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Typical reconfigurable machines exhibit shortcomings that
make them less than ideal for general-purposecomputing. The
Garp Architecture combines reconfigurable hardware with a
standard MIPS processor on the same die to retain the better
features of both. Novel aspects of the architecture are pre-
sented, as well as a prototype software environment and pre-
liminary performance results. Compared to an UltraSPARC,
a Garp of similar technology could achieve speedups ranging
from a factor of 2 to as high as a factor of 24 for some useful
applications.
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In recent years, reconfigurable hardware—usually in the guise
of field-programmable gate arrays (FPGAs)—has been touted
as a new and better means of performing computation [1,
2, 3]. Promoters argue that FPGAs can be used to create
fast, application-specific circuits for any problem. Impressive
speedups have been documented for a number of tasks, includ-
ing DNA sequence matching [4, 5], textual pattern searching
[6], and RSA encryption [7], to name just a few.

Despite these successes, any computer built wholy out of
FPGAs must overcome some obstacles:

– FPGA machines are rarely large enough to encode entire
interesting programs all at once. Smaller configurations
handling different pieces of a program must be swapped in
over time. However, configuration time is too expensive for
any configuration to be used only briefly and discarded. In
real programs, much code is not repeated often enough to
be worth loading into an FPGA.

– No circuit constructed with an FPGA can be as efficient as
the same circuit in dedicated hardware. Standard functions
like multiplications and floating-point operations are big
and slow in an FPGA when compared to their counterparts
in ordinary processors.

– Problems that are worth solving with FPGAs usually in-
volve more data than can be kept in the FPGAs themselves.
No standard model exists for attaching external memory to
FPGAs. FPGA-based machines typically include ad hoc
memory systems, designed specifically for the first applica-
tion envisaged for the machine.
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Figure 1: Basic Garp block diagram.

– Wide acceptance in the marketplace requires binary com-
patibility among a range of implementations. The current
crop of FPGAs, on the other hand, must be reprogrammed
for each new chip version, even within the same FPGA
family.

To address some of these concerns, various researchers
have proposed building a machine that tightly couples reconfig-
urable hardware with a conventional microprocessor [2, 8, 9].
The organization of such a hybrid, however, remains an open
topic. In this paper we outline a candidate hybrid architecture,
which we call Garp, in which the FPGA is recast as a slave
computational unit located on the same die as the processor.
The reconfigurable hardware is used to speed up what it can,
while the main processor takes care of all other computation.
Fig. 1 shows the organization of the machine at the highest
level. Garp’s reconfigurable hardware goes by the name of the
reconfigurable array.

Garp has been designed to fit into an ordinary processing
environment—onethat includes structured programs, libraries,
context switches, virtual memory, and multiple users. The
main thread of control through a program is managed by the
processor; and in fact programs need never use the reconfig-
urable hardware. It is expected, however, that for certain loops
or subroutines, programs will switch temporarily to the recon-
figurable array to obtain a speedup. With Garp, the loading
and execution of configurations on the reconfigurable array is
always under the control of a program running on the main
processor.

Garp makes external storage accessible to the reconfig-
urable array by giving the array access to the standard memory
hierarchy of the main processor. This also provides immediate
memory consistency between array and processor. Further-
more, Garp has been defined to support strict binary com-
patibility among implementations, even for its reconfigurable
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hardware.
Details of the array architecture are given in the next sec-

tions, followed by an overview of the programming environ-
ment and a look at likely speedups for a few real applications.
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Garp’s main processor executes a MIPS-II instruction set ex-
tended for Garp. Any popular processor could have been used,
but the MIPS is a common basis of research within the univer-
sity community.

Garp’s reconfigurable array is composed of entities called
blocks (Fig. 2). One block on each row is known as a control
block. The rest of the blocks in the array are logic blocks, which
correspond roughly to the CLBs of the Xilinx 4000 series [10].
The Garp Architecture fixes the number of columns of blocks
at 24. The number of rows is implementation-specific, but can
be expected to be at least 32. The architecture is defined so
that the number of rows can grow in an upward-compatible
fashion.

The basic “quantum” of data within the array is 2 bits.
Logic blocks operate on values as 2-bit units, and all wires are
arranged in pairs to transmit 2-bit quantities. Operations on

1A complete reference manual will be available on the Web at http://
http.cs.berkeley.edu/projects/brass/garp.html.

32-bit quantities thus generally require 16 logic blocks. Multi-
bit functions are naturally laid out along array rows (Fig. 3).
With 23 logic blocks per row, there is space on each row for an
operation of 32 bits, plus a few logic blocks to the left and right
for overflow checking, rounding, control functions, wider data
sizes, or whatever is needed.

Four memory buses run vertically through the rows for
moving information into and out of the array. During array
execution, the memory buses are used for data transfers to
and from memory and/or the main processor. For memory
accesses, transfers are restricted to the central portion of each
memory bus, corresponding to the middle 16 logic blocks of
each row. For loading configurations and for saving and restor-
ing array state, the entire width of the memory buses is used.

The memory buses are not available for moving data be-
tween array blocks. Instead, a more conventional wire network
provides interconnection within the array. Wires of various
lengths run orthogonally vertically and horizontally. Vertical
wires can be used to communicate between blocks in the same
column, while horizontal wires can connect blocks in the same
or adjacent rows. Unlike most FPGA designs, there are no
connections from one wire to another except through a logic
block. However, every logic block includes resources for po-
tentially making one wire-to-wire connection independent of
its other obligations.

The loading and execution of configurations is under the
control of the main processor. Several instructions have been
added to the MIPS-II instruction set for this purpose, including
ones that allow the processor to move data between the array
and the processor’s own registers.

An individual configuration covers some number of com-
plete rows of the array, which may be less than the total number
of physical rows in the array. Distributed within the array is
a cache of recently used configurations, so that programs can
quickly switch between several configurations without the cost
of reloading from memory each time. As with traditional
memory caches, the size and management of the configuration
cache is transparent to programs.

Data registers in the array are latched synchronously ac-
cording to an array clock, whose frequency is fixed by the
implementation. No relationship between the array clock and
the main processor clock is required,although it is intended that
the two clocks be the same. A clock counter governs array ex-
ecution. While the clock counter is nonzero, it is decremented
by 1 with each array clock cycle. When the clock counter
is zero, updates of state in the array are stalled, effectively
stopping the array. (Copies to the array by the main processor
may still modify array state.) The main processor sets the ar-
ray clock counter to nonzero to make the array execute for a
specific number of array clock steps.

The control blocks at the end of every row serve as liaisons
between the array and the outside world. Among other things,
control blocks can interrupt the main processor and can initiate
data memory accesses to and from the array.

The division of the array into rows to simplify array man-
agement is a technique that was first reported for the Dynamic
Instruction Set Computer (DISC) [11]. Garp resembles DISC
also in the way that multi-bit operations are naturally oriented
across rows, and that global buses run orthogonally through
the rows for bringing values into and out of the array.
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Figure 5: The principal logic block functions. All
lookup tables are simultaneously indexed twice to
get two single-bit results. (See text.)
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Each logic block in the array can implement a function of up
to four 2-bit inputs. (Recall that the basic data quantum is
2 bits.) Operations on data wider than 2 bits can be formed
by adjoining logic blocks along a row (Fig. 3). Construction
of multi-bit adders, shifters, and other major functions is aided
by hardware invoked through special logic block modes.

Fig. 4 shows the main data paths through a logic block.
Four 2-bit inputs (

�
, � , � , � ) are taken from adjacent wires

and are used to derive two outputs. One output is calcu-
lated ( ! ), and the other is a direct copy of an input ( � ). Each
output value can be optionally buffered in a register,after which
the two 2-bit outputs can be driven onto as many as three pairs
of wires leading to other logic blocks. The logic block regis-
ters can also be read or written over the memory buses. The
“ � path” in a logic block allows for a wire-to-wire connection
independent of the function calculated by the logic block.

The principal logic block functions (modes) are illustrated
in Fig. 5. The four modes in the figure implement:

(a) an arbitrary 4-input bitwise logical function;
(b) a variable shift of up to 15 bits;
(c) a 4-way select (multiplexor) function; and
(d) a 3-input add/subtract/comparison operation.

Each lookup table in Fig. 5 performs the exact same func-
tion separately on the high and low bits of its operands. For
example, in table lookup mode (Fig. 5(a)), a 16-bit lookup
table specifies an arbitrary 4-input logical function " . This
function is independently applied to the high and low bits

of the inputs
�$#

, � #
, � #

, and � #
to generate the high and

low bits of the result; that is, ! 1 % "'& � #
1 ( � #

1 ( � #
1 ( � #

1 ) and! 0 % "'& �$#
0 ( � #

0 ( � #
0 ( � #

0 ) . The effect is to perform an arbitrary
logical function bitwise on the four 2-bit wide inputs.

The decision to make everything 2 bits wide is based on the
assumption that a large fraction of most configurations will be
taken up by multi-bit operations that are configured identically
for each bit. By doubling up bits, the size of configurations—
and thus the time required to load configurations and the space
taken up on the die to store them—is reduced at the cost of
some loss of flexibility.

To support fast 32-bit wide additions, each row includes a
fast carry chain “box” spread across all the logic blocks on a
row, as shown in Fig. 6. The carry chain is fast enough to be
able to perform a full-sized addition in one array clock cycle.

Compared to typical FPGAs, Garp expends more hardware
on accelerating operations like adds and variable shifts. In fact,
each row of Garp’s array approximates a conventional ALU!
However, with most of the array die area typically going to
inter-block wiring and configuration storage, the incremental
area cost of including this special hardware is not necessarily
as high as one might think. The cost can be paid back when a
configuration that uses the special modes is faster and/or needs
fewer logic blocks as a result.

In addition to an adjacent wire, each of the
�

, � , � , and� inputs has the option of connecting to the ! or � register
inside the logic block. This feature enables a number of useful
paths within a logic block; Fig. 7 illustrates two examples.

�����
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Vertical and horizontal wires exist within the array for moving
data between logic blocks. All array wires are grouped into
pairs to carry 2-bit quantities. Each pair of wires can be driven
by only a single logic block but can be read simultaneously by
all the logic blocks spanned by the wires. The wire network is
passive, in that a value cannot jump from one wire to another
without passing through a logic block.

Fig. 8 illustrates the pattern of vertical wires in a single
column of 32 rows, while Fig. 9 shows the horizontal wires
between two rows. The horizontal and vertical wires have
different patterns because they are optimized for different pur-
poses. The shorter horizontal wires are tailored to multi-bit
shifts across a row, while the vertical wires are oriented to-
wards connecting functional units laid out horizontally. The
long horizontal wires are typically used to broadcast control
signals to the logic blocks of a single multi-bit operation.

The driver of every wire is fixed by a configuration and
cannot be changed without loading a new configuration. Con-
figurations are checkedby the hardware when loaded to ensure
that no wire has more than one driver. Configurations failing
this test cannot be loaded.

����2
	*��+�,�.34�05��067�
Commercial FPGAs usually specify precise delay times for
all array components. It is a development task (either for
the tools or for a human designer) to ensure that no signal
path exceeds its maximum allowed delay. In practice, the
relationships between different components’ delay times will
vary with each FPGA implementation. This makes it harder to
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Figure 8: The pattern of vertical wires (V wires) in a single
column of 32 rows. Each line drawn actually represents a pair
of wires (2 bits).

Figure 9: The horizontal wires (H wires and G wires) between
two rows. Again, each line represents a pair of wires (2 bits).

Multiplier Rows Cycles

32 bits � 5-bit constant � 32 bits 1 1
32 bits � 8-bit constant � 32 bits 2 2
32 bits � 16-bit constant � 32 bits 4 3
16 bits � 16 bits � 32 bits 4 7
16 bits � 16 bits � 32 bits 9 5

Figure 10: Statistics on multipliers synthesized in the array.

predict the speeds at which two versions from the same FPGA
family will execute the same configuration.

Rather than specify component delays as precise times that
would change with each processor generation, delays in Garp
are defined in terms of the sequences that can be fit within each
array clock cycle. Only three sequences are permitted:

– short wire, simple function, short wire, simple function;
– long wire, any function not using the carry chain; or
– short wire, any function.

Any other sequence must be assumed to require multiple clock
cycles. The short wires include all the shorter horizontal wires,
plus vertical wires less than a certain length. A simple function
is either a direct table lookup (Fig. 5(a)) or a traversal of the
independent “ � path” in a logic block (Fig. 4). At the end
of a cycle, a computed value may be latched in a logic block
register without affecting the timing.

��� � ����� 34����� ��1 ���
Like most FPGAs, multipliers in the reconfigurable array must
be built up out of smaller parts, typically selectors and adders.
Nevertheless the importance of multiplication has had its im-
pact on the design of the Garp array. The ability to add three
operands instead of only two (triple add mode, Fig. 5(d)) ex-
ists as much to support fast multiplication as for any other
purpose. A special variation on select mode (Fig. 5(c)) also
makes it easier to choose from among partial products 0,

�
,

2
�

, and 3
�

.
Fig. 10 lists the area and time delays of various multipliers

synthesized in the array. Multiplies by constants are especially
dense because they can be configured as hard-wired shifts and
adds using the horizontal wires between rows and triple add
mode.

��� � 	 �+��� 1,� � ��� � � 6�3 ��� � ��
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The main processor has a number of instructions for control-
ling the array. The most important are listed in the table of
Fig. 11. These include instructions for loading configurations,
for copying data between the array and the processor registers,
for manipulating the array clock counter, and for saving and
restoring array state on context switches.

As mentioned earlier, a clock counter controls array exe-
cution. While the clock counter is zero, the array is stopped.
By setting the clock counter positive, the main processor can
make the array execute for a specific number of clock cycles.
The clock counter decrements with each array clock cycle until
reaching zero.

To avoid restricting the main processor implementation, the
Garp Architecture does not specify how many main processor
instructions might execute during each array clock cycle. In-
stead, to keep processor and array synchronized, many of the
new processor instructions (Fig. 11) first wait for the array
clock counter to reach zero before performing their function.
The simplest example is when the main processor needs to read
the result of a computation performed by the array. After set-
ting the array clock counter to the proper value, the processor
can execute a mfga instruction at any time. If the array is not
yet done, mfga will wait for the array clock counter to become
zero before attempting to copy the result over to the processor.

28



Instruction Interlock? Description

gaconf reg yes Load (or switch to) configuration at address given by reg.
mtga reg, array-row-reg, count yes Copy reg value to array-row-reg and set array clock counter to count.
mfga reg, array-row-reg, count yes Copy array-row-reg value to reg and set array clock counter to count.
gabump reg no Increase array clock counter by value in reg.
gastop reg no Copy array clock counter to reg and stop array by zeroing clock counter.
gacinv reg no Invalidate cache copy of configuration at address given by reg.

cfga reg, array-control-reg no Copy value of array control register array-control-reg to reg.
gasave reg yes Save all array data state to memory at address given by reg.
garestore reg yes Restore previously saved data state from memory at address given by reg.

Figure 11: Basic processor instructions for controlling the reconfigurable array. The Interlock? column indicates whether the
instruction first stalls waiting for the array clock counter to run down to zero. (Instructions can be interrupted while stalled.) The
last three instructions are intended for context switches.

The mtga and mfga instructions copy to and from the
middle 16 logic blocks of a row. (Recall Fig. 2.) Additional
instructions (not shown) give the processor access to the logic
blocks at the edges of the array, and also make it possible to
send the values of two registers to the array in one step.

������� � 6�� � ������34��� 67�
Each block in the array requires exactly 64 configuration bits
(8 bytes) to specify the sources of inputs, the function of the
block, and any wires driven with outputs. No configuration bits
are needed for the array wires, so a configuration of 32 rows
requires exactly 8 � 24 � 32 % 6144 bytes. Assuming a 128-bit
path to external memory, loading a full 32-row configuration
takes 384 sequential memory accesses. A typical processor
external bus might need 50 � s to complete the load.

Since not all useful configurations will require the entire
resources of the array, Garp allows partial array configurations.
The smallest configuration is one row, and every configuration
must fill exactly some number of contiguous rows. When a
configuration is loaded that uses less than the entire array, the
rows that are unused are automatically made inactive.

Distributed within the array is a cache of recently used con-
figurations, similar to an ordinary instruction cache. The size
of this cache is implementation-dependent. A reasonable Garp
might have a 4-deep cache at every logic block—sufficient to
hold four 32-row configurations, or sixteen 8-row configura-
tions, or any other combination of the same size.

Note that in order to maximize cache utilization, partial
configurations are not necessarily loaded at the first physical
row of the array. The hardware translates row numbers so that
programs see all configurations as starting at logical row 0.
Exactly where partial configurations can be placed in the array
is dependent on the pattern of vertical wires (Fig. 8). The
vertical wires in Garp follow a repeated, recursive pattern so
that partial configurations can be loaded at various offsets.

Two configurations can never be active at the same time,
no matter how many array rows might be left unused by a
small configuration. This is analogous to there being only one
thread of control—only one program counter—in the main
processor. If two independently-written configurations could
be active simultaneously, there is no way to guarantee they
would not interfere with each other’s use of the vertical wires.
If a program has a special need for making more than one
configuration active at a time, it can easily load one larger

configuration containing both the smaller ones.

�����
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Memory accesses can be initiated in the array without direct
processor intervention. These memory accesses proceed in
two phases: the first phase is the memory access request, and
the second is the data transfer. For writes, the two phases may
occur on the same array cycle. For reads, the memory request
necessarily precedes the data transfer. With some restrictions,
the two phases can be pipelined so that a new memory access
can be initiated every cycle.

Array memory accesses are controlled by the control blocks
at the edge of the array. Parallel to the memory buses (Fig. 2),
an address bus also runs vertically through the rows. Control
signals requesting memory accesses can be generated in the
array logic blocks and forwarded by the control blocks to the
memory system. A memory address is then read over the
address bus from the ! registers of a selected row. The data is
transferred over a memory bus to/from another selected row,
which is usually a different row than the one that supplied the
address. Up to four contiguous 32-bit words can be read or
written with one request over the four memory buses.

The array sees the same memory hierarchy as the main pro-
cessor. Misses in the on-chip data cache cause array execution
to be stalled while the data is fetched from external memory.
To reduce cache misses, the array can perform prefetching ac-
cesses that merely load the on-chip data cache. Page faults due
to array memory accessesare also possible and cause the fault-
ing process to be suspended while the page fault is serviced.

In contrast to many commercial FPGAs, Garp’s array con-
tains only a modicum of writable storage—4 bits per logic
block. This was a conscious design decision intended primar-
ily to limit the time needed for context switches of running pro-
cesses. The existing on-chip data cache provides ample tem-
porary storage; although the limited bandwidth of the memory
buses can in theory be a bottleneck.

In addition to the mechanism for demand accesses just de-
scribed, the array also has available to it three memory queues
for performing read-aheads and write-behinds on multiple data
streams. At least two input streams and one output stream are
supported. All three streams can be read/written in the same
cycle, using three of the memory buses concurrently. Mem-
ory queues are programmed by the main processor before a
configuration is executed.
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Software tools have been created that make it possible to write
programs for Garp and then simulate them with approximate
clock-cycle accuracy. The software path is summarized in
Fig. 12. Only two tools are substantially new: the configura-
tor and the Garp simulator. The Garp assembler is merely a
modified MIPS assembler.

An array configuration is coded in a “.ga” file in a simple
textual language. This source is fed through a program called
the configurator to generate a representation of the configu-
ration as a collection of bits. For simplicity, the configurator
creates a text file that can be used as a character array initializer
in a C program.

The only need for assembly language programming is to
invoke the Garp instructions that interface with the reconfig-
urable array. Since we are using the Gnu C Compiler (gcc),
the same could be accomplished with inline ‘asm’ statements.

2�������71�� ��6 � � ���+��34���
The configurator accepts a human-readable description of a
configuration and converts it to the binary representation used
by the processor. The input language to the configurator is
more akin to an assembly language than to either a high-level
language or the typical FPGA netlist. Data and operations
must be placed explicitly within rows and columns by the
programmer. A configuration is defined as a collection of
rows, with each row containing within it logic blocks in specific
columns. The basic syntax is

row optional-row-name:
{

column-number(s): logic-block-settings;
�����

}
�����

A feel for the permissible logic-block-settings is probably
easiest to impart by example. The following specifies a com-
plete configuration for adding three 32-bit values in columns
4–19 (the middle 16 columns of the array):

row .a: --Row 0
{
--Drive Z registers onto V wires.
4-19: A(Zreg),function(A),Vout(Z);
--Drive D registers onto H wires below.
4-19: D(Dreg),Hout(D);
}

row : --Row 1
{
--Add D registers + values from row 0;
--latch result in Z registers.
4: shiftzeroin;
4-19: A(.a),B(above),C(Dreg),add3,

U(carryˆsum),V(sum),
result(UˆK),bufferZ;

}

In this configuration, the values in the ! and � registers of
row 0 and in the � registers of row 1 are added together
and their sum stored in the ! registers of row 1. Column 4
is the least significant (rightmost) of the 16 columns. Row
names (e.g., .a) must begin with a period to distinguish them
syntactically.

The ‘A(.a)’ field in the second row specifies that the�
input for those logic blocks is to come from the row la-

beled .a—in this case, the first row. To obtain a connec-
tion through vertical wires, the programmer merely names the
source needed for a logic block input. It is the responsibility
of the configurator to choose specific vertical wires for making
the connections. The

�
inputs in row 1 of the example are

thus taken over vertical wires from row 0. The rather differ-
ent syntax ‘B(above)’, on the other hand, indicates that the� inputs are to be read from row 0 over the horizontal wires
between the two rows.

For the example given, the output from the configurator is
the text

{ 0x00, 0x00, 0x00, 0x02, ����� 0x00, 0x00 }

which is suitable for initializing a C char array. (Of course,
the majority of the output has been elided here.)

2��������06�� �067��� � � 6�� � ������34��� 6 �06�34� � � ���������+��5
The reconfigurable array is only used within the time consum-
ing parts of a program where it can be usefully employed. The
remainder of the program is written in C, is compiled with an
ordinary C compiler, and is executed on the main processor
without reference to the reconfigurable array. A configuration
thus has to be linked into an ordinary C program.

Continuing with the example above, if the configurator
output is in a file called ‘add3.config’, the C code

char config_add3[] =
#include "add3.config"
;
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suffices to initialize a C array config_add3 with the de-
sired configuration bits. This makes the configuration acces-
sible to the program; however, it will still have to be loaded
and activated in the array to actually do something. Since a
configuration can only be invoked with the new Garp-specific
instructions that are unknown to the compiler, some assembly
language programming is required.

The following assembly code loads and executes the same
example (refer back to Fig. 11):

add3: la v0,config_add3
# v0 now contains pointer
# to config_add3 array.

gaconf v0
mtga a0,$z0
mtga a1,$d0
mtga a2,$d1,2

# Step array 2 cycles.
mfga v0,$z1
j ra # Return from subroutine.

The names v0, a0, a1, a2, and ra refer to ordinary MIPS
registers; la is the MIPS “load address” instruction. The
symbols $z0 and $d0 indicate the ! and � registers of array
row 0; $z1 and $d1 are the same for row 1. The MIPS
subroutine calling convention passes the first three subroutine
arguments in registers a0, a1, and a2, with the subroutine
return value being passed back in register v0.

With this assembly language stub, a program can add any
three values � ,

�
, and � using the reconfigurable array by exe-

cuting the ordinary subroutine call add3( � , � , � ) . The add3
subroutine first loads the proper configuration into the array
(or switches to it, if it is already in the array’s configuration
cache). It then copies its three arguments into array registers,
steps the array for 2 cycles to perform the addition, reads the
sum back into v0, and returns.

Of course this example involves too much overhead. In
practice, the array would be used for something substantial
that could not just as easily be done in the main processor.

2���2 ��71�� �05 ��� ��34���
A complete hardware implementation of Garp does not yet ex-
ist, so Garp programs must be executed on a simulator. The
simulator loads and executes standard MIPS executables. Op-
erating system calls are forwarded to the environment in which
the simulator is running.

Outside of operating system calls, the simulator does its
best to count true clock cycles. Interlocks that stall instruc-
tions are noticed and stall cycles counted. Memory caches
are also modeled, so that cache miss stalls can be added in.
The simulator assumes the main processor is only a simple
single-issue MIPS. Although the simulator is unlikely to be
cycle-for-cycle identical with any actual implementation, its
cycle counts should be realistic.

� � ����� � 	 � � ����� � � �	� ��������� �

In an attempt to evaluate the Garp Architecture, we compared
a hypothetical Garp against a Sun UltraSPARC 1/170. The
UltraSPARC is a 4-way superscalar 64-bit processor with 16 kB
each of on-chip instruction and data caches. The processor runs
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Figure 13: Floorplan of the UltraSPARC die, and that of a
hypothetical Garp die constructed in the same technology.

167 MHz 133 MHz
Benchmark SPARC Garp ratio

DES encrypt of 1 MB 3.60 s 0.15 s 24
Dither of 640 � 480 image 160 ms 17 ms 9.4

Sort of 1 million records 1.44 s 0.67 s 2.1

Figure 14: Benchmark results. The times for Garp are obtained
from program simulation.

at 167 MHz, and is implemented in a 0.5 � m, 4-metal-layer
process in a die size of 17 � 5 � 17 � 8 mm2 .

To create the hypothetical Garp, we removed the SPARC’s
superscalar integer and floating-point processing units from
the UltraSPARC die and replaced them with a MIPS processor
extended with Garp’s reconfigurable array. The new processor
is a single-issue 32-bit MIPS-II, which is rather smaller and
less powerful than the UltraSPARC’s processing unit. Fig. 13
shows die floorplans of the actual UltraSPARC and the hypo-
thetical Garp derived from it. This surgery essentially puts
a Garp on top of an UltraSPARC memory system. The Garp
simulator was of course retargeted to model the SPARC caches
as closely as possible.

The size assumed for the reconfigurable array (Fig. 13(b))
draws on our experience with a tentative VLSI array imple-
mentation. We also assumed conservatively that we could only
achieve 80% of the SPARC clock rate for Garp’s array clock.
This restricts Garp’s clock to 133 MHz versus the SPARC’s
167 MHz.

The time taken by the two processors on three benchmarks
are tabulated in Fig. 14. Summaries of the benchmarks are
given in the next sections. The results shown are in each
case the best we were able to attain for that processor. Given
the approximations involved, the Garp numbers unfortunately
must be considered rough; however, it is easy to see that Garp
holds an advantage for at least some problems.

� ����
/��34�� 6��,�+����34����6���34��6�����������
��	�	�
One of the most important encryption methods over the last
20 years has been the Data Encryption Standard, or DES [12].
DES is a good application for reconfigurable hardware because
normal processors have trouble implementing it efficiently.

DES encrypts 64 bits of data at a time. Each 64 bits is run
through an “obfuscation loop” 16 times; and it is in this loop
that DES spends most of its time. The 64 bits are first divided
into two 32-bit quantities ��� 1 and � 0 , and then the following
steps are repeated for � % 1 up to 16 (see Fig. 15):
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Figure 15: One iteration of the inner loop of DES. The
�

sym-
bols indicate exclusive-or operations.

1. Extract eight 6-bit subsequences from ��� � 1 , and exclu-
sive-or these with 48 bits from the encryption key.

2. Apply each of the resulting 6-bit values as an index into
an “S-box” table of 4-bit values. (Each S-box is unique
and approximates a random function.)

3. Perform a permutation on the 32 bits of S-box results.
(This permutation is always the same.)

4. Exclusive-or the permuted result with the older � � � 2 to
form the new ��� .

At the end, the encrypted 64-bit output is formed from � 15 and
� 16 .

Software implementations of DES invariably implement
the S-boxes as table lookups requiring a read from memory for
each S-box evaluation. All told, 16 � 8 % 128 table-lookup
memory reads are needed for each 64 bits encrypted. On the
other hand, good software implementations can avoid the final
32-bit permutation by pre-permuting the S-box table entries.
This makes the table entries a full 32 bits in size, but the
eight S-box outputs need only be or-ed together before being
combined with � � � 2 .

Unlike software, any sufficiently large FPGA can imple-
ment this algorithm directly. The S-box table lookups and all
the bit permutations can be done quickly and in parallel, with-
out reference to external memory. Garp needsonly 6 cycles per
inner loop iteration. Our simulations indicate that a 133 MHz
Garp could be 24 times faster than the 167 MHz UltraSPARC
for this task.

−(7/16)e

−(1/16)e−(5/16)e−(3/16)e

+e

Figure 16: Floyd-Steinberg error diffusion. An image is
dithered from top to bottom in scan order. Replacing a pixel’s
original color with the closest available color results in a color
error � . This error gets pushed to 4 as-yet-uncommitted neigh-
boring pixels by adjusting the original colors at those pixels.
The process repeats with the next pixel to the right.
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As another benchmark, we considered the dithering of a full-
color 640 � 480 image to a fixed palette of fewer than 256
colors. The input image stores 3 bytes per pixel, for a total
of 256 levels each of red, green, and blue for each pixel. The
target palette in our benchmark is the so-called “Web palette”
used by Web browsers such as Netscape Navigator. This palette
contains 216 % 63 colors in an orthogonal arrangement, with
6 levels each of red, green, and blue. To dither to this palette
we employed Floyd-Steinberg error diffusion [13], which is
essentially the standard algorithm for this task.

The dithering of an image proceeds from top to bottom in
scan-line order. Dithering each pixel involves the following
two steps:

1. Find the color in the target palette closest to the given
pixel color.

2. Find the color error introduced by using a not-quite-
correct color, and distribute this error to neighboring
pixels by adjusting the neighbors’ colors.

Fig. 16 shows how a pixel’s color error is distributed (diffused)
to its neighbors in the Floyd-Steinberg algorithm.

In our case, finding the closest target color is a matter of
reducing the source image’s 256 levels each of red, green,
and blue to the 6 levels each in the target palette. This is
accomplished by dividing each color component by 51 and
rounding. Calculating the error requires multiplying the result
back by 51 and subtracting. Distributing the error involves four
scales and additions to neighboring pixels. To save some work,
errors diffused to a single pixel by multiple of its neighbors are
added together before being added into the destination pixel.

For this application, Garp is found to be over 9 times faster
than the UltraSPARC. Garp’s advantage comes from its ability
to manipulate 8-bit quantities more adeptly. On both Garp and
the UltraSPARC, the division by 51 is done by multiplying by
an approximation to 1 � 51. Multiplies are implemented on both
in terms of shifts and adds, which Garp can do fairly efficiently.

� ��2�������34�06��
The third benchmark we examined is the sorting of an array of
one million (actually 220) records, where each record is a key,
value pair. The sort orders the records according to their 32-bit
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keys. The corresponding 32-bit values are not interpreted but
must be correctly permuted with the keys.

On the SPARC, the fastest sort found was a pure quicksort,
taking 1.44 s. Estimates are that close to half that time goes to
memory accesses. For

�
records, quicksort in general makes

at least log2

�
partitioning passes over the entire array. Given

in our case
� % 220, the number of partitioning passes is

clearly about 20.
For Garp, we reduced memory traffic by doing a merge sort

using merges of 9 streams at a time. Each merge takes 9 sorted
streams as input and outputs a single sorted stream nine times
as long. This cuts the number of passes needed to log9 & 220 ) ,
or about 7. (The odd number 9 helps reduce cache conflicts.)
Garp at 133 MHz should be able to perform the complete sort
in 0.67 s, roughly twice as fast as the 167 MHz SPARC.

All our efforts to apply the same sophistication on the
SPARC have not done as well as quicksort on that machine.
More time is always introduced in additional instructions than
is ultimately saved.

� � ��� ��� ����� �����

The results in the previous section must be taken as preliminary
because the Garp implementation is as yet unproved. Our
first priority now is to better resolve Garp’s performance by
completing a VLSI implementation of Garp’s reconfigurable
array.

We have also just scratched the surface of potential applica-
tions. Likely areas include cryptography, compression, pattern
matching, signal processing, and graphics. On a different tack,
another researcher in our group, Tim Callahan, is examining
the potential performance gains from having a compiler auto-
matically map important program loops to a Garp-like array.

Finally, we would like to make some comparisons against
other possible uses for the same silicon area, such as a vector
unit. Reconfigurable hardware is unlikely to be the best solu-
tion for all problems, so it would be good to characterize its
limitations along with its advantages.

	 
 � � 
 � ��� ��� � �

Because Garp is an extension of existing computing practice,
a Garp-like architecture has a better chance of becoming part
of the mainstream than FPGA-only machines. The results so
far suggest that a Garp processor would have a substantial ad-
vantage over standard RISC processors for some applications.
We believe the hypothetical Garp outlined in the paper could
easily be built today; even larger arrays should be possible in
the near future. If silicon densities continue to grow as they
have historically, reconfigurable hardware in some form may
well become an inevitable component of future processors.
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