nodes are transmitting
packets; as a consequence it is able to access the medium much
more frequently than other users and thus, enjoy a higher unfair
share of the bandwidth. Given these adverse effects, it becomes
critical that such misbehaving nodes are identified. In this paper,
we propose a novel approach for detecting such nodes with high
accuracy.

There are two observations that drive our approach. First,
a misbehaving node that increases its CCA threshold is likely
to have a good “link” to the AP to begin with. If this is not
the case i.e., the misbehaving node has a poor link to the AP,

1This work was done partially with support from the US Army Research
Office under the Multi-University Research Initiative (MURI) grants W911NF-
07-1-0318 and the NSF NeTS:WN / Cyber trust grant 0721941.

2We use the terms misbehaving, cheating, greedy and selfish interchangeably.
We also use the terms user, node and client interchangeably.

increasing the CCA can compromise the connectivity of the
node; in other words, in lieu of gaining throughput, it will
lose connectivity with the AP. Second, by increasing the CCA
threshold towards gaining an unfair share of the throughput, the
misbehaving node implicitly raises the bar with regards to the
RSSI (Received Signal Strength Indicator) required for correct
decoding. The receiver circuitry only tries to decode packets
that are received with an RSSI that is higher than the CCA
threshold. By increasing this threshold, packets should now be
received with a higher RSSI value.

Based on the above observations, we design the Carrier
sensing Misbehavior Detection (CMD) system. The key insight,
evident from the above observations, is that a node that has
increased its CCA threshold is unlikely to correctly recognize
low power transmissions from the AP as legitimate packets.
Thus, by sending low power probes, the AP can potentially
detect such nodes with high accuracy. In order to reduce the
overhead that will be incurred due to such probes, CMD first
identifies the set of possible badly behaving nodes. This set
consists of those nodes that are enjoying a significantly higher
share of the throughput than their counterparts that are within
the same cell. The probe messages are then only sent to the
members of this set. Note here that, under saturated conditions
where this problem is likely to be most critical, this set naturally
excludes nodes that are at the periphery of the cell or nodes with
poor links. Furthermore, as stated above, a node with a poor
link is unlikely to be able to increase its throughput share via
the malicious behavior considered.

In more detail our contributions in this paper are as follows:
• We experimentally quantify the impact of selfish CCA

tuning on the overall network performance. While previous
studies have considered the benign use of CCA tuning
to improve network performance, this is the first study
that quantifies the extent to which, fairness suffers if this
functionality were to be used inappropriately.

• We design and implement CMD for detecting such mis-
behaving nodes. CMD consists of two sub-components:
(a) The Throughput Monitoring Module (TMM), which
identifies a candidate set of possible misbehaving nodes
and (b) The Low power Probing Module (LPM), which
transmits the low power probes to effectively detect the
real misbehaving nodes from among this candidate set.
The implementation of CMD does not require any modifi-
cations to the IEEE 802.11 driver or firmware and can be
implemented in the user space in its entirety.

• We analytically compute system parameters for CMD such
that low false positive (wrongly classifying a well-behaved
node) and false negative (not recognizing a misbehaving
node) probabilities are achieved. We validate our analytical
results through measurements.

• We perform extensive experiments to evaluate CMD on an
indoor WLAN testbed, with various configurations. Our
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experiments show that CMD detects misbehaving nodes
with extremely high accuracy (95 %) with a very low false
positive rate ( < 5 %).

Our work in perspective: Selfish behaviors that target
802.11 functionalities have been considered and addressed
previously. In particular, there have been many efforts that try to
overcome behaviors where greedy nodes manipulate the back-
off timers with 802.11 [4][5][6][7][8][9]. While a misbehaving
node can enjoy lower back-off times by manipulating the CCA
threshold (lesser chances of freezing the back-off counter),
we wish to point out that the two attacks are not the same
(as discussed later, the previously proposed strategies cannot
deal with the considered attack). In particular, unlike the other
attacks, tuning the CCA threshold is protocol compliant:
the 802.11 standard [10] does not specify a value for the
CCA threshold. In fact, different wireless network interface
cards (NICs) have slightly different CCA thresholds. Although
currently, tuning the CCA threshold is a functionality that these
cards implement in the firmware, there are ongoing efforts to-
wards enabling this functionality [11]. There have already been
research efforts that advocate the tuning of this threshold for
performance improvements [2][3]. In addition, GNU software
defined radios [12][13] are expected to fully support 802.11
soon; such coexisting platforms that allow CCA tuning could
be misused to pilfer a higher share of the throughput.

Finally, note that we only consider uplink traffic since one
might expect that the APs, which are usually controlled by
service providers, are unlikely or do not have the incentive to
cheat; stated otherwise, it is unlikely that downlink traffic will
be prone to such misbehaviors. The uplink traffic of a WLAN
is not a negligible percentage of the total AP traffic anymore
[14]. The increasing popularity of p2p applications (such as
bit-torrent) result in a generation of a high proportion of uplink
traffic in commercial hotspots.

The rest of the paper is organized as follows. In Section II
we discuss relevant CSMA/CA behavior in brief and related
work. In Section III we describe our testbed at UC Riverside.
Our experiments to quantify the impact of the considered attack
are presented in IV. In Section V we present the design and
implementation of CMD; we analyze its performance in Section
VI. In Section VII we discuss the results of our evaluations
of CMD. Miscellaneous issues are deliberated upon in Section
VIII. Our conclusions form Section IX.

II. BACKGROUND AND RELATED WORK

In this section we provide a brief description of relevant
CSMA/CA functions and describe related work.

Relevant 802.11 functions: 802.11’s access policy is based
on CSMA/CA. Each user needs to sense the medium idle
for a specified time prior to transmitting data [15]. Whenever
the perceived power on the medium is higher than the CCA
threshold, a node must defer its transmission and enter the
backoff state. Upon reaching this state, a node initiates a back-
off counter with a random value. For each time slot that the
medium is free, the counter is decremented; for each time
slot that the energy on the medium is higher than the CCA
threshold, the value of a counter is left unchanged (or frozen).
When the counter value is decremented to zero, the node senses
the medium again. If the power on the medium is lower than
the CCA threshold (medium is idle) it transmits its packet;
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Fig. 1. The UCR wireless testbed.

otherwise, it re-enters the backoff state; the expected counter
value is now doubled.

When a misbehaving node increases its CCA threshold, it
can result in the following effects:

• It can now ignore those signals that it senses, but are lower
than this new increased threshold. Therefore, many of the
signals on the medium have now no effect on transmission
opportunities of the node.

• Other nodes that use the default CCA will sense the
transmissions of the selfish node and will defer their own
transmissions for longer periods.

• If a transmission of the misbehaving node is not successful,
it will enter the backoff state. However, since its CCA
threshold is increased, it is more likely that it will not
have to freeze its backoff counter; this is a consequence of
the node sensing the medium to be idle even if there are
ongoing transmissions.

An interesting experimental study of how carrier sensing
works in practice can be found in [16].

Related studies: While there have been prior efforts on
overcoming attacks that manipulate 802.11 functionalities, the
attack considered in this paper has not received prior attention.

Attacks that violate the 802.11 back-off timers: Kyasanur and
Vaidya [4] consider selfish behaviors where nodes deviate from
the standard backoff mechanism of 802.11. They propose a mit-
igation scheme where the receiver explicitly assigns the backoff
value to the sender. Konorski [9] proposes a misbehavior-
resilient backoff mechanism. Gagalj et al [7] use game theory to
develop a simple, localized and distributed protocol that guides
multiple selfish nodes to a Pareto-optimal Nash equilibrium.
Their work also considers attacks where nodes deviate from the
backoff mechanism. Radosavac et al [5] present a framework
based on Sequential Probability Ratio Test (SPRT) for detect-
ing nodes that deviate from the backoff mechanism. Finally,
Queseth [8] shows that it is hard to discourage selfishness by
punishment if we cannot quickly detect these behaviors. All
these studies however, are primarily related to the exploitation
of the backoff mechanism, which is not the focus of our work.
Note that in the considered setting, a node only increases its
CCA threshold and does not violate the back-off policies; thus,
these previously considered methods will not be effective.

Detecting other selfish behaviors: Raya et al [6] propose and
implement DOMINO, a system for detecting various selfish
behaviors in WLANs. DOMINO detects nodes that do not ad-
here to the standard backoff mechanism, send out data without
waiting for the standard DIFS period, use an oversized NAV
to retain the medium for a longer time, or intentionally corrupt
frames to get more medium access. In the attack considered,
misbehaving nodes increase their CCA; none of the above
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behavioral trends are observed (as an example, the DIFS periods
followed by the selfish nodes are legitimate). DOMINO cannot
accurately detect an attack where nodes ”do not” freeze their
back off counters due to ongoing transmissions. Consequently,
DOMINO cannot detect possible CCA manipulations. Note that
our approach can be complementary to DOMINO.

To the best of our knowledge we are the first to examine the
selfish behaviors of clients in WLANs that try to increase their
throughputs by exploiting the CCA threshold functionality.

III. EXPERIMENTAL SETUP

In this section we provide a brief description of our testbed
and the experimental methodology that is followed.

Testbed description: Our wireless testbed (Figure 1) is
located on the 3rd floor of Engineering Building II at UC
Riverside and consists of 32 Soekris net4826 nodes [17]; the
nodes mount a Debian Linux distribution with kernel v2.6, over
NFS. Each node is equipped with two miniPCI 802.11a/g WiFi
cards, an EMP-8602 6G with Atheros chipset and an Intel-2915.
We use the MadWifi driver [18] for the EMP-8602 6G cards.
We use a proprietary version of the ipw2200 AP and client
driver/firmware of the Intel-2915 card. With this version we
are able to tune the CCA threshold parameter.

Experimental methodology: For the purposes of our work
we deploy the nodes of our testbed in a WLAN configuration
(AP-client settings). The misbehaving clients exclusively use
our Intel cards, since these cards allow us to tune CCA. The
default value for the CCA threshold is -80dBm. All nodes use
the maximum power (18dBm). Misbehaving nodes increase
their CCA thresholds to the maximum value that guarantees
association with the affiliated AP, while maintaining at least the
throughput of the default settings (in isolation). We experiment
with a large number of configurations; a configuration is a tuple:
< AP ID, Client List, Cheater >. We provide more details on
every experiment in the following sections.

IV. THE PROBLEM

The 802.11 MAC protocol, as discussed earlier, provides
long term max-min fairness to nodes that share a link. Under
saturated conditions all the nodes that share a link, essentially
access the medium with the same probability. By increasing
the CCA threshold, a node can pilfer a higher share of the
medium than it is entitled to, from the other users. To reiterate,
transmissions that arrive at the receiver circuitry with an RSSI
lower than the CCA threshold are ignored. By increasing
the threshold, a node can ignore a significant fraction of the
transmissions that occupy the medium. As described before,
this not only causes increased collisions but also allows the
misbehaving node to reduce the fraction of the time that it
spends in the back-off state.

Our objective in this section is to demonstrate the effects
of this greedy behavior via an extensive set of experiments on
our testbed. We experiment with various configurations (with
varying locations of the APs and clients) and measure the
throughput gains of the selfish clients relative to their fair share
of throughputs under normal operating conditions.

Experiments with saturated traffic: We depict our first
results in Figure 2. The x-axis represents the throughput gains
of the selfish clients and the y-axis represents the percentage
of occurrences of this throughput gain (the gains are quantized

into three levels); we vary the number of clients connected to
the AP. We observe that in most cases (more than 85% of the
90 scenarios in total considered) the cheating user is able to
gain significantly over the well-behaved clients affiliated with
the same AP - at least 5Mbps gain from its fair share.

In some scenarios though (in fewer than 5% of the considered
scenarios), the selfish client is unable to pilfer more than 2Mbps
from the other clients. These cases arise when the selfish client
is far from the AP (e.g., node 36 is the AP and node 22 is the
selfish client) and as a result cannot increase its CCA to very
high values; doing so would result in its disassociation from
the AP. These studies suggest that a selfish node is likely to
choose a location that is as close to the AP as possible3.

In Figure 3 we present the temporal variations in throughput
from a representative experiment. In particular, we use node 31
as an AP and nodes 22 and 14 as clients (Figure 1). We initiate
fully saturated uplink traffic from both clients using iperf for
30 seconds. During the first ten seconds, both clients enjoy the
same share of the throughput; this is a direct artifact of the
fairness due to CSMA/CA. In the period between the 10th and
the 20th seconds, node 14 misbehaves by increasing its CCA
threshold from -80dBm to -50 dBm. We notice from Figure 3
that this results in a dramatic increase in the throughput of node
14. Meanwhile, node 22’s throughput degrades significantly.

We observe that if the misbehavior is temporary, the effects
are not long-lasting. As soon as the selfish user restores its
default settings, the throughputs of the rest of the clients quickly
return to the values under benign conditions. To understand this
effect, recall that the selfish user follows the standard backoff
mechanism with 802.11. After the settings are restored, within
a short period of time, the greedy client enters the backoff state
(senses energy on the medium). Then, the other users begin
reducing their backoff counters; they gain access to the medium
when their counter has reached the value of zero and at this
point in time, fairness is restored4.

Note also that even during the period where there is selfish
behavior, the well-behaved nodes still obtain some throughput;
this is directly attributed to the above reason i.e., packet losses
can still occur for the misbehaving node and it can still enter
the back-off phase.

Behavior with TCP traffic: In the previous experiments both
clients 14 and 22 had fully saturated uplink traffic, i.e., they
always had packets for transmission in their MAC layer queues.
Next, we consider unsaturated traffic and in particular, TCP
flows. The scenario again consists of well behaved clients and
a greedy user that increases its CCA threshold.

The use of TCP results in two somewhat conflicting effects
from the perspective of a well-behaved user. On the one hand,
since the selfish user accesses the medium more often (as
discussed above), the TCP packets experience longer delays
and round trip times (RTT); thus, the TCP congestion window
does not increase as rapidly as one might expect under normal
operations and the overall throughput suffers. On the other hand,
the selfish client itself might experience loss of packets and this
causes its TCP connection to reduce its congestion window. In

3Note that well behaved users may also exhibit similar behaviors in order
to improve the qualities of their links to the AP; such locations can result in
higher RSSI values and thus, higher transmission rates can be sustained.

4The speed with which this process occurs depends on the quality of the link
between the AP and the misbehaving client. If this link is lossy, the misbehaving
client is likely to experience a packet loss quickly and enter the back-off state.
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other words, packet losses have an impact on the data rate with
TCP and thus, the selfish user will access the medium less often
than it did in the UDP scenario.

In order to quantify the impact of CCA tuning on the
behaviors of transport layer protocols, we conduct a large
number of experiments. We use 90 different topologies using 15
different APs with 2 clients associated with them and consider
all possible combinations of the two commonly used transport
layer protocols, TCP and UDP. The misbehaving node employs
its greedy strategy for the entire 30 second period (abnormal
operation). The results are presented in terms of the average
throughputs of the well behaved and the selfish node in Figure
4; 95% confidence intervals are also shown. We also show
the performance during normal operations where both clients
are using the default settings. When the misbehaving client
is sending UDP traffic its throughput gains are large. As one
might expect, the impact is even higher when the well-behaved
client is using TCP. The results show that significant gains are
possible even if the link between the selfish user and the AP is
lossy; this is because UDP does not reduce its sending rate upon
experiencing packet losses. At the well behaved client, a lot of
timeouts are triggered with TCP and the application throughput
is extremely low (a few Kbps). When the misbehaving node
uses TCP and the well behaved node uses UDP, the former is
unable to achieve a significant gain in the throughput. This is a
direct consequence of two factors (a) TCP regulates the sending
rate thereby limiting the access opportunities for the selfish
client and, (b) by increasing its CCA threshold, the selfish user
can send more frequently, but when collisions are experienced
its TCP source backs off whereas the UDP source at the well-
behaved user does not reduce its rate. When both the well-
behaved node and the selfish node use TCP, the latter benefits.
Both TCP sources back-off when there are collisions; however,
the selfish node is able to recover much faster since it is able to
access the channel much more frequently. Figure 5 depicts the
number of bytes sent per client for a representative configuration
(AP-node 44, selfish client-node 13, well behaved-node 19).

To summarize, our experiments demonstrate that increas-
ing the CCA threshold can lead to significant throughput
benefits for the selfish client while hurting the other well-
behaved clients, in a majority of the cases and with different
transport layer protocols.

V. DETECTION SYSTEM

In this section, we describe our scheme for detecting nodes
that increase their CCA thresholds to gain an unfair throughput
advantage in WLANs. We call our scheme CMD for Carrier
sensing Misbehavior Detection system.

CMD is comprised of two sub-component modules: the
first module, which we call TMM for Throughput Monitoring

Module, aims to identify the set of potential cheating clients;
note here that this set consists of those clients that are suspected
of cheating but may not necessarily be real misbehavers. The
second module LPM (for Low power Probing Module) tries
to identify the real misbehaving clients. The key insight that
motivates the design of LPM is that nodes that have increased
their CCA thresholds may not be able to correctly decode low
power probes.

A. TMM: The Throughput Monitoring Module
As alluded to earlier, CMD sends probes in order to achieve

its goal of detecting misbehaving users. Sending probes to all
the clients associated with an AP can be prohibitive in terms of
overhead. The goal of TMM is to identify the nodes that could
be potentially cheating by increasing their CCA thresholds.
Since the IEEE 802.11 is inherently fair, a node that gets a
higher share of the available bandwidth could be a potential
cheater. Note that it is not necessary that a node that gets a
higher share of the bandwidth is essentially a cheater since
different clients might have different traffic demands; the only
conclusion that one can make is that such a possibility exists.

In order to identify the nodes that have a higher share of
the medium, TMM monitors the volume of uplink traffic from
each and every client. A node that is able to send a much larger
volume of traffic is identified as a potential miscreant.

In order to demonstrate the effectiveness of this approach
in terms of including misbehaving nodes in the set output by
TMM, we perform the following experiment. We set up node
31 as an AP and include 3 associated clients (nodes 14, 22 and
37); each client sends saturated traffic to the AP. We measure
the number of packets transmitted from each client to the AP for
a period of 10 seconds under two different scenarios: (a) when
no client cheats and, (b) when client 37 cheats. The results are
presented in Table I.

These results suggest that monitoring the traffic can be
effective in identifying misbehaving nodes. However, recall that
in our experiments all clients have fully saturated uplink traffic.
If the clients do not have saturated traffic they may not all have
the same throughput under normal operations. In particular, if
one of the clients produces a higher volume of uplink traffic,
it will be mistakenly classified as a cheater if we were to just
use TMM to identify the misbehaving nodes. To illustrate this
we perform another experiment in which the same topology as
in the previous case is used. The clients are now all benign.
However, they have different application data rates: client 37
sends traffic at 2 Mbps, client 22 sends at 1 Mbps and client
14 at 24 Mbps.

Table II presents the results from this experiment. We observe
that if TMM was used to classify nodes as cheaters, it would
falsely conclude that client 14 is one. Thus, we need to further
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Client 14 22 37
Benign 9833 10521 10461

Cheating 320 521 21333

TABLE I
TMM IS EFFECTIVE WITH SATURATED

TRAFFIC

Client 37 22 14
# Packets 1702 852 20322

TABLE II
TMM CAN BE MISLEAD WITH

UNSATURATED TRAFFIC

# Clients 3 5
Probing 26.1 21.8

No Probing 28.0 24.1

TABLE III
OVERHEAD WITH LPM

check if the nodes that are identified by TMM as potential
cheaters are indeed cheaters or are legitimate recipients of
higher throughputs; we do this using LPM (described later).

Implementation of TMM: We implement TMM in the user
space. We develop a C application using libpcap [19]; the
application is run at the AP and captures all the packets that
arrive at its wireless interface. It internally maintains statistics
in terms of how many packets are seen from each clients in a
Z second time window (we will refer to Z as the monitoring
window size). It then compares the number of packets from
each client in order to identify the potential cheaters; if the
number of packets that a client transmits, exceeds its fair share
by X percent (we will refer to X as the deviation value), it is
considered to be a possible cheater. We defer a discussion on
how to choose the values of X and Z to Section VII.

When the potential cheaters have been identified, TMM calls
LPM (described in the next section) to determine whether
or not a “potential cheater” is indeed a “cheater”. With this
implementation we do not rely on an already available network
monitoring system (for example, Ethereal and tcpdump). In-
stead, it computes the statistics online. In Algorithm 1, we give
the high-level pseudocode of TMM.

Data: IP addresses of the AP’s clients
Result: A potential cheater
begin

Every Z seconds do:1

for i = 1 to num clients do2

if packets(i) > (1 + X
100 ) · ( total packets

num clients ) then3

Invoke LPM towards Client i4

end
end

end
Algorithm 1: Pseudocode for TMM

B. LPM: The Low Power Probing Module
The design of LPM is motivated by the observation that all

the signals that arrive at the circuitry of a receiver with a re-
ceived signal strength lower than the CCA threshold, are treated
as noise; the receiver does not attempt to reconstruct packets
from such signals [2]. Thus, a node that increases its CCA
with the objective of increasing its throughput will not be able
to correctly decode packets that are received with low powers.
Thus, by having the AP probe the potential cheaters (determined
by TMM) with low power packet transmissions, LPM achieves
its goal of accurately identifying the real misbehaving clients.

A cheating node that increases its CCA towards obtaining
a larger share of the available bandwidth, is likely to pick the
maximum possible CCA without compromising on its connec-
tivity with the AP5. The larger the CCA threshold, the higher are
the number of possible ongoing transmissions that the carrier
sensing logic ignores. If the CCA threshold is only increased
slightly, the selfish node will not be able to achieve significant

5We assume this to be the selfish behavior for now; other possible variants
are discussed in section VIII.

performance gains. Note here that due to this very reason, it
is unlikely that nodes that are either distant from the AP (or
have poor quality links) will be able to effectively launch the
attack under consideration; they will not be able to increase
their CCA thresholds significantly without compromising their
connectivity to the AP.

Design of LPM: The new CCA threshold (chosen by a selfish
node) is based on the RSSI from the AP under default operating
conditions. If the AP transmits with lower powers (as compared
with default settings), the RSSI value at a receiver is reduced.
Going further, if this transmission power is considerably low-
ered, packets may arrive at the misbehaving node’s antenna
with an RSSI that is smaller than its increased CCA threshold.
This is the key idea that drives LPM. The AP, using a reduced
transmission power, sends a probe packet to each client that has
been flagged as a potential misbehaving client by TMM. If a
client node has increased its CCA to the extent that it exceeds
the RSSI of the received probe packet, the client node cannot
respond to the AP. The latter waits for a preset period of time
for the client’s response; if no response is received, the AP flags
the client as a misbehaving node. To reduce the possibility of
false alarms, LPM challenges the potential cheaters (listed by
TMM) with successive ICMP ECHO REQUEST packets (64
bytes), sent using a reduced transmission power. The client is
expected to reply to each probing packet that is received from
the AP. If more than W% of the reply packets are missing from
a particular client, the AP declares the client as a misbehaving
client. In Section VI we discuss how we choose W and the
probing power such that there is a good trade-off between the
false positive rate and accurate detection with our system.

Data: Client i which has been flagged as a potential
cheater by TMM

Result: Whether to declare it as a cheater
begin

Ping(i, 10, Powerprobe)1

if more than W% of reply packets are missing then2

Declare Client i as a cheater3

end
end

Algorithm 2: Pseudocode for LPM

TMM reduces the probing overhead due to LPM. We point
out that LPM increases the overhead by sending probe packets
on the medium. If the AP were to probe all the clients, then the
performance degradation could be significant, especially when
the number of clients is large. Table III shows the degradation
in the aggregate throughput of an AP when (i) all the clients
had fully saturated uplink traffic and (ii) the AP was constantly
probing the clients in a round robin fashion with 10 probe
packets sent each client during a probe cycle.

We observe that if there are 3 clients associated with the
AP the degradation is about 7 %; when there are 5 clients, the
degradation is about 9.5%. As the number of clients increases,
the degradation is higher; therefore, it is crucial to reduce the
number of clients that LPM checks for real cheaters. Based on
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this, it is clear that TMM plays an important role in our system.
Note also that currently, we use the 64 byte

ICMP ECHO REQUEST messages as probes; it is possible
to reduce the overhead by creating special probe messages
that are of smaller size. However, this will increase the
complexity of the implementation (the current implementation
is described below) and may require modifications to the
802.11 driver/firmware.

Implementation details of LPM: We have implemented
LPM in the user space, on top of the wireless NIC’s driver. It is
run at the access point. Our implementation uses a shell script
that invokes the ping application [20] to probe the clients. More
specifically, the script consists of a loop which parses the list of
clients that are flagged as potential cheaters by TMM. We set
the transmission power of the “ping” packets using the iwconfig
command. Based on the results of the ping trials, LPM decides
on whether a client is a cheater. This implementation is generic
in that it can be run in conjunction with most commodity
wireless NIC drivers.

For our Atheros cards, which use the MadWifi driver, we
have also implemented our own probing utility using the Click
Modular Router [21]. We use the ICMPPingSource and
ICMPPingResponder elements to implement a probe sender
and a probe receiver, respectively. The SetTXPower element
enables us to set the transmission power for each ICMP packet
sent out by LPM. This element simply sets the Wifi TXPower
Annotation flag on the packet to be sent, and we do not need
to subsequently call iwconfig to set the power.

VI. AN ANALYTICAL MODEL TO DERIVE SYSTEM
PARAMETERS

The design of LPM is based on the observation that a
cheating node with an increased CCA is unlikely to respond to
probe packets sent by the AP with a low transmission power.
There are two cases, however, where LPM may not lead to
correct diagnosis: (i) Benign clients located at the border of the
AP’s coverage area may not be able to respond to low power
probe packets sent from the AP; these packets are likely to
arrive at their circuitry with an RSSI lower than the default
threshold CCAdef . This results in what we call false positives.
(Note here that even though the links to such clients are likely to
be poor, some of these clients may be getting a higher share of
throughput in unsaturated traffic conditions). (ii) Misbehaving
nodes could be so close to the AP that in spite of the AP using
reduced transmission powers, probe packets can still reach their
circuitry with an RSSI higher than their increased CCA value.
In this case, the misbehaving node is not identified i.e., we have
a false negative. In this section we analyze the performance of
our system to determine various parametric inputs to CMD such
that the false positive and false negative rates are kept low.

Propagation Model: In order to analytically determine the
false positive and the false negative rates, we need to assume
a propagation model. We calculate the received power Pr at
distance r with transmission power P to be:

Pr =
P

rα
· Y, (1)

where α is the path loss exponent and Y is a random variable
that is log-normally distributed. The random variable Y models
the shadow fading effects and it has a mean value of one
and a standard deviation equal to the shadow fading variation

(obtained from measurements). The above model has been
shown to be fairly accurate in indoor settings [22] [23].

False positives: We first compute the false-positive rate.
The probability f(P, r) that a probe packet from the AP arrives

at distance r with an RSSI below CCAdef is given by:

f(P, r) = Pr{
P

rα
· Y < CCAdef} = Pr{Y <

CCAdef

P
· rα}

=
1

2
+

1

2
· erf(

ln(
CCAdef · rα

P
) − µ

σ ·
√

2
), (2)

where µ and σ are the parameters of the log-normal distri-
bution (computed from the mean and the measured standard
deviation). We plot this probability in Figure 6. In generating
this probability, the following values are used to derive the
results: (i) CCAdef =−80dBm, (ii) the shadow fading variation
is 5dBm (as measured from our testbed), and (iii) α = 5, which
is a typical value for the path loss exponent for an indoor
environment [22] [24]. The figure shows that with extreme low
power operations (1.5 mW), the probability of violating the
default CCA threshold is extremely high (false positive); with
moderately low powers (3 mW), this same probability is almost
zero upto distances of 50 meters.

Equation (2) gives the probability that a packet arrives at the
client’s circuitry, after traveling distance r, with power less than
CCAdef . Let us assume that LPM transmits 10 probe packets
and expects n replies. Let prpos(P, r, n) denote the probability
that fewer than n probe packets6 arrive at a distance r with an
RSSI greater than CCAdef . This probability is given by:

prpos(P, r, n) =
n∑

k=1

(1 − f(P, r))k−1 · f(P, r)10−k+1 (3)

In order to calculate the false detection rate at distance r when
the transmission power is P , we need a spatial distribution of
nodes s(r). As discussed in Section IV, nodes tend to stay
close to the AP in reality. In order to get numerical results,
a possible spatial distribution that can be used based on the
previous observation is s(r) = 1

ln(50)·r , for 1 ≤ r ≤ 50 m and
zero otherwise7 (the constant 1

ln(50) is chosen to assure that
function s is a valid probability density function). With this
spatial distribution model, the false positive rate πpos(P, r, n) at
a distance r, when the transmission power is P is given by:

πpos(P, r, n) = prpos(P, r, n) · s(r) · ∆r|∆r→0 (4)

We can then compute the overall false positive rate πp(P, n)

when the AP is using transmission power P and when LPM
expects n replies to its probes by integrating over the area of
the cell:

πp(P, n) =

∫ ∞

0
prpos(P, r, n) · s(r) dr (5)

False negatives: Similar steps as above are taken in order
to compute the false negative rate. However, we first need to
estimate the CCA threshold, that a cheating node at distance
r is likely to use. The goal of the selfish client is to avoid as

6We assume that the channel is reciprocal and thus, if the probe message is
correctly received, the corresponding ICMP ECHO REPLY packet will
be received with very high probability; this assumption ensures the tractability
of our analysis.

7Nodes are expected to have a minimum distance -e.g. 1m - from the AP
which in commercial hotspots are deployed mainly on ceilings. Note that our
analysis can incorporate any other spatial distribution.
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many transmissions as possible by increasing its CCA while
maintaining its connectivity with the AP (note that this is when
the AP is using the default power Pdef , i.e., under default
operations). The CCA chosen according to this strategy can
be computed by solving the following optimization problem:

maximize CCAcheat(r) (6)

subject to Pr{
Pdef

rα
· Y > CCAcheat(r)} = 1 (7)

CCAcheat(r) ∈ {−80,−79, ..., 1, 0}dBm (8)

Solving the above optimization problem for various distances
r, we get Figure 7. We present in the same figure the corre-
sponding CCAcheat(r) (the CCA threshold tuned as per the same
strategy), measured from our testbed; for a given location of the
cheater, we increase the CCA threshold to the extent possible
without compromising the connectivity with the AP. The results
indicate that the analytical results match reasonably well with
the measurement results; the coefficient of determination R2

[25] is calculated to be equal to 0.71.
Having computed CCAcheat(r), we now proceed to calculate

the false negative rate. We first calculate the probability h(P, r)

that a signal transmitted from the AP with power P arrives at
distance r with a RSSI greater than CCAcheat(r):

h(P, r) = Pr{
P

rα
· Y > CCAch(r)} = Pr{Y >

CCAch(r)

P
· rα}

=
1

2
−

1

2
· erf(

ln(
CCAch(r) · rα

P
) − µ

σ ·
√

2
) (9)

In Figure 8 we plot h(P, r) for various AP transmission
powers and distances from the AP (using the same parameters
as previously) and CCAcheat(r) computed as the solution to
the optimization problem defined in (6)-(8). We observe that
if the cheater is extremely close to the AP (≈ 1 m), there is
no way of detecting it with low power probes. However, if the
cheater is further than 1.5 meters, the use of a transmission
power that is lower than say 3.5 mW can lead to an extremely
high probability of detection, i.e., the probability that the signal
is higher than the CCA set by the cheater is almost zero.

Given h(P, r), we now calculate the probability prneg(P, r, n)

that no fewer than n packets arrive at distance r with an RSSI
greater than CCAcheat(r):

prneg(P, r, n) =
10∑

k=n

h(P, r)k · (1 − h(P, r))10−k (10)

Using a spatial distribution of the nodes s(r), we can calculate
πneg(P, r, n), the false negative rate at distance r when the
transmission power of the AP is P to be:

πneg(P, r, n) = prneg(P, r, n) · s(r) · ∆r|∆r→0 (11)

Integrating over the whole area, we get the overall false
negative rate πn(P, n) when the AP transmits with power P and
LPM expects n responses to its probes:

πn(P, n) =

∫ ∞

0
prneg(P, r, n) · s(r) dr (12)

Equations (5) and (12) provide the false positive and false
negative rates of our system. These results also provide insights
on the appropriate values for Powerprobe and n; these values
should be chosen so as to satisfy a specific performance crite-
rion. In short, we seek to minimize these probabilities; however,
it is unlikely that they are both minimized together. Hence, we
minimize the sum πp(P, n)+πn(P, n). Solving this minimization
problem yields n = 9 and Powerprobe = 3.3mW . This means
that in the LPM engine we need to set W = 10% (since 10
probes were set) and Powerprobe = 3.3mW . In Figure (9) we
present the ROC curve (Receiver Operating Characteristics)
for the case n = 9 and we point out the operating point
which corresponds to Powerprobe = 3.3mW . Each point on
this curve corresponds to a different Powerprobe. Increasing
Powerprobe increases false negatives; decreasing it will increase
false positives. The operating point is the one that minimizes
the aforementioned objective function. The corresponding false
positive rate and false negative rates are: πp = 0.0053 and
πn = 0.054. Note that with these settings, our detection system
is able to achieve high detection accuracy.

VII. EVALUATION OF CMD

In this section, we evaluate CMD.
Evaluation of the TMM module: First, we perform ex-

periments to evaluate how TMM performs with various com-
binations of its input parameters; in particular, we consider
the monitoring window size Z and the deviation X% from a
client’s fair share for it to be considered a potential cheater.
Ideally, we want TMM to (i) flag all cheating nodes as potential
cheaters and (ii) minimize the number of well-behaved nodes
that are included in the set of potential cheaters. To evaluate
the performance of TMM, we perform the following two sets
of experiments.

(a) Monitoring legitimate traffic: In this set of experiments
we monitor the traffic at the AP when no clients cheat and
all clients have fully saturated uplink traffic. We vary both the
monitoring window size Z and deviation X% from each client’s
fair share. The false alert rate, which represents the probability
that a well-behaved client is flagged as a potential cheater, is
depicted in Figures 10-12; in these experiments, the numbers
of clients associated with the AP are 2, 3 and 4, respectively.

From the results, we observe that when the deviation is
chosen to be smaller than 20% the false alert rate can be very
high, especially when the monitoring window size is small. For
instance, when the deviation is set to 10% and the monitoring
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Fig. 10. TMM false alert rate when there
is no selfish user (2 clients).
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Fig. 11. TMM false alert rate when there
is no selfish user (3 clients).
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Fig. 12. TMM false alert rate when there
is no selfish user (4 clients).
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Fig. 13. TMM flagging rate of cheaters
when there is a greedy client (2 clients).
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Fig. 14. TMM flagging rate of cheaters
when there is a greedy client (3 clients).
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Fig. 15. TMM flagging rate of cheaters
when there is a greedy client (4 clients).

window size is 1 second, a well-behaved client is mistakenly
flagged as a potential cheater with a likelihood of more than
30%. However, if we increase the deviation, the false alert rate
decreases. When the deviation is set to 30% or higher, the false
alert rate is very small. The results are somewhat expected since
small deviations in the expected fair share of throughput are
likely; furthermore, transients are possible if the monitoring
window size is not sufficiently large. Reducing the false alert
rate will reduce the overhead incurred due to probing with LPM.

(b) Monitoring the cheating nodes’ traffic: In this set of
experiments we monitor the traffic at the AP in the presence
of cheating nodes. Again, all clients have fully saturated uplink
traffic. In this case, we are interested in the false negative rates
of TMM; in other words, we seek to measure the probability
that TMM does not include a real cheater in its output set.
Figures 13-15 depict the probabilities that a cheating node
is successfully identified as a potential cheater. From the
results, we observe that when we use relatively small deviations
(smaller than 30%) the TMM module almost always flags the
cheating node as a potential cheater. If however it uses a
deviation value that is higher than 30%, it misses the cheater
in some cases.

The experimental results with both scenarios suggest that
there is a tradeoff between the detection accuracy and the de-
viation value. Small deviation values help identify the cheating
nodes but they may lead to high false alert rates under benign
conditions; on the other hand, large deviation values help reduce
the false alert rate but may miss some cheating nodes. In the
current version of TMM, we set the monitoring window size
to be 1 second and the deviation value to be 30%. Based on
the experimental results, these values achieve a good balance
between the false alert rate and the false negative rate of TMM.

Evaluation of the LPM module: LPM determines whether
a potential cheater reported by TMM is indeed a cheater. We
perform another set of experiments to quantify its detection
accuracy. We experiment with a variety of configurations that
take into account both saturated and unsaturated uplink traffic.
In particular we experimented with 132 configuration tuples.
We utilize iperf to generate uplink traffic. The cheating
node always has saturated traffic (since as discussed earlier,
a misbehaving client is expected to adopt a greedy strategy

in exactly these scenarios) and misbehaves shortly after the
initiation of the experiment (8-10 seconds approximately). Each
experiment lasts for 1 minute. We vary the transmission power
of the probe packets between 3, 4, and 5 dBm. Recall that
our analysis in Section VI suggests a probe power of 3.3mW ;
this corresponds to approximately 5dBm. We compute the false
positive and false negative rates with the LPM module. Note
that since LPM takes the output of TMM as its input, these
rates are the false detection rates for the whole system, CMD
(the output of LPM is the output of CMD). The results are
presented in Table IV.

Powerprobe False positive rate False negative rate
5dBm 0.015 0.060
4dBm 0.015 0.030
3dBm 0.045 0.015

TABLE IV
DETECTION ACCURACY OF LPM

From Table IV, we note that LPM produces low false positive
rates and low false negative rates in real experiments; even
when the transmission power of the probe packets is varied, the
maximum false positive and the maximum false negative rates
are no higher than 4.5% and 6%, respectively. We also observe
the tradeoff between false positive rates and false negative rates
as we reduce (or increase) the probing power; if we keep
reducing the probing power, the false positive rate increases
while the false negative rate decreases. From among the three
probing powers we have used, the sum of false positive rate
and the false negative rate is the smallest when Powerprobe

is 4dBm. This value is slightly lower than the one derived
with the analysis in Section VI. The reason for this is that
the assumed propagation model and its parameters (i.e., path
loss exponent) or the spatial distribution of nodes s(r) with the
analysis, may not fit with the characteristics of our testbed with
very high fidelity. Furthermore, in our analysis we focus on
the performance of LPM, without considering the impact of
TMM. It is hard, if not impossible, to model the interactions
between the two modules accurately. This would require s(r)·∆r

to include also the probability of TMM reporting a node, at
distance r, as a potential cheater; this is difficult because it
requires the knowledge of the traffic patterns of all clients (e.g.,
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whether they send saturated traffic or not and their application
data rates) at each location. In spite of these limitations, note
that the false positive rate and false negative rate analytically
derived (i.e., πp and πn in Section VI) are very close to what
is observed with experimental results on the real testbed.

In our experiments LPM mistakenly declares a few well-
behaved nodes as cheaters; this happens especially when some
of the clients have unsaturated uplink traffic. As discussed in
Section IV, clients far away from the AP cannot gain much
by applying the considered selfish strategy because they cannot
increase their CCA thresholds to a significant extent. In the
presence of unsaturated traffic, some well-behaved clients that
are far away from the AP are wrongly flagged as potential
cheaters by TMM if their application data rates are higher than
that of those that are closer to the AP. Consequently with LPM,
the probe packets from the AP may reach these clients with
a RSSI below CCAdef = −80dBm. Thus, these well-behaved
clients are unable to recognize these packets and send responses
to the AP. However, our experiments demonstrate that such
possibilities are rare given that the poor quality of the links
to such clients limits the throughputs that they can achieve.

We observe that the false negative rate is about 6% when the
transmission power of probe packets is 5dBm. As we reduce
this power, the false negative rate decreases significantly. For
instance, when probe packets are transmitted at power 3dBm,
the false negative rate drops to about 1.5%. Interestingly, if we
further reduce the transmission power of probe packets to 1dBm,
all cheating nodes are successfully reported as cheaters8.

VIII. DISCUSSION

Mitigating the effect of CCA exploitation: The goal of
this work is to detect users that selfishly increase their CCA
thresholds in order to get throughput gains. Mitigating the
effects of such misbehaving nodes will be considered in the
future; however, we deliberate on possible ways of overcoming
the adverse effects of such cheaters. The simplest solution is to
punish a cheating client by disassociating it completely from the
AP. There are other mitigation approaches that are less harsh. As
an example, the AP can choose to reduce its transmission power,
which forces the cheating client to decrease its CCA threshold if
it wants to communicate with the AP. Alternatively the AP may
intentionally drive down the throughputs of such misbehaving
clients. In particular, the AP could “not send” MAC layer ACKs
to the cheating node for some of its frames. As a result, the
cheating node has to back off with a larger contention window;
this in turn, increases the opportunity of access to the other well-
behaved nodes. Implementation of this approach is challenging
because currently most commodity NICs implement MAC layer
acknowledgements in the firmware.

Response to improved cheating strategies: In Section VI
we assume that a cheating node always chooses the maximum
CCA threshold that guarantees its connectivity with the AP.
This assumption is reasonable only if the cheating node is
greedy to the maximum extent (the strategy enables the node to
ignore as many transmissions as possible). If the misbehaving
node knows that CMD has been deployed, it might set a CCA
threshold lower than that to evade detection. Note here that
a less significant increase in CCA will have a lower impact

8However we expect that such a low Powerprobe can lead to a high false
positive rate.

on the network; thus, there is an inherent trade-off between
the performance gain and the possibility of detection that the
cheater has to consider. Note that it is still possible to detect
misbehavior by further reducing the transmission power of the
probe packets. This may lead to higher false positive rates.
However, from Figure 9 we notice that even if we use the
lowest transmission power considered, the false positive rate
is still very low (relative to the specific spatial distribution).

IX. CONCLUSIONS

In this paper we identify a new, powerful selfish behavior
in WLANs: a misbehaving client increases its CCA to im-
prove its chances of accessing the medium. CCA tuning has
been considered previously towards providing network wide
performance enhancements; this is the first study that considers
the misuse of this capability. With extensive experimentation
on a real testbed, we show that such selfish behaviors can
cause extremely unfair allocations of the wireless medium.
We develop a detection scheme that we call CMD for Carrier
sensing Misbehavior Detection. We mathematically analyze its
detection accuracy. We also implement CMD on an indoor
wireless testbed. Through experiments we demonstrate that
CMD detects such selfish clients in WLANs with extremely
high accuracy and with low false positive rates.

REFERENCES

[1] M.Heusse, F.Rousseau, G.Berger-Sabbatel, and A.Duda. Performance
anomaly of 802.11b. In INFOCOM, 2003.

[2] V. Mhatre, K. Papagiannaki, and F. Baccelli. Interference Mitigation
through Power Control in High Density 802.11 WLANs. In IEEE
INFOCOM, 2007.

[3] I. Broustis, K. Papagiannaki, S. V. Krishnamurthy, M. Faloutsos, and
V. Mhatre. MDG: Measurement-Driven Guidelines for 802.11 WLAN
Design. In ACM MOBICOM, 2007.

[4] P. Kyasanur and N. Vaidya. Detection and Handling of MAC layer
misbehavior in wireless networks. In DSN, 2003.

[5] S. Radosavac, J. S. Baras, and I. Koutsopoulos. A framework for MAC
protocol misbehavior detection in wireless networks. In WiSe, 2005.

[6] M.Raya, J-P.Hubaux, and I.Aad. DOMINO: A System to Detect Greedy
Behavior in IEEE 802.11 Hotspot. In MobiSys, 2004.

[7] M. Cagalj, S. Ganeriwal, I. Aad, and J.-P. Hubaux. On selfish behavior
in CSMA/CA networks. In INFOCOM, 2005.

[8] O.Queseth. The effect of selfish behavior in mobile networks using
CSMA/CA. In VTC, 2005.

[9] J. Konorski. Multiple access in ad hoc wireless LANs with noncooperative
stations. In NETWORKING, 2002.

[10] ANSI/IEEE 802.11-Standard. 1999 edition.
[11] Ath5k project. http://madwifi.org/wiki/About/ath5k.
[12] GNU radio trac. http://gnuradio.org/trac.
[13] USRP SDR platform. http://www.ettus.com.
[14] J.Lee, S.Choi, and H.Jung. Analysis of User Behavior and Traffic Pattern

in a Large-Scale 802.11a/b Network . In WiNMee, 2005.
[15] B. O’hara and A. Petrick. IEEE 802.11 Handbook, a Designer’s

Companion. IEEE Press, Second Edition, ISBN 0-73-814449-5.
[16] K.Jamienson, B.Hull, A.Miu, and H.Balakrishnan. Understanding the

Real-World Performance of Carrier Sense. In ACM SIGCOMM Work-
shops, 2005.

[17] Soekris-net4826. http://www.soekris.com/net4826.htm.
[18] The MAdWiFi driver. http://madwifi.org.
[19] PCAP Unix man page. http://www.tcpdump.org/pcap3 man.html.
[20] Ping Linux Man Page. http://linux.die.net/man/8/ping.
[21] Click Modular Router. http://read.cs.ucla.edu/click/.
[22] S. Zvanovec, P. Pechac, and M. Klepal. Wireless LAN Networks Design:

Site Syrvey or Propagation Models? In Radioengineering, Vol. 12, No. 4,
Dec. 2003.

[23] T. S. Rappaport. Wireless communications principles and practices,.
Prentice Hall, 2002.

[24] Path-loss. http://en.wikipedia.org/wiki/Path loss.
[25] N.R. Draper and H. Smith. Applied Regression Analysis. Wiley-

Interscience. ISBN 0-471-17082-8.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.


	Select a link below
	Return to Proceedings
	Return to Main Menu


