Fast Template Placement for Reconfigurable Computing
Systems *

K. Bazargan R. Kastner M. Sarrafzadeh

Department of Electrical and Computer Engineering
Northwestern University
Evanston, IL 60208-3118

{kiarash,kastner,majid}@ece.nwu.edu

September 16, 1999

Abstract

The advances in the programmable hardware have lead to new architectures, where the
hardware can be dynamically adapted to the application to gain better performance. One
of many challenging problems in realizing a general-purpose reconfigurable system is the
placement of the modules on the reconfigurable functional unit (RFU). In reconfigurable
systems, we are interested both in online template placement, where arrival time of tasks is
not known until runtime and offline in which the operations are scheduled at compile time.
In this paper, we present online and offline heuristic template placement methods for both
hard and soft templates, which can be developed internally or obtained externally (Ips).
The proposed online algorithm is faster by a linear factor (about 15-30 times in practice)
than the best known online algorithms, but its placement quality is comparable or slightly
worse. For offline placement, we present algorithms based on simulated annealing and
greedy methods and show the superiority of their placements over the ones generated by
an online algorithm.

1 Introduction

As the FPGAs get larger and faster, both the number and complexity of the modules to load
on them increases, hence better speedups can be achieved by exploiting FPGAs in hardware
systems. Gokhale et. al. report speedups of 200x in [10] for the string matching problem.

Adario et. al. [1] achieve 3 times the pipelined implementation of image processing applications

*This work was supported by DARPA under contract number DABT63-97-C-0035.

by exploiting dynamic reconfiguration of the hardware. Furthermore, the ability to reconfigure
the chip as it is running enables the implementation of dynamically reconfigurable hardware
systems which adapt themselves to the application for better performance [10, 16, 28]. Hauck
has reported many applications in reconfigurable systems in [12]. Such systems usually consist
of a host processor and an FPGA “co-processor” called Reconfigurable Functional Unit (RFU).
The RFU can be programmed in the course of the running time of the program with varying
configurations in different stages of the program.

An example is shown in Figure 1. As shown in Figure 1-a, three parts of the code are
mapped to RFU operations (RFUOPs, also called modules). When the program is running
the loop containing RFUOP2 (time ¢1), two RFUOPs are loaded on the chip. Later, when the
program is about to enter the loop at time t2, there is no space on the RFU to place RFUOPS3.
Hence, RFUOP2 is swapped out of the chip and RFUOP3 is loaded. RFUOP1 is still on the

chip and may be reused later in the program.

——— 11 11 11 11 11 |
== _' RFUOP1 1 RFUOP2 :[::': :[:‘::[::‘:
t1 [=——— "' RFUOP2 H H H
o ° RFUOP3 {;}ﬁ RFUOPL {;}{;} RFUOPL |
el N Il i [Il |
-_ T T T —Trr T1r T1r1

@ (b) ©

Figure 1: (a) The running code (b) RFU configuration at time t1 ~ (c) RFU configuration
at a later time t2

Unfortunately, rather long delays in reprogramming reconfigurable functional units (RFUs)
keep us from achieving very high speedups for general purpose computing [9]. Wirthlin and
Hutchings [28] report an overall speedup of 23x, while the speedup could be 80x if configuration
time was zero (the configuration time is 16% to 71% of the total running time).

A number of methods have been proposed to overcome the delays in reconfiguring the RFUs.

Among them are:

1. Compiler techniques such as prefetching [11] and configuration compression [14]. The
prefetching method overlaps RFU configuration with computation. The configuration
compression reduces the configuration time by transferring fewer bits to the RFU and

hence decreasing the configuration time.

2. Hardware Caching techniques keep most frequently used operations on the RFU and hence

eliminate the need for reprogramming it when such operations are called. The authors

2

know of no concrete results published on such methods.

Although these algorithms are necessary for a practical reconfigurable system, we still need
fast and powerful physical design CAD tools to do configuration management of the RFUs both
offline and online. In the offline version, the flow of the program is known in advance (e.g., in
DSP applications, or loops containing basic blocks) and hence the scheduler and configuration
management component can do various optimizations in the configuration of the RFU before the
system starts running. On the contrary, in the online version the decision on what operations
should be launched is not known beforehand. The flow of the program is not known in advance
and hence the RFU configuration management should be done on the fly.

Both online and offline versions of the template placement algorithms are important for
reconfigurable computing systems. The online is important since it is intrinsically hard to
accurately predict the run time behavior of a general program at compile time; hence one needs
online placement methods for at least parts of the RFU manager kernels. The offline algorithm
can be exploited to generate compact placements for a group of RFU operations, which will
execute in sequence (e.g., part of the code in a basic block). The compact placement of the
group of RFU modules can be seen as one atomic module when the online placement method
is running. Furthermore, placements generated by an offline method can serve as baseline
solutions for the online versions, and help us devise better online algorithms. Hence, the most
important feature of an offline placement algorithm is the quality of placement it generates,
even though it might be a slow method.

To this date the place and route algorithms proposed for FPGAs, which are mostly modifica-
tions of the traditional algorithms for ASIC designs, are generally very slow or do not generate
high quality placements. Examples are [20, 25, 22]. The only fast placement algorithm re-
ported in the literature is a work by Callahan et. al. [6] which is a linear time algorithm for
mapping and placement of data flow graphs on FPGAs, but limited to datapaths only. In fact,
the only way to gain major speed-ups in reconfigurable computing systems is to use template
placement/routing (the traditional on-the-fly synthesis/placement/routing of individual units
would make the system several orders of magnitude slower).

For the online version, our goal is to devise efficient methods for placing RFU operations
on the chip in a fast manner to be used in a reconfigurable computing system. In addition to
being fast, such methods should be able to pack the modules on the RFU tightly to use the
chip area efficiently. The effect of placing more modules on the RFU is similar to having a large
data cache on a computer: it is more likely that a requested RFUOP is already on the chip and
hence there is no need for reloading it.

In the case of offline placement, our goal is to find methods for placing RFU operations on

the chip as compactly as possible. The offline methods can be used both as a subroutine by
the online algorithm (e.g., in pre-placing operations in a basic block as a single online module)
and as a baseline for assessing the quality of online methods. We propose simulated annealing
as well as greedy offline algorithms for the placement of the modules on RFU, and show the
effectiveness of the proposed methods by comparing their placements with those of our online
version.

The rest of the paper is organized as follows: In Section 2 we have described our model of
the reconfigurable system. We have also defined measures to compare effectiveness of different
RFUOP placement algorithms. Section 3 deals with the online placement. The offline algorithm
is presented in Section 4. Section 5 is the conclusion and suggestions for further research on
the subject.

2 Our Model of a Reconfigurable Computing System

Brebner [4] suggests an environment in which the runtime system dynamically chooses between
hardware (RFU operation) and software (main host CPU instructions) implementations of the
same function based on profile data or other criteria. We use the same paradigm in our model.
An RFUOP r; can be either accepted or rejected based on availability of RFU real estate. If
an RFUOP is rejected, the same function should be performed by the host CPU and hence a
running time penalty is incurred. We use set ACC to represent RFUOPs which are accepted
(See Equation 1).

In our model, we assume there is no communication between RFUOPs. The data to be
processed by an RFUQOP is loaded on the RFU before the RFUOP starts execution, and after it
is done, the result is read into CPU registers (as an example for this communication scheme, see
Chimaera [13] architecture). Furthermore, the RFUOP can be hard or soft module (template)
either developed internally or obtained externally (IPs).

Our model which deals with the placement engine of the RFU configuration management
interface, assumes that the RFUOPs have been scheduled during compile time. Furthermore,
it does not consider any caching of the modules on the chip during the run-time.

The set

RFUOPS = {r1,re, -, 10 | 15 = (Wi, hi, S, €:) }

represents all the RFU operations defined in the system, where w;, h;, s; and e; are all positive
integers with the additional constraint that s; < e;. w; and h; are the width and height of the
implementation of the RFUOP r; in the library respectively. s; is the time the operation 7r; is

invoked and e; — s; is the time-span it is resident in the system.

The placement engine can be invoked in only two ways: insert a module which is not
currently on the chip (at time s;) and delete a currently placed module from the chip (at time
e;). If there is a cache manager in the system (See Figure 2), it will issue insertion/deletion
requests to the placement engine only when such operations should actually take place. For
example if an RFUOP is invoked and the cache manager detects that the module is already
on the chip, it will issue no requests to the placement engine. On the other hand, if a module
which was previously swapped out (placement engine had received a delete command on that
RFUOP) and is invoked again, the cache manager will request the placement engine to insert
the RFUOP as if it was the first time this RFUOP is being invoked.

CPU/RFU manager

:,»fm,,,,,,,,,,,,,,J,,RFU,manager

Cache Manage

{ Placement EngineJ

Host CPU % RFU %
i

Figure 2: A sample model of a reconfigurable computing system

At any given time, there might be a number of modules on the RFU which can perform
different operations concurrently. If in such a case a new RFUOP is invoked (cache manager
sends an insert request to the placement engine) and there is no space and no idle RFUOP on
the chip, then the request is rejected. Since the RFU cannot perform the operation, the main
CPU should execute instructions to perform the same function, incurring some penalty to the
running time. Otherwise (if the RFUOP is accepted), it is loaded onto RFU and executed. We
assume that higher levels of the RFU configuration management will block insertion requests
for RFUOPs which have not shown performance gains, i.e., the application profile data shows
that the time to load the RFUOP plus its execution on the RFU is more than the time to
perform the same function on the host CPU on the average.

The set ACC represents all the RFUOPs which are accepted, in addition to their locations
on the chip. Given RFUOPS and RFU dimensions W and H, the placement engine decides
where to place REUOPs.

.ACC = {(ri,xi,yi) | r; € ’R]:Z/{(’)’PS,

z; > 0,2, + w; <W
yi > 0,y;+h; < H} (1)

where (x;,y;) is the coordinate on the RFU where RFUOP r; is placed. Obviously, the conditions

W>w, Vi=1l---n
H>h;, Yi=1---n

must be met for all the RFUOPs. Note that the cardinality of ACC set could be equal to that
of RFUOPS. Also, it is important to note that the placements in ACC do not allow modules
to be placed out of chip boundary (See Equation 1), but some RFUOP boxes might overlap.
We will deal with this issue in sections 3.2 and 4.1.

The placement of RFUOPs on the RFU can be modeled as a three dimensional template
placement problem. In a 3-D placement, we have a box whose base is a rectangle with the same
dimensions as the RFU (W x H) and its height is the time axis (See Figure 3-a). RFUOPs
are also modeled as 3-D boxes (we use box(r;) to refer to the corresponding box of the RFUOP
;). The base of the box corresponding to RFUOP r; is a w; X h; rectangle and its height is the
time-span the RFUOP resides on the RFU, i.e., (e; — s;). So, the end points of the diagonal of
box(r;) have coordinates (x;,y;, ;) and (x; + w; — 1,y; + h; — 1,¢; — 1).

7 Fuop

(a) RFUOP2 (b)

Figure 3: (a) The placement box (b) A 3-D placement

Horizontal cuts with the placement box correspond to RFU configurations at different points
in time. For example, the cut ¢ = ¢1 in Figure 3 corresponds to Figure 1-b and the cut ¢t = ¢2
corresponds to Figure 1-c. Boxes corresponding to RFUOPs cannot be placed at any arbitrary
point in the RFU box. The base of the RFUOP should be placed on the cut plane corresponding

6

to t = s;. However, the base can slide on the cut plane as long as it does not cross the chip
boundary.

The penalty in rejecting an RF'U operation depends both on the complexity of the operation
(we assume the complexity to be linearly proportional to the size of the module implementing
the RFUOP) times number of cycles the RFUOP was supposed to take on the RFU. The
number of RFU cycles could be an indication of how many times (for example in a loop) the
RFUOP is supposed to be executed. We can formulate the penalty of rejecting an RFUOP r;
as penalty(r;) defined as:

penalty(r;) = w; X h;y X (e; — s;)

= wvolume(box(t;)) (2)

The penalty of a placement P € cal ACC' is defined as the sum of penalties of the rejected

modules:

Penalty(P) = > penalty(r;) (3)
rieRFUOPS and F(r;,z,y)eP

The overlap of a placement P € cal ACC is defined as the total overlapping volume of all
the RFUOP boxes:

Overlap(P) = Y box(r;) N boxz(r;) (4)
(riseisyi)s(rj,25,9;5)€P

Offline placement or 3-D template placement is the problem of finding the placement P €
ACC with minimum Penalty(P) and the additional constraint that no two RFUOP boxes
overlap, i.e.,Overlap(P) = 0. Online placement is similar to the offline version, but differs in
the fact that at any given time, the decisions are made only on the horizontal cut at that time.
In other words, the modules are processed in the time they start and the algorithm only looks
at the current cut plane when deciding on whether there is room for a new module or where to

place it.

3 Online Placement

This section deals with the online (two-dimensional) placement problem [3]. In Subsection 3.1,
we summarize the results of the previous works on two-dimensional bin-packing and investigate
their applications to the problem of placing modules on RFUs. Our method is described in

Section 3.2. Experimental results for the online version are shown in Section 3.5.

7

3.1 Previous Work on Two-Dimensional Bin-Packing

The problem of packing RFUOPs on a chip is similar to the well-studied problem of two-
dimensional bin-packing. The latter is an extension of the classical one-dimensional bin-packing
(for a survey on bin-packing algorithms, refer to [18, 17]).

The one-dimensional bin-packing problem is similar to placing modules in rows of con-
figurable logic, as done in the standard cell architecture. The two-dimensional bin-packing
problem can be used when the operations to be loaded on the RFU are rectangles which can
be placed anywhere on the chip.

The algorithms for the off-line version of the problem can be used when the flow of a
program is known in advance (e.g., in a loop with a rather simple data flow graph). We can
run an efficient off-line bin-packing algorithm to find a compact placement for a given set of
RFUOPs.

Although our interest mostly lies in the two-dimensional version of the problem, we have
studied the one-dimensional form as well. The reason is that the 1D form, due to its simpler
nature, has been extensively studied in the past and many results have been published on the
quality of the packing generated by different algorithms. Furthermore, the results are extendible
to two-dimensions.

Two well known online algorithms for the one-dimensional bin-packing problem are the
First Fit (FF) and Best Fit (BF) [17]. The FF algorithm puts the arriving module in the
lowest indexed bin which can accommodate the module. The BF algorithm chooses the bin
which has the smallest room to accommodate the module. Since both FF and BF consider all
the currently used bins for placing the new module, they require O(n) time for each insertion
operation in the worst case, n being number of bins. In practice, FF is faster than BF. It
has been shown that the quality of BF and FF is fairly close to the lower bound for online
bin-packing algorithms [8, 17, 23, 26].

There are different evolutions of the BF and FF for the two-dimensional version of bin-
packing or the strip packing problem reported in [8]. Among them are Next-Fit-Level, Next-
Fit-Shelf, Harmonic-Shelf and Best-Fit Aligned. These algorithms have asymptotically small
wasted space, but for small number of modules and bins waste considerable amount of space
in order to reserve room for the coming modules. They reserve some bins at the beginning
for different classes of module sizes. The interested reader is referred to the same reference for
more details.

Another fast successful algorithm for strip packing is the bottom-left (BL) heuristic imple-
mented in total quadratic time (O(n) time for each insertion, where n is the number of modules
currently placed) by Chazelle [7]. The algorithm generates a placement which has at most three

times the optimal area in the worst case, however, the author claims much better quality in
practice. The new items are placed in the lowest possible location that they fit and are slided to
the left as much as they can. Chazelle’s implementation preserves a property of the placement
called bottom-left stability, which cannot be met when items can leave the system as well as
arrive, hence Chazelle’s implementation cannot be used in reconfigurable computing. Healy
and Creavin present an algorithm in [15] with time complexity O(nlogn) for each insertion.
In the next subsection we present our online method which is a generalization of the BF
and FF heuristics for the two-dimensional bin-packing and has time complexity O(logn), but
does not consider all candidate empty rectangles when placing a new item. In Subsection 3.5,

we show how much quality loss is caused by this simplification.

3.2 Our Online Placement Method

As we mentioned in earlier sections, our goal is to devise a fast, but not necessarily optimal
placement method to work as the placement engine of the architecture described in Section 2.
The important question is, how much quality loss one can tolerate to get a faster method. The
answer lies with the application requirements. If there are not so many modules needed on
the chip simultaneously and hence we can afford wasting more space on the chip, then a fast
placement algorithm is preferred.

The methods we have proposed are two-dimensional extensions of the FF, BF and BL al-
gorithms. The generic algorithm is consisted of two parts: (a) An empty space partitioning
manager both for insertion and deletion and (b) A search engine and bin-packing rule. The
partitioning part divides the empty regions (sometimes referred to as “holes” in the literature)
on the chip into not necessarily disjoint rectangles called “empty rectangles”. Part (b) is respon-
sible for selecting an empty rectangle to accommodate a module whose insertion is requested.
All empty rectangles that the module fits in, are candidates for accommodating that module.
The bin-packing rule is used to favor one over the others. Finally, the module will be placed at
the lower-left corner of the selected empty rectangle.

For example the criteria could be to choose the empty rectangle with minimum area (Best
Fit), or to pick the one with the lowest bottom side, breaking the tie by choosing the one with
the leftmost left edge (bottom-left heuristic).

In Subsections 3.3 — 3.3.5 we describe different parts of the algorithm in more detail. Sub-

section 3.4 discusses the time complexity of the method.

3.3 Handling Empty Rectangles

An important part of the algorithm is the way it handles empty spaces. An empty rectangle is
a rectangle, which does not overlap any of the modules on the chip. A maximal empty rectangle
(MER) is an empty rectangle, which is not contained by other empty rectangles. Four maximal
empty rectangles are shown in Figure 4. The top-right corner of all four is point ’A’; and their
bottom-left corners are 'B’, ’C’, 'D’ and ’E’. The intersection of rectangles (B,A) and (E,A) is
an example of an empty rectangle.

In the worst case, number of MERs could be quadratic in terms of number of modules. An
example of such a case is shown in Figure 5. In this figure, there are 7 MERs with A’ as
their bottom-right corners (the other corners are 'B’, 'C’, 'D’, 'E’ and 'F’), § — 1 with 'G’ as
their bottom-right corner, 2 — 2 with "H’, So on the whole, there are O(n?) MERs. If
a placement algorithm stores all the MERs explicitly, the maximum required space would be

quadratic in terms of number of modules.

Figure 4: A placement and maximal empty rectangles (MERs). Four sample maximal empty
rectangles (out of nine) are shown. The top-right corner of all four is point A’ and the bottom-
left corners of them are points 'B’, 'C’, 'D’ and 'E’

Both [7] and [15] use doubly connected edge list (DCEL) data structure [24] (Section 1.2.3.2)
to store the empty space as a set of “holes” which take linear space in terms of number of
modules. The reason for the linear space complexity (versus quadratic) is that the DCEL data
structure keeps the maximal empty rectangles implicitly. To obtain the list of MERs from
DCEL, one has to spend linear time. Hence to find a location for a newly arrived module, one
can search the DCEL list in linear time (provided a good implementation like [7]) to report all

possible candidates for a bottom-left placement.

10

Figure 5: A placement in which number of MERs is quadratic in terms of number of modules.

We, on the contrary, keep the empty rectangles explicitly in a list. We have implemented
two categories of methods: 1. Keeping all the MERs (only one implementation) and 2. Keeping
disjoint empty rectangles (different implementations, each using a different heuristic). As stated
earlier, the first approach takes quadratic space in terms of number of modules on the chip,
while the second one needs only linear space. Since the first method keeps all the MERs and
hence checks all of them for placing an arriving module, the quality of its placement is better
than any method of the second category, provided that the same bin-packing rule is used (see
Subsection 3.3.4). However, methods of the second category are faster. In Subsections 3.3.1

and 3.3.2 the implementations of these two categories are explained in more detail.

3.3.1 Keeping All Maximal Empty Rectangles (KAMER)

As we stated earlier, keeping all the MERs (KAMER) increases the space requirement of the
algorithm by a linear factor and also slows down the insertion and deletion operations. When
implementing a placement method of this type, we are obviously not looking for the fastest
placement algorithm, but rather are interested in finding a baseline for comparison against
faster algorithms, or use it where running time of the placement algorithm is not important.
Since the KAMER algorithm considers more candidates for placing a newly arrived module,
the placement it generates is superior in quality than the methods that keep only linear number
of empty rectangles (provided that a good bin-packing rule is used).

Lets use an example to show how we implement the insertion operation in KAMER. Suppose
we have chosen the MER, with corners (A,D) to place the lightly shaded module and the module
is going to be inserted at the bottom-left corner of the MER (Figure 6). Before the module is
inserted, there are 15 MERs in the placement. The newly arrived module (partially) overlaps
with 11 of the 15 (e.g., (AE), (A,D), (H,C), ...). Each MER, which has some intersection

11

with the module, should be split into smaller MERs. For example, Figure 6-(b) shows how
MER (G,B) is split into four smaller MERs. In this example, the total number of MERs after
insertion of the module will be 36. As seen in this example, many MERs should be checked for

overlapping the module and more than one could be split after its insertion.

@ (b)

Figure 6: (a) The lightly shaded rectangle is going to be placed on the lower-left corner of the
MER (A,D). (b) The way MER (G,B) will be split after insertion.

Note that if just after insertion of the new module we delete it, the deletion operation should
merge 21 empty rectangles into 11 (the reverse of what we did for insertion). Since we are not
trying to find a running time efficient algorithm when keeping all MERs, we can simplify the
deletion operation by starting with an empty chip and inserting all the modules one by one

except for the recently deleted one.

3.3.2 Keeping Non-overlapping Empty Rectangles

In order to avoid quadratic space requirement and increased running time, we can keep only
linear number of empty rectangles in terms of number of modules. These empty rectangles
are not necessarily maximal and hence we might lose some quality in the placement, i.e., there
might actually be some room for placing a module, but the partitioning is done in a way that
none of the empty rectangles has room for it. An example of non-overlapping partitioning
of the empty region is shown in Figure 7-a. As an example of quality loss, suppose we have
partitioned the empty space in Figure 7-b using segment S, (assume S, does not exist for the
moment). Now, if a module whose dimensions are slightly less than those of (E,D), it can in
fact be placed on the chip, but since it doesn’t fit in neither of (A,B) and (C,D), our placement
method rejects it.

When a new module arrives, our method searches in the list of empty rectangles for all

empty rectangles which can accommodate the module. Then uses a bin- packing rule to choose

12

@ (b)

Figure 7: A placement and O(n) partitioning of the empty space.

one. More details can be found in Subsection 3.3.4). Finally, the module is placed on the
lower-left corner of this empty rectangle.

Since the empty rectangles are non-overlapping, only the selected empty rectangle should
be split into two smaller ones. Figure 7-b shows an example. The empty rectangle can be split
into two smaller ones by choosing either of the segments S, and S, (but not both). If S, is
selected, then the “L”-shaped region is split into empty rectangles (A,B) and (C,D), and if S, is
selected, it is split into rectangles (A,C) and (E,D). Using this scheme, one can guarantee that
number of empty rectangles considered for placing each module is linear in terms of number of
modules on the chip [15].

We have tried different heuristics for how to choose between the two segments. Let the two
rectangles formed by choosing S, be a; and as and the rectangles formed by choosing S, be
by and by. Let W(r) and H(r) be the width and the height of rectangle r respectively. The

heuristics we have tried can be defined in terms of these values as follows:

1. Shorter Segment (SSEG): Choose the shorter segment of the two.
2. Longer Segment (LSEG): Choose the longer segment of the two.

3. Square empty rectangles (SQR): Let A(r) be the “normalized” aspect ratio of rectangle
r defined as: A(r) = % Let f(s) be the maximum normalized aspect ratio of
the two rectangles formed by segment s. For example, f(S,) = max{A(a1), A(az)}. The
heuristic returns the segment with minimum f(s). Intuitively, this heuristic tries to form
empty rectangles which are close to squares. The reason behind favoring square empty

rectangles is that for most of the modules, the square implementation has the least area

13

among all different rectangular shapes and hence it is more likely that the library contains

more square modules than those with very high/low aspect ratios.

4. Large square empty rectangles (LSQR): This heuristic is similar to the previous one, except
that f(s) is set to the normalized aspect ratio of the larger rectangle of the two formed
by segment s. Intuitively, this heuristic tries to make the larger rectangles to be close to

squares. This might result in bad aspect ratios for the smaller empty rectangle.

5. Large empty rectangles (LER): Let f(S;) be defined as f(S;) = |W (z1)H (x1)—W (x2) H(x2)|,
where x; and z are the two rectangles formed by choosing S,. The heuristic chooses the
segment which has greater f(s). Intuitively, this heuristic tries to form larger empty

rectangles.

6. Balanced Empty Rectangles (BER): Similar to the above, but chooses the segment with
smaller f(s).

to

3.3.3 Searching the Empty Rectangles List for Candidates

Searching the empty rectangles to find those which can accommodate the module can be done
in logarithmic time using a two-dimensional layered range tree [24] (Theorem 2.12 of the same
reference) which takes O(nlogn) space to store the empty rectangles and O(logn + K) time
to check which empty rectangles can accommodate a module, K being number of reported

candidates. The interested reader is referred to [24] for more details.

3.3.4 Bin-Packing Rules

We use a cost function to choose from candidate empty rectangles for placing a new module.
The lower the cost, the more favorable to put the module in that empty rectangle. Using this

generic cost function, one can implement BL, FF', BF, etc. For example, by setting the cost to:

Cost(empty Rect, module) =

lemptyRect.area — module.areal|
we can implement a 2-D extension of the Best Fit algorithm. To implement the BL algorithm:

Cost(emptyRect, module) =
emptyRect.bottom *x CHIP_.W IDTH + emptyRect.le ft

14

where CHIP_WIDTH is an upper-bound for the width of the width of the empty rectangles.
Implementing the First-Fit algorithm is easier: we don’t need to define the cost function.

The module will be placed in the first empty rectangle which has room for it.

3.3.5 Deletions Operations

When a module is deleted, it introduces an empty rectangle on the chip. We might be able to
merge this empty rectangle with neighboring empty rectangles to get larger empty rectangles.
An example of this case is shown in Figure 8. Number of empty rectangles to merge is amortized
constant in terms of number of modules, because number of empty rectangles at any time is

linear in terms of number of modules on the chip.

©

(@ (b)

Figure 8: Merging empty rectangles after deleting a module. (a) The right-most module is to
be deleted. (b) Empty rectangle 1 was inserted in place of the deleted module. (c) Empty
rectangles 1, 2 and 3 where merged to form a larger empty rectangle.

If we do not merge the empty rectangles, the chip will be partitioned into smaller and
smaller empty rectangles (because we are just splitting, not merging) which eventually will not
be able to accommodate any new modules.

In order to find the empty rectangles adjacent to a given empty rectangle, we use an “ad-
jacency graph”. Each empty rectangle or module corresponds to a vertex in this graph. There
is an edge between two vertices of the adjacency graph iff the corresponding empty rectangles
are adjacent (part of a side of one of them overlaps with part of a side of the other one). The
degree of each vertex in this graph is amortized constant since the graph is planar, which means
adding or deleting a vertex in this graph takes amortized constant time.

When adding a new empty rectangle to the list of empty rectangles, we add a vertex to the
adjacency graph and add the (O(1) amortized) edges as well. The adjacency list of the newly
created vertex is a subset of the adjacency list of its parent (the empty rectangle which was split
and formed the new empty rectangle). When deleting an empty rectangle, the corresponding

vertex and its edges can be deleted in amortized constant time.

15

If the only operation we did with the empty rectangles was the merging operation, then
at the end of the process there would still be some empty rectangles left which could not be
merged using the above technique. An example of such a case is shown in Figure 9-a. If we
replace empty rectangles 1 and 2 with 3 and 4, as shown in Figure 9-b (i.e., use the other
segment to partition the L-shaped region formed by 1 and 2), then all the empty rectangles
can be merged into one which, in this example, spans the whole empty space. When adding
a new empty rectangle (introduced by deleting a module), our algorithm checks the neighbors
of the empty rectangle and merges it with them as many times as it can. Then it will look for
neighboring empty rectangles which cannot be merged, but form an L-shaped region. Using the
heuristics described in Subsection 3.3.2, the algorithm might favor to do the operation shown

in the above example.

@

Figure 9: (a) Empty rectangles which cannot be merged when using the “merge adjacent
rectangles” heuristic. (b) Rectangles 1 and 2 were switched with 3 and 4 allowing for all the
empty rectangles to merge into one spanning the whole chip.

3.4 Time Complexity of the Algorithm

Here, we discuss the time complexity of the online algorithm which takes only linear (in terms
of number of modules currently on the chip) number of empty rectangles. The operations done
when insertion a module are looking for empty rectangles which have room for the new module,
choosing one, splitting the empty rectangle and finally updating the adjacency graph. As dis-
cussed in Subsection 3.3.3, searching for empty rectangles to accommodate a new module takes
logarithmic time. Since the adjacency graph of the placement is planar, updating the graph
after inserting the new module takes constant time. So, on the average, it takes logarithmic
time (in terms of number of modules currently on the chip) to insert a module on the RFU.
When deleting a module, we should update the adjacency graph and also do the merge
operation (merge two neighboring empty rectangles to form a larger one) and possibly switch

the segment used to split an L-shaped empty region into two rectangles (see Figure 9). All

16

‘ Data class ‘ Min len ‘ Max len ‘ Avg len ‘ Distribution

A 3 30 16.5 | Uniform
B 14 19 16.5 | Uniform
C 2 40 21 | Uniform
D 2 64 21 | Only powers of 2

Table 1: Description of different data classes.

these operations take amortized constant time due to the fact that there are always only linear
number of empty rectangles on the chip at any time. However, the insertion of the newly
formed empty rectangle (after all the merging and switching operations) in the “range tree
data structure” (see Subsection 3.3.3) takes logarithmic time.

So, on the whole, both insertion and deletion operations take amortized logarithmic time
for each incident. On the whole, we have n modules and hence the overall time complexity of

the algorithm is O(nlogn).

3.5 Experimental Results for Online Placement

We have used the model described in Section 2 for our insert/delete events. We have generated
different data sets containing the invocation of the RFUOPs. Each data set is a sequence of
insertion and deletion of RFUOPs sorted by the time they occur. The events are uniformly
distributed on the timeline with average density of 30 RFUOPs on the chip at any given
time. We have simulated the running of a program on the reconfigurable computing system for
different combinations of empty space partitioning (KAMER - Keep all MERs, SSEG, LSEG,
SQR, LSQR, LER, BER. See Subsection 3.3.2) and bin-packing heuristics (FF, BF and BL).

With our current implementation of the placement engine, it takes about 120usec. to place
an RFUOP using SSEG-FF method, and about 2.16msec. using KAMER-BF on the average.
We ran the code on a Pentium-IT 130.

The data files are called Cnnnn where ’C’ is the class of RFUOP module width/height
distributions (one of A, B, C and D) and 'nnnn’ is number of insertion events (we have done
experiments with 'nnnn’ being 2048, 4096, 8192 and 16384). Table 1 describes distribution of
module dimensions for different classes of events. Please note that the average width/height of
data classes A’ and B’ are the same, so are the average dimensions of ’C’ and "D’ modules.

The penalty reported in the graphs is the same as what was described in Equation 2. The
tables show the percentage of the accepted events as well. Subsections 3.5.1-3.5.3 present the

results of different experiments.

17

Bin-Pack | Data set | KAMER | SSEG | BER | LSQR | LSEG | LER | SQR

FF A2048 79.25 | 74.2600 | 61.52 | 70.3600 | 52.83 | 73.8700 | 70.36
FF A4096 84.59 | 79.1000 | 66.84 | 74.3900 | 58.37 | 79.4900 | 74.73
FF A8192 79.71 | 73.3900 | 63.23 | 69.8700 | 55.87 | 74.8800 | 68.11
FF A16384 81.35 | 75.0800 | 63.59 | 70.4200 | 55.73 | 76.1300 | 69.38
BF A2048 82.52 77.49 | 67.18 75.05 | 58.93 76.46 | 74.66
BF A4096 87.06 81.76 | 73.22 80.32 | 64.57 81.66 | 79.78
BF A8192 82.28 77.57 | 67.85 73.91 | 59.04 76.12 | 73.77
BF A16384 84.04 78.81 | 68.5 75.36 | 60.92 78.25 | 75.44
BL A2048 81.84 76.22 | 61.72 73.29 | 55.57 76.07 | 71.83
BL A4096 86.18 81.93 | 70.29 78.56 | 62.33 81.42 | 78.54
BL A8192 81.17 75.71 | 65.04 72.9 | 59.71 76.54 | 72.18
BL A16384 83.46 77.39 | 64.97 74.53 | 58.23 78.29 | 73.25

Table 2: Percentage of accepted modules for different data of class ’A’ for different partitioning
heuristics.

3.5.1 Empty Rectangle Management Heuristics

In this subsection we report the percentage of accepted insertion events (i.e., |[ACC|/|[RFUOPS|)
as well as penalties (i.e., Penalty(P) as defined in Equation 3) for data set ’Annn’ when differ-
ent empty space partitioning heuristics are used. The chip size is set to 100x100 (the average
total area of the modules on the chip is 30 x 1/4 x (3 + 30)? = 8167).

Table 2 shows the percentage of acceptance in insertion events for different combinations of
the bin-packing rules and partitioning heuristics. One can notice that the rate of acceptance is
fairly constant for different sizes of the data set when a particular combination of bin-packing
and partitioning heuristics is used. Figure 10 shows the penalties only for BF. Although might
not be easily seen in the graph, SSEG and LSQR are the best among partitioning heuristics
which keep only O(n) empty rectangles. It can be seen that BER and LSEG heuristics generate
very bad placements. The reason is that their placements partition the empty space into narrow

strips which cannot accommodate most of the modules.

3.5.2 Different Chip Sizes

The effect of changing the chip size (equivalently, changing the average module area) on the
acceptance rate is addressed in this subsection. We have simulated chip sizes 80x80, 100x100,
151x66 and 120x120. Data set A16384 is used in which the average area of the modules on the
chip at any given time is 8167. Note that 100x100 and 151x66 have approximately the same
area but are different in shape.

Table 3 shows the percentage of insertion events accepted. Figure 11 shows the penalties

18

Penalty

1.8E+08
1.6E+08
1.4E+08 -
1.2E+08 -
1.0E+08 -
8.0E+07 -
6.0E+07 -
4.0E+07
2.0E+07 -
0.0E+00 -

Penalties for different partitioning heuristics when
BF is used
[DA2048 WA4096 CA8192 CIA16384 |

&
{_Y‘

C) &
<& %
@6 2

& O
Q <

Partitioning heuristic

N

&

)

&

Figure 10: Penalties for different class "A’ data sets when each of the partitioning heuristics are
used. The chip size is 100x100.

FF BF BL
Chip Sizes || KAMER | SSEG | LER | SQR || KAMER | SSEG | LER | SQR | KAMER | SSEG | LER | SQR
80x80 66.36 | 60.3 | 62.08 | 56.43 68.14 | 63.27 | 63.97 | 60.18 67.55 | 61.96 | 63.21 | 58.93
100x100 81.35 | 75.08 | 76.13 | 69.38 84.04 | 78.81 | 78.25 | 75.44 83.46 | 83.46 | 78.29 | 73.25
151x66 81.23 | 74.47 | 72.68 | 68.84 83.85 | 77.95 | 72.73 | 75.25 82.47 | 76.48 | 74.44 | 73.15
120x120 92.6 | 87.63 | 87.86 | 812 95.43 | 91.65 | 90.04 | 8852 94.82 | 90.47 | 89.89 | 86.77

for different chip sizes when partitioning heuristics are applied to A16384 data set.

Table 3: Percentage of accepted modules for different chip sizes.

3.5.3 Different Module Sizes

The experiments in this subsection deal with the effect of different module size distributions on

the acceptance rate of the insertion events. Table 4 shows the percentage of accepted insertion

events for different data sets. Note that we can only compare sets A16384 to B16384 or compare

sets C16384 to D16384 because their average module dimensions as well as chip sizes are the

same.
FF BF BL

Data set | Chip size | KAMER | SSEG | LER | LSQR || KAMER [SSEG | LER | LSQR || KAMER | SSEG | LER | LSQR

ral6384 | 100x100 81.35 [75.08 [76.13 | 70.22 84.04 | 78.81 [78.25 [75.37 83.46 | 83.46 | 78.29 [T74.53

rb16384 | 100x100 81.65 | 78.43 | 73.77 | 73.67 82.76 | 80.35 | 73.95 | 76.64 82.9 | 79.39 | 7448 | 7414

rc16384 | 128x128 88.84 | 82.25 [84.12 76.2 91.66 | 85.74 [86.34 | 81.97 91.27 | 84.95 [86.51 [80.89

rd16384 | 128x128 89.61 | 79.7 [85.42 | 76.45 92.08 | 85.5 [88.75 | 82.76 91.78 | 86.54 | 87.62 | 85.38

Table 4: Percentage of insertion events accepted for different data sets.

19

Penalties for different chip sizes when partitioning
heuristics are used on A16384
O 80x80 M100x100 O151x66 O0120x120
2.E+08
2.E+08 — — i — —
1.E+08 — 1] -] [
> 1.E+08 1] |
T 1.E+08 | =
$ 8.E+07
& 6.E+07 ||
4 E+07
2.E+07
0.E+00 -+~
& <<S’ Vé‘ & & & & Vgé* & & &
¢Y<< <<‘<,@<<'@‘<<b‘<@ & o
Q§< Q Q
Bin Packing- Heuristics

Figure 11: Penalties for different chip sizes when partitioning heuristics are applied to data set
A16384.

The difference between sets A16384 and B16384 is in the variance of RFUOP dimensions.
The width/height of RFUOPs of A16384 are in the range 3-30 while those of B16384 are in
range 14-19. The modules in set B16384 are close to squares. Surprisingly, LSQR heuristic
performs the worst (although not shown LSQR performs better than SQR) in most cases.
Another counter-intuitive result is that the acceptance rate does not increase as the variance
of RFUOP dimensions decrease. One would expect such a decrease because since the modules
are very similar in shape, the empty rectangles are supposed to accommodate arriving modules
well.

The fact that module dimensions of data set D16384 are powers of two, helped in generating

better placements. However, the increase in acceptance rate is not as high as one might expect.

4 Offline Placement

This section deals with the offline placement problem [2]. Subsection 4.1 describes our 3d-

placement method. Experimental results on offline placement are shown in Section 4.2.

4.1 3-D Template Placer

We implemented four different offline algorithms for the 3-D placement problem. The four

methods are listed below.

20

1. KAMER-BF Decreasing: In this method, we first sort the RFUOPs based on their box
volumes, and eliminate (100 — X)% smallest REFUOP boxes (X being a parameter. We
tried X = 5,10,---). Then keeping the same temporal order as the original input, give
the remaining RFUOPs (largest X % modules) as the input to our best online algorithm
(i.e., KAMER-BF). Intuitively, we are willing to eliminate small modules to open some
space for the larger ones. The reason behind eliminating the small RFUOP boxes is that,
intuitively, small modules fragment the 3-D placement and block larger ones (with higher

volume and hence larger penalties of rejection) from being placed.

2. Simulated Annealing (SA): Starting from an empty 3-D placement, use a simulated an-
nealing method to accept or reject RFUOPs, trying to minimize the penalty of the 3-D

placement.

3. Low-temperature Annealing (LTSA): Starting from the placement generated by KAMER-
BF Decreasing-X % use low-temperature annealing to add /remove RFUOPs to/from ACC
list. All RFUOPs are considered for placement (not only the X% largest placed by
the online method). An RFUOP accepted by the online method might be rejected or

Displaced based on the annealing decisions.

4. Zero-temperature Annealing (ZTSA): Starting from the placement generated by KA MER-
BF Decreasing-X % use zero-temperature annealing to add as many (100 — X)% smallest
RFUOP boxes to the ACC list as you can, trying to monotonically decrease the penalty
of the placement. In contrast to LTSA method, the RFUOP boxes placed by the online

algorithm are not removed or displaced. This method is greedy and much faster than
LTSA.

The annealing core is the same for SA,; LTSA and ZTSA methods. Their only difference
is in the starting temperature of the annealing process. The annealing core starts with an
element Py, € ACC and applies three different moves to generate other placements Py, Py, - - -

where P; € ACC trying to minimize Penalty(P). The moves are:
1. Opl1: Accept RFUOP
e Precondition: r; € RFUOPS, (r;,x,y) & P
e Operation:
P+ PU {(ri,rand(o, W — w;),
rand(0, H — hz))}

where rand(a, b) generates a random integer number in the range (a,b — 1).

21

e Post-condition: Owerlap(P) =0

In fact, we use a more mature way than generating random coordinates to choose the
location of the RFUOP box. We look for all possible empty boxes which can accommodate

box(r;) (similar to what we did in the online version) and choose one randomly.
2. Op2: Reject RFUOP
e Precondition: (1, z;,y;) € P
e Operation: P+ P\ {(rs,zi,u:) }
3. Op3: Displace RFUOP

e Precondition: (r;,z;,y;) € P

e Operation:

Tinew T+ rand(—6,0)
Yinew Yi+rand(—9,0)
P+ (P\{(Tz,l"z,yz)}) U
{(Tz’, Linews yinew))}

e Post-condition:

Tinew > 0 and Tinew < W — Wi
2 0 and Yinew < H - hz
Overlap(P) =0

Yinew

The selection of the RFUOPs to add to the ACC list (i.e., accept) or remove from the
ACC list (i.e., reject) or displace is done randomly. In Section 5 we will discuss the effect of
choosing RFUOPs with different probabilities. We have also discussed the effect of choosing
the annealing operations with different probabilities.

Penalty(P;) is used as the cost for each placement. Note that we could have allowed overlaps
between RFUOP boxes and try to resolve it towards the end of the annealing process. In that
case, the cost would have been Penalty(P) + A(T) x Overlap(P), where X is an increasing
function of annealing temperature 7', to ensure that the overlap cost converges to zero at the
end of the annealing process. We did perform experiments with this method, but the method
which allows no overlaps to occur is faster. (The authors in [27] report that 2-D placement

methods which allow/prevent overlaps generate placements of fairly equal qualities).

22

Data | Min | Max | Avg Chip
class len len | len | D Size Distribution
Tiny 3 30165 | 5 50 x 50 | Uniform
Small 3 30 | 16.5 | 10 | 70 x 70 | Uniform

A 3 30 | 16.5 | 30 | 100 x 100 | Uniform

Table 5: Description of different data classes for the offline experiemnts. D is the density
(average number of RFUOPs in the system at any time-slice).

4.2 Experimental Results for Offline Placement

We use the model described in Section 2 for our insert/delete events. We generated different
data sets containing the invocation of the RFUOPs. Each data set is a sequence of insertion
and deletion of RFUOPs sorted by the time they occur. The events are uniformly distributed
on the timeline with average density of D RFUOPs on the chip at any given time, D being a
parameter of the input file. We have simulated the running of a program on the reconfigurable
computing system by placing as many RFUOP boxes on the 3-D placement as we can. The
modules, which we cannot place on the RFU-time volume are rejected.

The data files are called Cnnnn (see Table 5), where 'C’ is the class of RFUOP module
width/height distributions (one of Tiny, Small and A) and 'nnnn’ is number of insertion events
(we have done experiments with 'nnnn’ being 50, 100, 200, 1024 and 2048). The reason we
have not used the same data files as in the online case is that those files were so large for the
annealing process that the program took several hours to finish.

The penalty reported in the following tables is the same as Equation 3 (sum of box volumes
of rejected RFUOPs). The tables show the ratio of accepted RFUOPs to the total number of
RFUOPs (i.e., |[ACC|/|IRFUOPS]) as well.

The experiments with different values of X for KAMER-BF Decreasing method showed
that using X < 93 result in higher penalties than X = 100. In the cases where X > 93, slight
improvements in the penalty of the placement was seen, and hence we did not report the results
of these experiments. Also, pure annealing took long times (e.g., hours for Small100 data set)
and hence we did not report the results of SA either. However, LTSA and ZTSA methods
yielded good results.

Table 6 shows the ratio of accepted RFUOPs when the output of KAMER-BF Decreasing
with X=100% is used as input to the low-temperature annealing method. The results of LTSA
are compared to the online algorithm (KAMER-BFD with X=100). In the same table, the
penalties of the two methods are also shown. As can be seen, the acceptance rate decreases

in some cases but the penalty always improves. The reason is that smaller RFUOP boxes

23

Data LTSA-100 Online Ratio
Set acc. rate | acc. rate
Tiny50 70 84 | 83.33%
Tiny100 72 83 | 86.75%
Small100 86 84 | 102.38%
Small200 81 89.5 | 90.50%
Small1024 84.47 84.57 | 99.88%
A100 87 89 | 97.75%
Data LTSA-100 Online Ratio
Set penalty | penalty
Tiny50 147287 | 213153 | 69.10%
Tiny100 253566 | 307879 | 82.36%
Small100 464049 | 508923 | 91.18%
Small200 539435 | 612623 | 88.05%
Small1024 4468662 | 4643786 | 96.23%
A100 427761 | 456627 | 93.68%

Table 6: The LTSA-100 columns show the acceptance rates and penalties for different data sets
when the result of KAMER-BFD with X=100% is used as input to LTSA. The online column
shows the acceptance rates and penalties for KAMER-BFD with X=100

are replaced with larger ones, hence increasing number of rejected modules but decreasing the
penalty. Table 7 is similar to Table 6, but X is set to 20, instead of 100. As can be seen, the
LTSA method is able to improve the online results substantially.

Table 8 shows the acceptance rate and penalties for the case where KAMER-BF Decreasing
with X = 20% is run first, and its placement is used as starting point for the ZTSA method.
The ZTSA only accepts the RFUOPs which are not placed by the online algorithm, and hence
is very fast. It can be seen that although it is a greedy method, it still can improve the results

of the online method.

5 Conclusion and Future Work

We summarized the results of previous work on floorplanning for reconfigurable systems and
showed why it is important to deal with both online and offline placement algorithms. For
the online problem, we presented a class of fast, but not optimal and a slow but high-quality
placement algorithm. For the offline problem, We devised simulated annealing and greedy
placement methods for the 3-D placement of the RFUOPs and showed their effectiveness.

For the online problem, we showed that by giving up slightly on the quality (SSEG-BF in

24

Data LTSA-20 Online Ratio
Set acc. rate | acc. rate
Tiny50 76 84 | 90.48%
Tiny100 82 83 | 98.79%
Small100 81 84 | 96.43%
Small200 85.5 89.5 | 95.53%
A100 81 89 | 91.01%

Data LTSA-20 | Online | Ratio
Set penalty | penalty
Tiny50 148975 | 213153 | 69.89%
Tiny100 225603 | 307879 | 73.28%
Small100 287153 | 508923 | 56.42%
Small200 359980 | 612623 | 58.76%
A100 213036 | 456627 | 46.65%

Table 7: The LTSA-20 columns correspond to KAMER-BFD with X=20% followed by LTSA.
Online columns correspond to KAMER-BFD with X=100.

Data, ZTSA-20 Online Ratio
Set acc. rate | acc. rate
Tiny50 74 84 | 88.09%
Tiny100 79 83 | 95.18%
Small100 74 84 | 88.09%
Small200 77 89.5 | 86.03%
A100 73 89 | 82.02%

Data ZTSA-20 | Online Ratio
Set penalty | penalty
Tiny50 149194 | 213153 | 69.99%
Tiny100 261549 | 307879 | 84.95%
Small100 486376 | 508923 | 95.57%
Small200 571716 | 612623 | 93.32%
A100 282587 | 456627 | 61.88%

Table 8: The ZTSA-20 columns correspond to KAMER-BFD with X=20% followed by ZTSA.
Online columns correspond to KAMER-BFD with X=100.

25

comparison to KAMER-BF), one can gain about 16x speedup (138usec. vs. 2.16msec.). Since we
normally have extra RFU resources available, this trade-off would not degrade the performance.
In fact, most reconfigurable computing systems utilize about 60-70% of the RFU resources.

We also showed that the variance of the module shapes affects the quality of the placement
one can get. We have also done experiments in which an RFUOP has different representations
in the library both in the online and the offline cases and gained quality improvements of up to
60% in penalties and 5-10% in acceptance rate. (For brevity, details of this experiment is not
included. If suggested by the reviewers, it can be included in the final version).

Another important issue to be addressed is the effect of weighting different modules when
choosing them for insertion/deleting into the active tasks. It would be interesting to observe
how the result of our method changes if modules with smaller volumes are more likely to be
removed from the active task list. The small modules probably fragment the placement box
and cause rejection of larger modules and hence increase the overall penalty. Also, the effect
of selecting the four annealing moves in the offline algorithm (See Section 4.1) with different
probabilities should be examined.

We intend to combine our offline placement method with a scheduling algorithm to see how
we can gain from the flexibility of the modules on the time axis. The offline algorithm can give
estimates on the availability of RFU area, and the scheduler can use this information as the

available RF'U resources to schedule the operations.

References

[1] A. M. S. Adario, E. L. Roehe and S. Bampi “ Dynamically Reconfigurable Architecture
for Image Processing Applications”. In Design Automation Conference, page 623, 1999.

[2] K. Bazargan, R. Kastner and M. Sarrafzadeh. “3-D Floorplanning: Simulated Annealing
and Greedy Placement Methods for Reconfigurable Computing Systems ”. To appear in
Rapid System Prototyping, 1999.

[3] K. Bazargan and M. Sarrafzadeh. “Fast Online Placement for Reconfigurable Computing
Systems”. To appear in Proceedings of IEEE Symposium on FPGAs for Custom Computing
Machines, 1999.

[4] G. Brebner. “The Swappable Logic Unit: a Paradigm for Virtual Hardware”. In Proceedings
of IEEE Symposium on FPGAs for Custom Computing Machines, pages 77-86, 1997.

[5] J. Burns, A. Donlin, J. Hogg, S. Singh, and M. Wit. “A Dynamic Reconfiguration Run-
Time System”. In Proceedings of IEEE Symposium on FPGAs for Custom Computing
Machines, pages 66—75, 1998.

[6] T. J. Callahan, P. Chong, A. DeHon, and J. Wawrzynek. “Fast Module Mapping and
Placement for Datapaths in FPGAs”. In International ACM/SIGDA Symposium on Field
Programmable Gate Arrays, pages —, February 1998.

26

[7] B. Chazelle. “The Bottom-Left Bin-Packing Heuristic: An Efficient Implementation”.
IEEE Transactions on Computers, C-32(8):697-707, August 1983.

[8] J. D. Cho and M. Sarrafzadeh. “A Buffer Distribution Algorithm for High-Speed Clock
Routing”. In Design Automation Conference, pages 537543, 1993.

[9] A. DeHon and J. Wawrzynek. “Embedded Tutorial: Reconfigurable Computing: What,

Why, and Implications for Design Automation ”. In Design Automation Conference, page
610, 1999.

[10] M. Gokhale, B. Holmes, A. Kopser, D. Kunze, D. Lopresti, S. Lucas, R. Minnich, and
P. Olsen. “Splash: A Reconfigurable Linear Logic Array”. In International Conference on
Parallel Processing, pages 526-532, 1990.

[11] S. Hauck. “Configuration Prefetch for Single Context Reconfigurable Coprocessors”. In
International ACM/SIGDA Symposium on Field Programmable Gate Arrays, pages 65-74,
February 1998.

[12] S. Hauck. “The Roles of FPGAs in Reprogrammable Systems”. Proceedings of the IEEE,
86(4):615-638, April 1998.

[13] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. “The Chimaera Reconfigurable Func-
tional Unit”. In Proceedings of IEEE Symposium on FPGAs for Custom Computing Ma-
chines, pages 87-96, 1997.

[14] S. Hauck, Z. Li, and E. J. Schwabe. “Configuration Compression for the Xilinx XC6200
FPGA”. In Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines,
pages 138-146, 1998.

[15] P. Healy and M. Creavin. “An Optimal Algorithm for Rectangle Placement”. In Technical

Report UL-CSIS-97-1. Dept. of Computer Science and Information Systems, University of
Limerick, Limerick, Ireland, 1997.

[16] C. Iseli and E. Sanchez. “Spyder: A Reconfigurable VLIW Processor using FPGAs”.

In Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, pages
17-24, 1993.

[17] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson. “Chapter 2: Approzimation Algorithms
for Bin Packing: A Survey”, pages 46-93. PWS Publishing Company, 20 Park Plaza,
Boston, MA 02116-4324, 1997. Approximation Algorithms for NP-Hard Problems, ed. D.
S. Hochbaum.

[18] E. G. Coffman Jr. and P. W. Shor. “Packings in Two Dimensions: Asymptotic Average-
Case Analysis of Algorithms”. Algorithmica, 9(3):253-277, March 1993.

[19] R. M. Karp. Complezity of Computer Computations, chapter “Reducibility Among Com-
binatorial Problems”, pages 85-163. Plenum Press, 1972.

[20] H. Krupnova, C. Rabedaoro, and G. Saucier. “Synthesis and Floorplanning for Large
Hierarchical FPGAs”. In Proceedings of ACM Symposium on Field-Programmable Gate
Arrays (FPGA), pages —, February 1997.

[21] H. Liu and D.F. Wong. “Network Flow Based Circuit Partitioning for Time-Multiplexed
FPGAs”. In International Conference on Computer-Aided Design, pages —, 1998.

27

22]

23]
[24]

[25]

[26]
[27]

28]

H. Liu and D.F. Wong. “Circuit Partitioning for Dynamically Reconfigurable FPGAs”.

In International ACM/SIGDA Symposium on Field Programmable Gate Arrays, pages —,
1999.

C. Longway and R. Siferd. “A Doughnut Layout Style for Improved Switching Speed with
CMOS VLSI Gates”. IEEE Journal of Solid-State Circuits, 24(1):194-198, 1989.

F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, 1985.

J. Shi and Dinesh Bhatia. “Performance Driven Floorplanning for FPGA Based Designs”.
In Proceedings of ACM Symposium on Field-Programmable Gate Arrays (FPGA), pages
112-118, February 1997.

P. W. Shor. “The average-case analysis of some on-line algorithms for bin packing”.
Combinatorica, 6(2):179-200, 1986.

W. J. Sun and C. Sechen. “Efficient and Effective Placement for Very Large Circuits”.
IEEFE Transactions on Computer Aided Design, 14(3):349-359, March 1995.

M. J. Wirthlin and B. L. Hutchings. “A Dynamic Instruction Set Computer”. In Pro-

ceedings of IEEE Symposium on FPGAs for Custom Computing Machines, pages 99-107,
1995.

28

