
1

EnsembleHMD: Accurate Hardware Malware
Detectors with Specialized Ensemble Classifiers

Khaled N. Khasawneh∗, Student Member, IEEE, Meltem Ozsoy§, Member, IEEE, Caleb
Donovick‡, Student Member IEEE, Nael Abu-Ghazaleh∗, Senior Member, IEEE, Dmitry

Ponomarev†, Senior Member, IEEE,

F

Abstract—Hardware-based malware detectors (HMDs) are a promis-
ing new approach to defend against malware. HMDs collect low-level
architectural features and use them to classify malware from normal
programs. With simple hardware support, HMDs can be always on,
operating as a first line of defense that prioritizes the application of
more expensive and more accurate software-detector. In this paper,
our goal is to increase the accuracy of HMDs, to improve detection,
and reduce overhead. We use specialized detectors targeted towards
a specific type of malware to improve the detection of each type. Next,
we use ensemble learning techniques to improve the overall accuracy by
combining detectors. We explore detectors based on logistic regression
(LR) and neural networks (NN). The proposed detectors reduce the
false-positive rate by more than half compared to using a single de-
tector, while increasing their sensitivity. We develop metrics to estimate
detection overhead; the proposed detectors achieve more than 16.6x
overhead reduction during online detection compared to an idealized
software-only detector, with an 8x improvement in relative detection
time. NN detectors outperform LR detectors in accuracy, overhead (by
40%), and time-to-detection of the hardware component (by 5x). Finally,
we characterize the hardware complexity by extending an open-core
and synthesizing it on an FPGA platform, showing that the overhead
is minimal.

Index Terms—Malware detection, specialized detectors, ensemble
learning, architecture, security.

1 INTRODUCTION

Computing systems at all scales face a significant threat
from malware; for example, over 600 million malware sam-
ple were reported by AV TEST in their malware zoo, with
over 120 million coming in 2016 [6]. Obfuscation and eva-
sion techniques increase the difficulty of detecting malware
after a machine is infected [51]. Zero-day exploits –novel ex-
ploits never seen before– defy signature based static analysis
since their signatures have not been yet encountered in the
wild. Thus, dynamic detection techniques [14] that can de-
tect the malicious behavior during execution are needed [9],
[24], to protect against such attacks. However, the difficulty
and complexity of dynamic monitoring in software have
traditionally limited its use.

Recent studies have shown that Hardware Malware De-
tectors (HMDs) that carry out anomaly detection in low-

∗CSE and ECE Departments, University of California, Riverside,
Email:{kkhas001,naelag}@ucr.edu †CS Department, Binghamton University
‡CS Department, Stanford University §Security and Privacy Lab., Intel Corp.

level feature spaces such as hardware events, can distin-
guish malware from normal programs [11], [7]. In our
prior work, we introduced a hardware supported classi-
fier trained using supervised learning that continuously
monitors and differentiates malware from normal programs
while the programs run [32], [33]. To tolerate false positives,
this system is envisioned as a first step in malware detection
to prioritize which processes should be dynamically moni-
tored using a more sophisticated but more expensive second
level of protection.

In this paper, we pursue approaches to enhance the
classification accuracy of HMDs. Improving accuracy in-
creases their ability to detect malware, and reduces the
overhead that results from false positives. In particular, we
explore two approaches: (1) Specialized detectors: we study,
in Section 3, whether specialized detectors, each targeting
a specific type of malware, can more successfully classify
that type of malware. After confirming that specialized
detectors perform better than general detectors, we identify
the features that perform best for each specialized detec-
tor; and (2) Ensemble detection: in Section 4, we combine
multiple detectors, general or specialized, to improve the
overall performance of the detection. Combining special-
ized detectors is different from classical ensemble learning
where multiple diverse detectors with identical goals are
combined to enhance their accuracy. In particular, in our
problem the specialized detectors each answers a different
question in the form of: ”is the current program a malware
of type X?” where X is the type of malware the detector is
specialized for. Combining such detectors requires different
forms of combination functions to produce the ensemble
decision. We evaluate the performance of the ensemble
detectors in both offline and online detection. We analyze
the implications on the hardware complexity of the different
configurations in Section 6.

The advantage of HMDs in a two-level detection system
with a more accurate software detector is not directly mea-
sured by accuracy: if accuracy were the only metric, we are
better off using the software detector alone. The advantage
of HMDs result from reducing the overhead necessary for
software detection and from prioritizing the efforts of a
software detector. To better measure this advantage, we
develop metrics that translate detection performance of
HMDs to overhead and time-to-detection advantages of

2

the whole system (Section 5). Our ensemble approaches
substantially improve the detection of HMDs, reducing the
false positives by over half for our best configurations, while
also significantly improving the detection rate. As a result,
we achieve over 16x reduction in overhead of the two-level
detection framework compared to a software only detector.
Compared to using a single HMD detector [32], [33], the
ensemble detector achieves 2x reduction in overhead and
2.7x reduction in time to detection of the system during
online detection.

The paper next conducts a longitudinal study to explore
whether detectors trained on a set of malware continue to
be effective over time as malware evolves (Section 7. We dis-
cover that the detection performance degrades substantially,
motivating the need for a secure update facility to allow the
detector configuration to be updated as malware evolves.
We compare our approach to related work in Section 8.
Finally, Section 9 presents some concluding remarks.

In summary, the paper makes the following contribu-
tions:

• We characterize how specialized detectors trained for
specific malware types perform compared to a general
detector and show that specialization has significant
performance advantages.

• We use ensemble learning to improve the performance
of the hardware detector. However, combining spe-
cialized detectors that answer different questions is a
non-classical application of ensemble learning, which
can challenge established approaches for combining
ensemble decisions.

• We define metrics for the two-level detection frame-
work that translate detection performance to expected
reduction in overhead, and time to detection.

• We explore the use of both Logistic Regression (LR)
and Neural Networks (NN) as the base classification
algorithm for the detectors.

• We evaluate the hardware complexity of the proposed
designs by extending the AO486 open core. We propose
and evaluate some hardware optimizations to both the
LR and NN implementations.

• We explore the question of whether detectors trained
on an old generation of malware would continue to
successfully detect malware as it evolves (i.e., from a
more recent data set). We discover that the classifica-
tion performance significantly deteriorates as malware
evolves. In addition, we checked if detectors traind on
recent malware would be able to detect old malware
and the answer was no. These results highlights the
need to continuously and securely adapt the learning
configuration of the detector to track evolving malware.

2 APPROACH AND EVALUATION METHODOLOGY

We consider a system with a hardware malware detector
(HMD) similar to those recently proposed in literature [11],
[32], [20]. HMD exploit the fact that the computational foot-
print of malware differs from that of normal programs in
low-level feature spaces. Detectors built using such features
appear to be quite successful; Qualcomm announced the use
of a similar technology in their Snapdragon processor [35].
Early studies relied on opcode mixes [7], [39], [48], [37].

More recently, Demme et al. [11] showed that malware
programs can be classified effectively by the use of offline
machine learning model applied to low-level features; in
this case they used features available through hardware
performance counters of the ARM processor collected pe-
riodically.

This paper improves on prior work by Ozsoy et al. [32]
who built an online hardware-supported, low-complexity,
malware detector. The online detection problem uses a time-
series window based averaging to detect transient malware
behavior. As detection is implemented in hardware, simple
machine learning algorithms are used to avoid the overhead
of complex algorithms. This work demonstrated that low-
level architectural features can be used to detect malware in
real-time (i.e., not only after the fact).

In this study, our goal is to improve the effectiveness
of online HMD. Improving the detection performance leads
to more malware being detected with fewer false positives.
We explore using specialized detectors for different malware
types to improve detection. We show that specialized detec-
tors are more effective than general detectors in classifying
their malware type. Furthermore, we study different ap-
proaches for combining the decisions of multiple detectors
to achieve better classification. In this section, we present
some details of the methodology including the Data Set and
the choice of features for classification.

2.1 Data Set

Our data set consists of 3,653 malware programs and 554
regular Windows programs (the malware samples that we
use are Windows-based). This regular program set contains
the SPEC 2006 benchmarks [17], Windows system binaries,
and many popular applications such as Acrobat Reader,
Notepad++, and Winrar. The malware programs were cho-
sen from the MalwareDB malware set [30].

The group of regular and malware programs were all
executed within a virtual machine running a 32-bit Win-
dows 7 with the firewall and security services for Windows
disabled. We observed that this desktop malware does not
require user interaction to operate maliciously, in contrast
to prior work that showed that mobile malware does not
run correctly without user interaction [20]. We verified
that a large sample (more than half) of our malware ran
correctly by manually checking run-time behaviour. In fact,
the intrusion detection monitoring systems on our network
were tripped several times due to malware trying to search
for and attack other machines. Eventually, we set up the
environment in an independent subnet. However, for the
regular programs, we manually interacted with them to trig-
ger an expressive representation. The Pin instrumentation
tool [10] was used to gather the dynamic traces of programs
as they were executed. Each trace was collected after 150
system calls for a duration of 5,000 system calls or 15 million
committed instructions, whichever is first.

The malware data set consists of five types of malware:
(1) Backdoors which bypass the normal authentication of
the system; (2) Password Stealers (PWS) which steals user
credentials using a key-logger and sends them along with
the visited website to the attacker; (3) Rogues which pretend
to be an antivirus program and try to sell the victim its

3

services; (4) Trojans which appear to be harmless programs
but contain malicious code; and (5) Worms which attempt
to spread to other machines using various methods. We
selected only malware programs that were labeled as mal-
ware by Microsoft and used the Microsoft classification for
their type [28]. Each malware set (corresponding to the
malware type) and the regular programs set were randomly
divided into three subsets; training (60%), testing (20%) and
validation (20%) as shown in Table 1. These are typical ratios
used in training classifiers. The training and testing sets
were used to train and test the detectors respectively. The
validation set was used for exploring the settings of training
and detection.

We note that both the number of programs and the
duration of the profiling of each program is limited by
the computational and storage overheads; since we are
collecting dynamic profiling information through Pin [10]
within a virtual machine, collection requires several weeks
of execution on a small cluster, and produces several ter-
abytes of compressed profiling data. Training and testing
is also extremely computationally intensive. This dataset is
sufficiently large to establish the feasibility and provide a
reasonable evaluation of the proposed approach.

Total Training Testing Validation
Backdoor 815 489 163 163
Rogue 685 411 137 137
PWS 557 335 111 111
Trojan 1123 673 225 225
Worm 473 283 95 95
Regular 554 332 111 111

TABLE 1: Data set breakdown

2.2 Feature Selection

At the architecture/hardware level, there are many features
that could be collected. To enable direct comparison of the
proposed ensemble detector against a single detector, we
use the same features used by Ozsoy et al. [32]. For com-
pleteness, we describe the rationale behind these features:

• Instruction mix features: collected based on the types
and/or frequencies of executed opcodes. We considered
four features based on opcodes. Feature INS1 tracks the
frequency of opcode occurrence in each of the x86 in-
struction categories. The top 35 opcodes with the largest
difference (delta) in frequency between malware and
regular programs were aggregated and used as feature
(INS2). Finally, INS3 and INS4 are a binary version of
INS1 and INS2 respectively; INS3 tracks the presence of
opcodes in each category and INS4 indicating opcode
presence for the 35 largest difference opcodes.

• Memory reference patterns: collected based on mem-
ory addresses used by the program. Feature MEM1
keeps track of the memory reference distance in quan-
tized bins (i.e., creates a histogram of the memory
reference distance). The binary version of MEM1 is
feature MEM2 that tracks the presence of a load/store
in each of the distance bins.

• Architectural events: collected based on architectural
events. The features collected were: total number of
memory reads, memory writes, unaligned memory ac-
cesses, immediate branches and taken branches. This
feature is called ARCH in the remainder of the paper.

Consistent with the methodology used by earlier
works [11], [32], we collected the features once every 10K
committed instructions of the running program. The se-
lected frequency (10K) effectively balances complexity and
detection accuracy for offline [11] and online [32] detection.
Thus, for each program we maintained a sequence of these
feature vectors collected every 10K instructions, labeled as
either malware or normal.

3 CHARACTERIZING PERFORMANCE OF SPECIAL-
IZED DETECTORS

In this section, ,we introduce specialized detectors: those that
are trained to identify a specific type of malware. First, we
investigate whether such detectors’ performance exceeds
that of general detectors, which are trained to classify any
type of malware. After establishing that they do indeed
outperform general detectors, we proceed by exploring how
to use such detectors to improve the overall detection of the
system.

We used two different classification algorithms in our
experiments: (1) Logistic Regression (LR), which is a simple
classification algorithm [18] that separates two classes using
a linear boundary in the feature space. The motivation
behind using LR is the ease of implementation in hardware;
and (2) Neural Networks (NN) which is a network of per-
ceptrons that can be trained to approximate a classification
function that is generated from the training data. Note
that a single perceptron in NN is equivalent to LR [2];
thus, NN is expected to outperform LR but with the cost
of additional implementation complexity. The motivation
of using NN is its more effective classificaiton due to its
non-linear boundary. Additionally, NN can detect evasive
malware when retrained, while LR cannot [21].

The collected feature data for programs and malware is
used to train LR and NN detectors. We pick the threshold
for the output of the detector, which is used to separate a
malware from a regular program, such that it maximizes
the sum of the sensitivity (recall) and specificity. Sensitivity
is the proportion of malware that the system correctly
identifies as malware while specificity is the proportion
of regular programs that the system correctly identifies as
regular programs [43]. For each detector in this paper, we
present the threshold values to enable reproduction of our
experiments.
Training General Detectors The general detectors are de-
signed to detect any type of malware. Therefore, a general
detector is trained using a data set that encompasses all
types of malware programs, against another set with regular
programs. We trained seven general detectors, one for each
of the feature vectors we considered.
Training Specialized Detectors The specialized detectors
are designed to detect a specific type of malware relative
to the regular programs. We identify the malware type
and separate our malware sets into these types based on
Microsoft Malware Protection Center classification [28]. The

4

specialized detectors were trained only with malware that
matches the detector type, as well as regular programs, so
that it would have a better model for detecting the type of
malware it is specialized for. For example, the Backdoors de-
tector is trained to classify Backdoors from regular programs
only. We chose this approach rather than also attempting
to classify malware types from each other because false
positives among malware types are not important for our
goals. Moreover, types of malware may share features that
regular programs do not have and thus classifying them
from each other makes classification against regular pro-
grams less effective.

3.1 Specialized Detectors: Is There an Opportunity?

Intuitively, each malware type has different behaviour al-
lowing specialized detectors to more accurately carry out
classification. Thus, in this section, we explore this intuition
and quantify the advantage obtained from specializing de-
tectors.

We built specialized detectors for each type of malware
we have in the data set (Backdoor, PWS, Rogue, Trojan
and Worm). Next, we compared the performance of each of
the seven general detectors against each of the specialized
detectors performance with respect to classifying the spe-
cific malware type for which the specialized detector was
trained. Each comparison between specialized and general
detectors uses the same testing set for both of detectors. The
testing set includes regular programs and the malware type
that the specialized detector was designed for.

We compared the performance of the best performing
LR and NN general detector against the best LR and NN
specialized detector for each type of malware. Figure 1a
shows the Receiver Operating Characteristic (ROC) curves
of the LR INS4 general detector (best performing LR general
detector) while Figure 1b shows the ROC curves for the best
LR specialized detectors for each type of malware (MEM1
for Trojans, MEM2 for PWS, INS4 for Rogue, and INS2 for
both Backdoor and Worms). The ROC curves represent the
classification rate (i.e., Sensitivity) as a function of false posi-
tives (100-Specificity) for different threshold values between
0 and 1. In most cases, the specialized detectors outperform
the general detector, sometimes significantly.

Figure 2 shows the average improvement of the Area
Under the Curve (AUC) for each type of malware using the
best LR general detector (INS4) and the best NN general
detector (INS2). It also shows the performance of the best
LR specialized detector, and the best NN specialized de-
tector for each type of malware. Overall, the improvement
opportunity is 0.0904 for using specialized LR detectors over
general LR detectors and 0.06 for using specialized NN
detectors over general NN detectors improving the AUC
by more than 9% and 6% respectively. This improvement
has a substantial impact on performance. For example, the
improvement in Rogue detection, 8% in the AUC, translates
to a 4x reduction in overhead needed for detection according
to the work metric we define in Section 5.2). In addition, the
specialized NN detectors outperform all other detectors.

Figure 3 shows the accuracy values for each of the previ-
ous AUC when picking the best operating point (maximum
sensitivity+specificity). This results also supports the con-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
la

ss
ifi

ca
ti

o
n
 R

a
te

False Positives

Backdoor
PWS

Rogue
Trojan

Worm

(a) Best general detector (INS4)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
la

ss
ifi

ca
ti

o
n
 R

a
te

False Positives

Backdoor
PWS

Rogue
Trojan

Worm

(b) Best specialized detector

Fig. 1: Opportunity: best specialized vs. best general detec-
tor

clusion that specialized NN detectors outperform all other
detectors.

 0

 0.2

 0.4

 0.6

 0.8

 1

Backdoor PWS Rogue Trojan Worm Average

A
U

C
 v

a
lu

e

Malware type

General (LR)
General (NN)

Specialized (LR)
Specialized (NN)

Fig. 2: AUC opportunity size

 0

 0.2

 0.4

 0.6

 0.8

 1

Backdoor PWS Rogue Trojan Worm Average

A
cc

u
ra

cy

Malware type

General (LR)
General (NN)

Specialized (LR)
Specialized (NN)

Fig. 3: Accuracy opportunity size

Its clear that specialized detectors are more successful
than general detectors in classifying malware. However, it
is not clear why different features are more successful in
detecting different classes of malware, or indeed why clas-
sification is at all possible in this low-level feature space. To
attempt to answer this question, we examined the weights
in the Θ vector of the LR ARCH feature specialized detector
for Rogue and Worm respectively. This feature obtains 0.97
AUC for Rogue but only 0.56 for Worm. We find that the
Rogue classifier discovered that the number of branches in
Rogue where significantly less than normal programs while
the number of misaligned memory addresses were signifi-
cantly higher. In contrast, Worm weights were very low for
all ARCH vector elements, indicating that Worms behaved

5

similar to normal programs in terms of all architectural
features.

4 MALWARE DETECTION USING ENSEMBLE
LEARNING

The next problem we consider is to how to use the spe-
cialized detectors to perform overall detection performance.
The problem is challenging since we do not know the type
of malware (or indeed if a program is malware) during
classification. We start with a set of general detectors, each
trained using each of our features, and a set of special-
ized detectors, each trained using one feature and for one
malware type. The combining problem considers how to
combine the decisions of multiple detectors (base detectors).
To combine multiple base detectors, a decision function
is used to fuse their result into a final decision. Figure 4
illustrates the combined detector components and overall
operation.

Fig. 4: Combined detector

The general technique of combining multiple detectors is
called ensemble learning; the classic type combines multiple
independent detectors that are each trained for the same
classification problem (i.e, to classify the same phenom-
ena) [13]. For example, for malware detection, all the general
detectors were designed to detect any type of malware.
Thus, ensemble learning techniques apply to the problem
of combining their decisions directly.

When using specialized detectors, each detector is
trained to classify a different phenomena (a different type of
malware); they are each answering a different classification
question. Given that we do not know if a program contains
malware, let alone the malware type, it is not clear how spe-
cialized detectors can be used as part of a practical detection
solution. In addition, we do not know whether common
ensemble learning techniques, which assume detectors that
classify the same phenomena, would successfully combine
the different specialized detectors.

In order to solve this problem, we evaluate different
decision functions to combine the specialized detectors. We
focused on combining techniques which use all the detectors
independently in parallel to obtain the final output from
the decision function. Since all the detectors are running in
parallel, this approach speeds up the computation.

4.1 Decision Functions
We evaluated the following decision functions.

• Or’ing: the final decision is malware if any of the base
detectors detects the input as malware. This approach is
likely to improve sensitivity, but result in a high number
of false positives (reduce specificity).

• High confidence: the final decision is selected using
the Or’ing decision function. However, in this decision
function, we select the specialized detector thresholds
so that their output will be malware only when they are
highly confident that the input is a malware program.
Intuitively, specialized detectors are likely to have high
confidence only when they encounter the malware type
they are trained for.

• Majority voting: the final decision is based on the
decision of the majority of the base detectors. Thus, if
most of them agreed that the program is a malware the
final decision will be that it is a malware program.

• Stacking (Stacked Generalization): in this approach,
a number of first-level detectors are combined using a
second-level detector (meta-learner) [47]). The key idea,
is to train a second-level detector based on the output
of first-level (base) detectors via validation data set. The
final decision is the output of the second level detector.

The stacking procedure operates as follows: we from a new
data set from collecting the output of each of the base
detectors using the validation set. The collected data set
consists of every base detector decision for each instance
in the validation data set as well as the true classification
label (malware or regular program). In this step, it is critical
to ensure that the base detectors are formed using a batch
of the training data set that is different from the one used to
form the new data set. The second step is to treat the new
data set as a new problem, and employ a learning algorithm
to solve it.

4.2 Ensemble Detectors
To aid with the selection of the base detectors to use within
the ensemble detectors, we compare the set of general
detectors to each other. Figures 5a and 5b show the ROC
graph that compares all the LR and NN general detectors
respectively. We used a test data set that includes the test
sets of all types of malware added to the regular programs
test set. The best performing LR general detector uses the
INS4 feature vector and the best performing NN general
detector uses the INS2 feature vector; we used them as the
baseline detectors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
la

ss
ifi

ca
ti

o
n
 R

a
te

False Positives

MEM1
MEM2

INS1
INS2

INS3
INS4

ARCH

(a) Logistic regression

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
la

ss
ifi

ca
ti

o
n
 R

a
te

False Positives

MEM1
MEM2

INS1
INS2

INS3
INS4

ARCH

(b) Neural network

Fig. 5: General detectors comparison

We tested different decision functions and applied as
input to them different selections of base detectors. An ROC
curve based on a validation data set was generated for each
base detector to enable identification of the best threshold

6

INS MEM ARCH
Best Threshold (LR) 0.812 0.599 0.668
Best Threshold (NN) 0.421 0.581 0.622
High Confidence Threshold (LR) 0.893 0.927 0.885

TABLE 2: General ensemble base detectors threshold values

Backdoor PWS Rogue Trojan Worm
Best Threshold (LR) 0.765 0.777 0.707 0.562 0.818
Best Threshold (NN) 0.473 0.337 0.180 0.760 0.269
High Confidence Threshold (LR) 0.879 0.890 0.886 0.902 0.867

TABLE 3: Specialized ensemble base detectors threshold
values

values for the base detectors. Subsequently, the closest point
on the ROC curve to the upper left corner of the graph,
which represents the maximum Sensitivity+Specificity on
the training set, was use to select the threshold since we
considered the sensitivity and specificity to be equally im-
portant. However, for the High confidence decision func-
tion, the goal is to minimize the false positives. Therefore,
we selected the highest sensitivity value achieving less than
3% false positive rate.

The validation data set used for the general detectors
includes all types of malware as well as regular programs.
However, for the specialized detector, it only includes the
type of malware for which the specialized detector is de-
signed in addition to regular programs. We consider the
following combinations of base detectors:

• General ensemble detectors: combine only general de-
tectors using classical ensemble learning. General en-
semble detectors work best when diverse features are
selected. Therefore, we use the best detector from each
feature group (INS, MEM, and ARCH), which are INS4,
MEM2, and ARCH respectively for LR detectors and
INS2, MEM2, and ARCH for NN detectors. Table 2
shows the threshold values for the selected LR base
detectors which achieve the best detection (highest sum
of sensitivity and specificity). The table also shows the
threshold values for the selected NN base detectors.
Finally, using the same process, we find the best thresh-
old values for the stacking second-level detector to be
0.781 and 0.542 for the LR and NN stacking detectors
respectively.

• Specialized ensemble detectors: these combine multiple
specialized detectors. For each malware type, we used
the best specialized detector. Thus, from LR detectors,
we selected the detectors trained using MEM1 for Tro-
jans, MEM2 for PWS, INS4 for Rogue, and INS2 for
both Backdoor and Worms. On the other hand, for
NN detectors, we selected MEM2 for both PWS and
Trojans, and INS2 for the other malware types, with
the threshold values shown in Table 3. In addition, the
threshold value for the stacking second-level detector is
0.751 and 0.597 for LR and NN respectively.

• Mixed ensemble detector: combines one or more high
performing specialized detectors with one general de-
tector. The general detector allows the detection of other
malware types unaccounted for by the base special-
ized detectors. This approach allows us to control the
complexity of the ensemble (by limiting the number

INS4 Rogue Worm
Best Threshold 0.812 0.707 0.844
High Confidence Threshold 0.893 0.886 0.884

TABLE 4: Logistic regression mixed ensemble base detectors
threshold values

INS2 Backdoor PWS Worm
Best Threshold 0.421 0.473 0.870 0.269

TABLE 5: Neural networks mixed ensemble base detectors
threshold values

of specialized detectors) while taking advantage of the
best specialized detectors. In our experiments, we used
two LR specialized detectors for Worms and Rogue
built using the INS4 features vector, because they per-
formed significantly better than the LR general detector
for detecting their type. We combine these with an
INS4 general detector to build the LR general ensemble
detector. For the NN general ensemble detector, we
used three specialized detectors for Backdoor, PWS, and
Worm built using INS2 features vector along with an
INS2 general detector. The threshold values of the base
detectors are shown in Table 4 and 5 for the LR general
ensemble and the NN general ensemble respectively.
The threshold value for the stacking second-level de-
tector is 0.5 for LR general ensemble and 0.52 for NN
general ensemble.

4.3 Offline Detection Effectiveness
As discussed in Section 2.2, each program have a feature
instance collected for each 10K committed instructions dur-
ing execution. To evaluate the offline detection performance
of a detector, a decision for each instance is first evaluated.
As a proof of concept, we consider programs where most
of the decisions are malware to be malware; otherwise, the
program is considered to be a regular program.

Table 6 and 7 show the sensitivity, specificity and accu-
racy for the different LR and NN ensemble detectors using
different combining decision functions. It also presents the
work and time advantage, which represent the reduction in
work and time to achieve the same detection performance as
a software detector; we define these metrics more precisely
in Section 5. The specialized ensemble detector using the
stacking decision function outperforms all other detectors
built using the same classification method. The LR special-
ized ensemble achieves 95.8% sensitivity and only 4% false
positive rate, which translates to a 24x work advantage and
12.2x time advantage compared to software only detector.
On the other hand, the NN specialized ensemble resulted
in 92.9% sensitivity and 0% false positive, which translates
to unbounded work advantage and 14.1x time advantage
compared to software only detector. Thus, NN specialized
ensemble have unbounded work advantage, since they have
no false positives on our dataset, and 15% faster detection
than the LR specialized ensemble.

The Or’ing decision function results in poor specificity
for most LR ensembles, since it results in a false positive
whenever any detector encounters one. Majority voting
was used only for LR general ensembles as it makes no

7

Decision Function Sensitivity Specificity Accuracy Work Advantage Time Advantage
Best General – 82.4% 89.3% 85.1% 7.7 3.5

General Ensemble

Or’ing 99.1% 13.3% 65.0% 1.1 1.1
High Confidence 80.7% 92.0% 85.1% 10.1 3.7
Majority Voting 83.3% 92.1% 86.7% 10.5 4.1
Stacking 80.7% 96.0% 86.8% 20.1 4.3

Specialized Ensemble
Or’ing 100% 5% 51.3% 1.1 1.1
High Confidence 94.4% 94.7% 94.5% 17.8 9.2
Stacking 95.8% 96.0% 95.9% 24 12.2

Mixed Ensemble
Or’ing 84.2% 70.6% 78.8% 2.9 2.2
High Confidence 83.3% 81.3% 82.5% 4.5 2.8
Stacking 80.7% 96.0% 86.7% 20.2 4.3

TABLE 6: Logistic regression offline detection with different combining decision functions

Sensitivity Specificity Accuracy Work Advantage Time Advantage
Best General 88.7% 88.6% 88.3% 7.8 4.4
General Ensemble (Stacking) 83.1% 100% 91.7% ∞ 5.9
Specialized Ensemble (Stacking) 92.9% 100% 96.5% ∞ 14.1
Mixed Ensemble (Stacking) 80.2% 98.7% 89.7% 61.6 5.4

TABLE 7: Neural networks offline detection

sense to vote when the detectors are voting on different
questions. Majority voting performed reasonably well for
the LR general ensemble.

For the LR general ensemble detector, Stacking per-
forms the best, slightly improving performance relative to
the baseline detector. The majority voting was almost as
accurate as stacking but results in more false positives.
The mixed ensemble detector did not perform well; with
stacking, it was able to significantly improve specificity but
at low sensitivity.

4.4 Online Detection Effectiveness
Thus far, we have investigated the offline detection success:
i.e., given the full trace of program execution. In this section,
we present a moving window approach to allow real-time
classification of the malware following a design in our
previous work [32]. In particular, the features are collected
for each 10,000 committed instructions, and classified using
the detector. We keep track of the decision of the detector
using an approximation of Exponential Moving Weighted
Average. During a window of time of 32 consecutive deci-
sions, if the decision of the detector reflects malware with
an average that crosses a preset threshold, we classify the
program as malware.

4.4.1 Online detection performance

Sensitivity Specificity Accuracy
Best General 84.2% 86.6% 85.1%
General Ensemble (Stacking) 77.1% 94.6% 84.1%
Specialized Ensemble (Stacking) 92.9% 92.0% 92.3%
Mixed Ensemble (Stacking) 85.5% 90.1% 87.4%

TABLE 8: Logistic regression online detection performance

The result of the online detection performance are in
Table 8 and 9. We evaluate candidate detectors in the online
detection scenario. The performance for LR detectors is
slightly worse for online detection than offline detection,
which benefits from the full program execution history.

Sensitivity Specificity Accuracy
Best General 89.2% 85.6% 86.9%
General Ensemble (Stacking) 91.6% 89.9% 90.6%
Specialized Ensemble (Stacking) 93.2% 94.4% 93.8%
Mixed Ensemble (Stacking) 94.4% 89.8% 91.7%

TABLE 9: Neural networks online detection performance

However, for the NN detectors the sensitivity increased, but
the specificity and accuracy decreased. The NN specialized
ensemble using the stacking decision function outperforms
all other detectors by detecting 93.2% of the malware with
only 5.6% of false alarms.

4.4.2 Online detection time

Next, we study the time for detecting a malware program in
the hardware detector during execution. This time is defined
as the number of decision windows (10K committed instruc-
tions) that a detector took since a malware started running
to classify it as malware. Figure 6 shows the cumulative
probability distribution of the detected malware programs
as a function of the number of decision windows for both
specialized ensemble detectors LR and NN. NN clearly
outperforms LR in this metric. For example, NN detects 88%
of malware in 500 periods or less, while LR only detects
7%, and over 95% of the malware in 1000 periods or less,
while LR detects less than 60%. On average, NN detected
malware 5x faster than LR. On a 3 GHz processor, assuming
an Instruction Per Cycle (IPC) of 2, this translates to around
500 µ-seconds for NN compared to around 2.5 milliseconds
for LR. Thus, NN detectors can alert the software detector
more quickly, and limit the opportunity the malware has to
do damage to the system.

5 TWO-LEVEL FRAMEWORK PERFORMANCE

We envision our HMD to be used as a first level of a
two-level detection (TLD) system. The advantage of this
approach is that the second level can clean up false positives

8

 0%

20%

40%

60%

80%

100%

0 500 1000 1500 2000 2500

P
e
rc

e
n
ta

g
e
 o

f
d
e
te

ct
e
d
 m

a
lw

a
re

Number of detection periods

N
N

 a
v
e
ra

g
e

LR
 a

v
e
ra

g
e

NN specialized ensemble LR specialized ensemble

Fig. 6: Online detection time

that arise due to the fact that the HMD uses low level fea-
tures and simple classifiers. The hardware detector is always
on, identifying processes that are likely to be malware to
prioritize the second level. The second level could consist
of a more sophisticated semantic detector, or even a pro-
tection mechanism, such as a Control Flow Integrity (CFI)
monitor [55] or a Software Fault Isolation (SFI) [45] monitor,
that prevents a suspicious process from overstepping its
boundaries. An interesting possibility is to make the second
level detector a cloud based system; if malware is found the
results can be propagated to other subscribers in the system.
The first level thus serves to prioritize the operation of the
second level so that the available resources are directed at
processes that are suspicious, rather than applied arbitrarily
to all processes.

One possible design point is to use a software only
malware detector (i.e., make the second level always on).
This detector is likely to be more accurate, but unfortunately,
it also incurs high overhead. Thus, the advantage of the
HMD is to prioritize the operation of the second level de-
tector to lower its overhead, and reduce the detection time.
Improving the detection accuracy of the hardware detector
can substantially improve the overall system. Reducing false
negatives will lead to the detection of more malware, while
reducing false positives will reduce the overhead of the
system by avoiding unnecessary invocations of the second
level detector.

The performance of an HMD in terms of classification
accuracy on its own does not reflect the advantage of using it
within a TLD (detection overhead and time to detection). To
be able to quantify these advantages, in this section we build
a model of the two level detector and derive approximate
metrics to measure its performance advantage relative to
a system consisting of software protection only. Our goal
is to evaluate how improvements in detection translate to
run-time advantages for the detection system. Without loss
of generality, we assume that the second level consists of a
software detector that can perfectly classify malware from
normal programs, but the model can be adapted to consider
other scenarios as well.

The first level uses low-level architecture features of the
running programs to classify them. This classification may
be binary (suspicious or not suspicious) or more continuous,
providing a classification confidence value. In this analysis,
we assume binary classification: if the hardware detector
flags a program to be suspicious it will be added to a priority
work list. The software detector scans processes in the high

priority list first. A detector providing a suspicion index can
provide finer prioritization of the software classifier, further
improving the detection advantage.

5.1 Assumptions and Basic Models

We call the percentage of positive instances correctly classi-
fied malware, Sensitivity (S) of the classifier. Similarly, we
call the percentage of correctly classified normal programs
the Specificity (C). Conversely, the misclassified malware is
referred to as False Negatives - FN, while the misclassified
normal programs are referredto as False Positives -FP. For
a classification algorithm to be effective, it is important to
have high values of both S and C .

We assume a discrete system where the arrival rate of
processes is N with a fraction m of those being malware.
We also assume that the effort that the system allocates to
the software scanner is sufficient to scan a fraction e of the
arriving processes (e ranges from 0 to 1).

In the base case a software detector scans a set of running
programs that are equally likely to be malware. Thus, given
a detection effort budget e, a corresponding fraction of the
arriving programs can be covered. Increasing the detection
budget will allow the scanner to evaluate more processes.
Since every process has an equal probability of being mal-
ware, increasing the effort increases the detection percentage
proportionately. Thus, the detection effectiveness (expected
fraction of detected malware) is simply e.

5.2 Metrics to Assess Relative Performance of TLD

In a TLD, the hardware detector informs the system of
suspected malware, which is used to create a priority list
consisting of these processes. The size of this suspect list,
ssuspect, as a fraction of the total number of processes is:

ssuspect = S ·m+ (1− C) · (1−m) (1)

Intuitively, the suspect list size is the fraction of programs
predicted to be malware. It consists of the fraction of mal-
ware that were successfully predicted to be malware (S ·m)
and the fraction of normal programs erroneously predicted
to be malware (1− C) · (1−m).

5.2.1 Work advantage
Consider a case where the scanning effort e is limited to
be no more than the size of the priority list. In this range,
the advantage of the TLD can be derived as follows. Lets
assume that the effort the system dedicates to detection
is k · ssuspect where k is some fraction between 0 and 1
inclusive. The expected fraction of detected malware for the
baseline case is simply the effort, which is k · ssuspect (as
discussed in the previous subsection). In contrast, we know
that S of the malware can be expected to be in the ssuspect
list and the success rate of the TLD is k · S. Therefore, the
advantage, Wtld, in detection rate for the combined detector
in this range is the ratio of the detection of the TLD to the
software baseline:

Wtld =
k · S

k · ssuspect
=

S

S ·m+ (1− C) · (1−m)
(2)

9

The advantage of the TLD is that the expected ratio
of malware in the suspect list is higher than that in the
general process list if the classifier is better than random. It is
interesting to note that when S+C=1, the advantage is 1 (i.e.,
both systems are the same); to get an advantage, S+C must
be greater than 1. For example, for smallm, if S=C=0.75, the
advantage is 3 (the proposed system finds malware with one
third of the effort of the baseline). If S=C=0.85 (lower than
the range that our features are obtaining), the advantage
grows to over 5.

Note that with a perfect hardware predictor (S=1, C=1),
the advantage in the limit is 1

m ; thus, the highest advantage
is during a period where the system has no malware when
m approaches 0. Under such a scenario, the advantage tends
to S

1−C . However, as m increases, for imperfect detectors,
the size of the priority list is affected in two ways: it gets
larger because more malware processes are predicted to be
malware (true positives), but it also gets smaller, because
less processes are normal, and therefore less are erroneously
predicted to be malware (false positives). For a scenario with
a high level of attack (m tending to 1) there is no advantage
to the system as all processes are malware and a priority list,
even with perfect detection, does not improve on arbitrary
scanning.

5.2.2 Detection success given a finite effort

In this metric, we assume a finite amount of work, and
compute the expected fraction of detected malware. Given
enough resources to scan a fraction a of arriving processes,
we attempt to determine the probability of detecting a
particular infection.

We assume a strategy where the baseline detector scans
the processes in arbitrary order (as before) while the TLD
scans the suspect list first, and then, if there are additional
resources, it scans the remaining processes in arbitrary or-
der.

When e <= ssuspect, analysis similar to that above
shows the detection advantage to be (S

ssuspect
). When e >=

ssuspect, then the detection probability can be computed as
follows.

Dtld = S + (1− S) · e ·N −N · ssuspect
N · (1− ssuspect)

. (3)

The first part of the expression (S) means that if the suspect
list is scanned, the probability of detecting a particular
infection is S (that it is classified correctly and therefore is in
the suspect list). However, if the malware is misclassified (1-
S), malware could be detected if it is picked to be scanned
given the remaining effort. The expression simplifies to:

Dtld = S +
(1− S) · (e− ssuspect)

1− ssuspect
(4)

Note that the advantage in detection can be obtained by
dividing Dtld by Dbaseline which is simply e.

5.2.3 Time to Detection

Finally, we derive the expected time to detect a malware
given an effort sufficient to scan all programs. Please note
that this metric, which quantifies the time for detection
in the overall system including the second level detector,

differs from the detection time metric introduced in Sec-
tion 4.4.2 which refers to the time of detection within the
hardware detector. In the baseline, the expected value of the
time to detect for a given malware is 1

2 of the scan time. In
contrast, with the TLD, the expected detection time is:

Ttld = S · ssuspect
2

+(1−S) ·(ssuspect +
(1− ssuspect)

2
), (5)

The first part of the expression accounts for S of the mal-
ware which are correctly classified as malware. For these
programs, the average detection time is half of the size of
the suspect list. The remaining (1-S) malware which are
misclassified have a detection time equal to the time to scan
the suspect list (since that is scanned first), followed by half
the time to scan the remaining processes. Simplifying the
equation, we obtain:

Ttld = S · ssuspect
2

+ (1− S) · ((1 + ssuspect)

2
), (6)

Recalling that Tbaseline = 1
2 , the advantage in detection

time, which is the ratio Ttld

Tbaseline
is:

Tadvantage = S · ssuspect + (1− S) · (1 + ssuspect), (7)

substituting for ssuspect and simplifying, we obtain:

Tadvantage =
1

1− (1−m)(C + S − 1)
(8)

The advantage again favors the TLD only when the sum
of C and S exceeds 1 (the area above the 45 degree line in
the ROC graph. Moreover, the advantage is higher when
m is small (peace-time) and lower when m grows. When
m tends to 0, if C+S = 1.5, malware is detected in half the
time on average. If the detection is better (say C+S = 1.8),
malware can be detected 5 times faster on average. We will
use these metrics to evaluate the success of the TLD based
on the Sensitivity and Specificity derived from the hardware
classifiers that we implemented.

5.3 Evaluating Two Level Detection Overhead

Next, we use the metrics introduced in this section to
analyze the performance and the time-to-detect advantage
of the TLD systems based on the different hardware detec-
tors we investigated. We also use them to understand the
advantage obtained from increasing the detection accuracy
using our ensemble techniques.

The time and work advantages for LR detectors are
depicted in Figure 7a and 7b as the percentage of malware
processes increases. The average time to detect for the LR
specialized ensemble detector is 6.6x faster than the software
only detector when the fraction of malware programs is low.
This advantage drops as more malware is encountered in
the system; for example, when 10% of the programs are
malware (m=0.1), these advantages drop to 4.2x. We observe
that the LR specialized ensemble detector has the best
average time-to-detection among LR detectors. The amount
of work required for detection is improved by 11x by the
LR specialized ensemble detector compared to using the
software detector only. Although the LR general ensemble
detector had a 14x improvement due to the reduction in the
number of false positives, its detection rate is significantly

10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0.0 0.2 0.4 0.6 0.8 1

m (malware rate)

Best general
General Ensemble

Specialized Ensemble
Mixed Ensemble

(a) LR time advantage

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0.0 0.2 0.4 0.6 0.8 1

m (malware rate)

Best general
General Ensemble

Specialized Ensemble
Mixed Ensemble

(b) LR work advantage

 1

 2

 3

 4

 5

 6

 7

 8

 9

0.0 0.2 0.4 0.6 0.8 1

m (malware rate)

Best general
General Ensemble

Specialized Ensemble
Mixed Ensemble

(c) NN time advantage

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0.0 0.2 0.4 0.6 0.8 1

m (malware rate)

Best general
General Ensemble

Specialized Ensemble
Mixed Ensemble

(d) NN work advantage

Fig. 7: Online detection time and work advantage as a
function of malware rate

lower than that of the LR specialized ensemble due to its
lower sensitivity.

Figures 7c and 7d shows the time and work advantage
for the NN detectors. The NN specialized ensemble detector
outperforms all other detectors with an average time for de-
tection 8x faster than software only detector (1.2x faster than
the LR specialized ensemble detector) when the fraction of
malware is low. For the same detector, the the work ad-
vantage was 16.6x compared to the software detector. This
advantage is 1.4x better than the LR specialized ensemble
detector.

6 HARDWARE IMPLEMENTATION

Fig. 8: Ensemble malware detection framework

We design the ensemble detector using 5 major pipeline
stages (shown in Figure 8) each of these stages is further
pipelined. The first stage of the pipeline (feature collec-
tion) performs feature extraction on the instructions being

committed from the tail end of the processor pipeline.
For example, the INS4 feature is collected by examining
the opcodes of committed instructions and outputting the
instruction category to the next stage of the pipeline.

The second stage of the pipeline (feature transform)
performs context aware transformation on the raw feature
information. For instance, INS2 is generated by taking the
INS4 feature and echoing the specific feature if it has not
yet been committed during the current detection cycle,
transforming it from an integer feature to a binary one. The
division of feature collection and feature transform reduces
the need for multiple highly similar feature collection units.

The third stage consists of the base detectors (neu-
ral networks or perceptrons). Perceptrons require minimal
hardware investment [32].This low overhead is achievable
because perceptrons can be optimized into a single accu-
mulator, feature weight look up table and a comparison
(Figure 9).Typically, perceptrons typical operate using the
following formula:{

1 if W̄ · X̄ + b > 0

0 otherwise

where W̄ is the weights vector, X̄ is the feature vector,
and b is the bias. However, as we commit only 1 feature
per cycle we can perform the dot product without actually
ever doing a multiply by initializing an accumulator to
b then accumulating the weight of each feature when it
is committed. Unfortunately, neural networks can not be
optimized in the same way. Neural networks require a full
multiply accumulate loop and a sigmoid function for each
neuron in the network. This causes neural networks to have
a significantly higher hardware overhead (as high as 25x for
this stage) as compared to perceptrons. Therefore, despite
there is an interesting complexity performance trade-off
between LR and NN.

Fig. 9: Optimized perceptron

The fourth stage takes the outputs of the base detec-
tors and combines them to form a single prediction. As
mentioned in Section 4 we explored a number of different
methods for combining the outputs of the base detectors, all
of which are simple to implement in hardware. For instance,
the most powerful and complex decision function, stacking,
can be implemented as a look up table as the number base
detectors is small. For example, in our implementation we
perform stacking on 5 detectors, using a single 32 bit register
to hold all the possible outputs.

Finally, in the fifth stage, time series analysis of the
decision function is performed to increase the specificity
of the model. In our implementation we use a windowed
moving average model. More complex models such as an

11

auto-regressive integrated moving average could possibly
provide better results but require a larger hardware budget.

We used the Quartus II 17.1 software to synthesize
implementation of the ensemble detectors attached to the
commit stage of the processor pipeline on an DE2-115 FPGA
board [1]. Our complete implementation using perceptrons
requires a minimal hardware investment. Taking up only
2.88% of logic cells on the core and using only 1.53% of the
power compared to an open source processor [3]. Figure 10
shows the FPGA layout of the implementation integrated
to the processor. The implementation was functionally val-
idated to collect features and classify them correctly. While
the detector may be lightweight in terms of physical re-
sources, the implementation required a 9.83% slow down
of frequency. However, while this may seem high, the vast
majority of this overhead comes from collecting the MEM
feature vectors; when we do not collect this feature, the
reduction in frequency was under 2%. If feature collection
was pipelined over more cycles this cost be significantly
reduced or eliminated.

We also note that the area overheads are relative to a
small in-order core [3]; compared to a modern core with
caches the overhead is likely to be negligible. The frequency
overheads are based on the FPGA implementation of the
detectors which are known not to correspond directly to
delays incurred in a custom implementation of the logic [25].

Fig. 10: EnsembleHMD integrated into AO486 processor
core

7 RESILIENCE TO MALWARE EVOLUTION

In this section, we study the questions: (1) is a detector
trained on a malware training set effective in detecting
malware that emerges in the future? If the answer is yes,
then there is no need to continue to update the detector
to reflect malware evolution. Conversely, if the answer is
no, there is a need for a secure mechanism to update the
training of the detector over time, even for a hardware-
supported detector such as the ones we are studying. (2)
When malware evolve, will they insert additional features
to the existing ones or they will use different features? These
two question were answered for android malwre feature
space [4], and we are interested in studying them in the
low-level feature space.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
la

ss
ifi

ca
ti

o
n
 R

a
te

False Positives

MEM1
MEM2

INS1
INS2

INS3
INS4

ARCH

(a) Old training - old testing
data sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
la

ss
ifi

ca
ti

o
n
 R

a
te

False Positives

MEM1
MEM2

INS1
INS2

INS3
INS4

ARCH

(b) Old training - recent testing
data sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
la

ss
ifi

ca
ti

o
n
 R

a
te

False Positives

MEM1
MEM2

INS1
INS2

INS3
INS4

ARCH

(c) Recent training - old testing
data sets

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
la

ss
ifi

ca
ti

o
n
 R

a
te

False Positives

MEM1
MEM2

INS1
INS2

INS3
INS4

ARCH

(d) Mixed training - mixed testing
data sets

Fig. 11: Malware Evolution

To answer the first question, we use two malware sets
with a 4 years difference in the constituent malware. Specif-
ically, we train seven detectors using data sets for malware
found in 2009, corresponding to the different feature vectors.
We evaluate the malware using two testing data sets: one
that contains only malware found in 2009 and another that
contains only malware found in 2013.

Figures 11a and 11b show the ROC curves using the
old and new generations of malware respectively. Examin-
ing these figures, it is clear that classification performance
of the detectors trained on the old malware significantly
deteriorates when applied to recent malware. Thus, it is
essential to develop mechanisms to securely update the
hardware detector (e.g., by updating the θ weights vector
for the logistic regression) to continue to track the evolution
of malware. This secure update can be integrated our system
using microcode update function that is used by Intel and
other processor manufacturer.

To answer the second question, we used the 2013 mal-
ware in training the detectors and the 2009 malware in
testing. This detector is used to test if recent malware have
representatives features of older malware. The resulting
ROC curves is shown in Figure 11c. The results clearly
show that using recent malware in training the detector
can’t detect older malware effectively. Therefore, Figure 11d
show the results when both the 2013 and 2009 datasets are
used in both training and testing. The results emphasize
the importance of including recent and old malware in the
training set of low-level detectors to make sure that they are
effective in detecting malware when deployed.

12

8 RELATED WORK

Hardware based Malware Detectors (HMD) have attracted
significant interest recently. Bilar et al. were the first to use
the frequency of opcodes occurrence in a program as a fea-
ture for discriminating normal programs from malware [7].
Santos et al. and Yan et al. use opcode sequence signatures
as a feature [39], [48]. Runwal et al. use similarity graphs of
opcode sequences [37]. Recently, Demme et al. suggested
using features based on performance counters [11]. Tang
et al. conducted a similar study, but used unsupervised
learning [44]. Kazdagli et al. [20] introduced several new
improvements to the construction methodology for both
supervised and unsupervised learning based HMDs applied
to mobile malware. All of these studies conduct offline
analysis; none of the studies explore online detection or
implementation using hardware.

Chavis et al. proposed an enterprise-class antivirus anal-
ysis framework, called SNIFFER [8]. Similar to our paper,
each machine in the network collect low-level features
online using hardware. For each detection period, each
machine transfers its collected features securely to a server
which classifies them (hardware feature collection, but soft-
ware classification). The detectors are general detectors;
we believe that the ensemble techniques that improve the
accuracy can reduce the false positives in this system as well.
Both the settings and the malware types (network attacks)
considered by the paper are different than our environment.

Ensemble learning is a well-known technique in machine
learning to combine the decisions of multiple base detectors
to improve accuracy [46]. Ensemble learning is attractive
because of its generalization ability which is much power-
ful than using one learner [12]. In order for an ensemble
detector to work, the base detectors have to be diverse;
if the detectors are highly correlated, there is little addi-
tional value from combining them [36]. In this paper, the
diversity is based on different features (general ensemble
detector), data sets (mixed ensemble detector), or both
(specialized ensemble detector). In contrast to traditional
machine learning approaches that use the training data to
learn one hypothesis, some of our ensembles learn a set
of subset-hypotheses (specialized detectors) and combine
them. Ensemble learning may be considered a form of two-
stage detection with the base detectors in the first stage, and
the synthesis of their decision in the second. A two stage
anomaly detector was proposed by Zhang et al. [53], [54]
who use machine learning classifiers to build network traffic
dependency graph, and then they used a root-trigger policy
to identify outlier network requests. These works focus on
the dependency knowledge of the first level, while our work
focuses on combining the results of detectors that are trying
to answer different questions.

The specialized ensemble detector combines multiple
specialized detectors and dynamically collects the features
to perform online detection. Researchers built ensemble
malware detectors [52], [26], [49], [5], [29], [15], [50], [27],
[40], [41], [19], [31], [16], [34], based on combining gen-
eral detectors. Moreover, most of them used off-line anal-
ysis [49], [5], [40], [41], [15], [50], [19]. A few used dy-
namic analysis [29], [16], [34] and some used both static
and dynamic analysis [26], [27], [31]. None of these works

uses architecture features or is targeted towards hardware
implementation (which requires simpler machine learn-
ing algorithms). Specialized detectors were previously pro-
posed [23] for use in malware classification (i.e., labeling
malware). Labeling is used to classify collected malware
using offline analysis which is a different application than
the one we consider.

We present a few recent examples of the use of ensem-
ble learning for malware detection in more detail. Zhang
et al. [52] extracted n-gram features from them programs
binary code and used it in malware detection. The ensemble
composed of multiple probabilistic neural network (PNN)
classifiers and the Dempster Shafer theory was utilized to
combine them. Sami et al. [38] used API calls extracted
from the Portable Executable (PE) Import Address table to
build an ensemble detector using random forests. Mehmet et
al. [31] created an ensemble detector for android malware by
creating base detectors based on different features and learn-
ing algorithms. After that, the base detectors was combined
using stacking or majority voting to form the ensemble sys-
tem. However, the previous work does not try to combine
specialized detectors to build the ensemble system. Smutz
et al. recently explored the use of a diversified ensemble
detector to classify possibly evasive PDF malware [42]. Note
that all the above techniques use software detectors, on rich
features and using advanced machine learning algorithms.

This paper extends our prior work [22] which considered
ensembles of only LR detectors. The NN ensemble detectors
presented in this paper are over 20% faster than the best
LR ensemble detector while requiring 40% less overhead.
Additionally, we study the speed of hardware component in
detecting malware online and show that NN ensemble is 5x
faster than the LR ensemble detector, potentially limiting the
damage of the malware. This paper also presents a hardware
design of the NN ensemble detectors and analyzes their
complexity. The malware longitudinal study in Section 7 is
also a new contribution of this paper, and demonstrates the
need for HMDs to be retrainable.

In our recent work [21], we explored how malware
writers may attempt to evade HMDs. The paper shows that
NN detectors are amenable to retraining when malware
evolves (e.g., as malware behavior changes as shown in
Section 7). The paper proposed creating multiple diverse de-
tectors and switching between them randomly, which makes
HMDs provably more robust to evasion attacks. While such
detectors use multiple base detectors they use only one at a
time. It is interesting to explore the combination of ensemble
and evasion resilient HMDs.

9 CONCLUDING REMARKS

In this paper, we seek to improve the detection performance
of hardware malware detectors (HMDs) through ensemble
learning to increase the efficiency of a Two-Level Detector
(TLD). We envision an HMD that uses low level features to
provide a first line of defense to detect suspicious processes.
This detector then prioritizes the effort of a heavy weight
software detector to look only at programs that are deemed
suspicious, forming a TLD.

We started by evaluating whether specialized detectors
can be more effectively classify one given class of malware.

13

We found out that this is almost always true for the features
and malware types we considered. We then examined dif-
ferent ways of combining general and specialized detectors.
We found that ensemble learning by combining general
detectors provided limited advantage over a single general
detector. However, combining specialized detectors can sig-
nificantly improve the sensitivity, specificity, and accuracy
of the detector.

We developed metrics to evaluate the performance ad-
vantage from better detection in the context of a TLD.
Ensemble learning provides more than 16.6x reduction in
the online detection overhead with the NN specialized
ensemble detector. This represents 2x improvement in per-
formance (overhead) with respect to Ozsoy et al. [32] single
detector implementation. We implemented the proposed
detector as part of an open core to study the hardware
overhead. The hardware overhead was minimal: around
2.88% increase in area, 9.83% reduction in cycle time, and
less than 1.35% increase in power. We believe that minor
optimization of the MEM feature collection circuitry could
alleviate most of the cycle time reduction.

We compared performance and overhead of LR to NN
as base classifiers. . NN based ensemble detectors provide
the highest classification accuracy of all the detectors we
developed. Although they are more complicated to imple-
ment, we used hardware optimizations to reuse a single
perceptron sequentially to implement the neural network,
making the hardware overhead small compared to LR.

Finally, we carried out a study of how the detector per-
forms as malware evolves over time. Specifically, we trained
a detector with an old malware data set and evaluated its
performance on both malware from the same generation, as
well as more recent malware. We discovered that the detec-
tion performance rapidly deteriorates as malware evolves.
In addition, the detectors also fail when trained using only
recent malware when classifying old malware. These results
emphasize the necessity to provide a secure way to update
the hardware detector weights and thresholds as malware
continues to evolve.

For our future work, we will study the effect of choosing
a thresholds for the detectors that favors sensitivity or
specificity over the other, by inserting weights for them in
the objective function, on the performance of the two-level
detection system.

ACKNOWLEDGEMENTS

The work in this paper is partially supported by National
Science Foundation grants CNS-1422401, CNS-1619322 and
CNS-1617915.

REFERENCES

[1] “Altera de2-115 development and education board,”
https://www.altera.com/solutions/partners/partner-
profile/terasic-inc-/board/altera-de2-115-development-and-
education-board.html#overview, 2010.

[2] C. Aldrich and L. Auret, Unsupervised process monitoring and fault
diagnosis with machine learning methods. Springer, 2013.

[3] O. Aleksander, “The ao486 project,” https://github.com/alfikpl/
ao486, 2014.

[4] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Are your
training datasets yet relevant?” in International Symposium on En-
gineering Secure Software and Systems. Springer, 2015, pp. 51–67.

[5] Z. Aung and W. Zaw, “Permission-based android malware de-
tection,” International Journal of Scientific and Technology Research,
vol. 2, no. 3, pp. 228–234, 2013.

[6] “Malware Statistics,” 2014, available online: http://www.av-test.
org/en/statistics/malware/.

[7] D. Bilar, “Opcode as predictor for malware,” International Journal
of Electronic Security and Digital Forensic, 2007.

[8] E. Chavis, H. Davis, Y. Hou, M. Hicks, S. F. Yitbarek, T. Austin,
and V. Bertacco, “SNIFFER: A high-accuracy malware detector for
enterprise-based systems,” in 2017 IEEE 2nd International Verifica-
tion and Security Workshop (IVSW), July 2017, pp. 70–75.

[9] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantics-aware malware detection,” in Proc. IEEE Symposium on
Security and Privacy (SP), 2005, pp. 32–46.

[10] C.Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Proc.
PLDI, 2005.

[11] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware
detection with performance counters,” in Proc. Int. Symposium on
Computer Architecture (ISCA), 2013.

[12] T. G. Dietterich, “Machine learning research: Four current direc-
tions,” 1997.

[13] T. G. Dietterich, “Ensemble methods in machine learning,” in
International workshop on multiple classifier systems. Springer, 2000,
pp. 1–15.

[14] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on au-
tomated dynamic malware-analysis techniques and tools,” ACM
Computing Surveys, vol. 44, no. 2, Mar. 2008.

[15] M. Eskandari and S. Hashemi, “Metamorphic malware detection
using control flow graph mining,” International Journal of Computer
Science and Network Security, vol. 11, no. 12, pp. 1–6, 2011.

[16] G. Folino, C. Pizzuti, and G. Spezzano, “Gp ensemble for dis-
tributed intrusion detection systems,” in Pattern Recognition and
Data Mining, 2005, pp. 54–62.

[17] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[18] D. W. Hosmer Jr. and S. Lemeshow, Applied Logistic Regression.
John Wiley & Sons, 2004.

[19] S. Hou, L. Chen, E. Tas, I. Demihovskiy, and Y. Ye, “Cluster-
oriented ensemble classifiers for intelligent malware detection,”
in Semantic Computing (ICSC), 2015 IEEE International Conference
on. IEEE, 2015, pp. 189–196.

[20] M. Kazdagli, V. J. Reddi, and M. Tiwari, “Quantifying and improv-
ing the efficiency of hardware-based mobile malware detectors,”
in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM Interna-
tional Symposium on. IEEE, 2016, pp. 1–13.

[21] K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and
L. Yu, “RHMD: Evasion-resilient hardware malware detectors,”
in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 ’17. New
York, NY, USA: ACM, 2017, pp. 315–327. [Online]. Available:
http://doi.acm.org/10.1145/3123939.3123972

[22] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh,
and D. Ponomarev, “Ensemble learning for low-level hardware-
supported malware detection,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2015, pp. 3–25.

[23] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify
malicious executables in the wild,” The Journal of Machine Learning
Research, vol. 7, pp. 2721–2744, 2006.

[24] C. Kruegel, W. Robertson, and G. Vigna, “Detecting kernel-level
rootkits through binary analysis,” in Proc. Annual Computer Secu-
rity Applications Conference (ACSAC), 2004, pp. 91–100.

[25] I. Kuon and J. Rose, “Measuring the gap between FPGAs and
ASICs,” IEEE Transactions on computer-aided design of integrated
circuits and systems, vol. 26, no. 2, pp. 203–215, 2007.

[26] J.-C. Liu, J.-F. Song, Q.-G. Miao, Y. Cao, and Y.-N. Quan, “An
ensemble cost-sensitive one-class learning framework for malware
detection,” International Journal of Pattern Recognition and Artificial
Intelligence, p. 1550018, 2012.

[27] Y.-B. Lu, S.-C. Din, C.-F. Zheng, and B.-J. Gao, “Using multi-feature
and classifier ensembles to improve malware detection,” Journal of
CCIT, vol. 39, no. 2, pp. 57–72, 2010.

[28] “How Microsoft antimalware products identify malware and un-
wanted software,” available online: https://www.microsoft.com/
security/portal/mmpc/shared/objectivecriteria.aspx.

14

[29] P. Natani and D. Vidyarthi, “Malware detection using API function
frequency with ensemble based classifier,” in Security in Computing
and Communications. Springer, 2013, pp. 378–388.

[30] “Malwaredb Website,” 2015, available online (last accessed, May
2015): www.malwaredb.malekal.com.

[31] M. Ozdemir and I. Sogukpinar, “An android malware detection
architecture based on ensemble learning,” Transactions on Machine
Learning and Artificial Intelligence, vol. 2, no. 3, pp. 90–106, 2014.

[32] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Pono-
marev, “Malware aware processors: A framework for efficient
online malware detection,” in Proc. Int. Symposium on High Per-
formance Computer Architecture (HPCA), 2015.

[33] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-
Ghazaleh, and D. Ponomarev, “Hardware-based malware detec-
tion using low-level architectural features,” IEEE Transactions on
Computers, vol. 65, no. 11, pp. 3332–3344, 2016.

[34] S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas, “Mod-
eling intrusion detection system using hybrid intelligent systems,”
Journal of network and computer applications, vol. 30, no. 1, pp. 114–
132, 2007.

[35] “Qualcomm smart protect technology,” 2016, last Accessed
September 2016 from https://www.qualcomm.com/products/
snapdragon/security/smart-protect.

[36] J. R. Quinlan, “Simplifying decision trees,” Int. J. Man-Mach.
Stud., vol. 27, no. 3, pp. 221–234, Sep. 1987. [Online]. Available:
http://dx.doi.org/10.1016/S0020-7373(87)80053-6

[37] N. Runwal, R. M. Low, and M. Stamp, “Opcode graph
similarity and metamorphic detection,” J. Comput. Virol.,
vol. 8, no. 1-2, pp. 37–52, May 2012. [Online]. Available:
http://dx.doi.org/10.1007/s11416-012-0160-5

[38] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian, S. Hashemi, and
A. Hamze, “Malware detection based on mining API calls,” in
Proceedings of the 2010 ACM Symposium on Applied Computing,
ser. SAC ’10. New York, NY, USA: ACM, 2010, pp. 1020–1025.
[Online]. Available: http://doi.acm.org/10.1145/1774088.1774303

[39] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and
P. G. Bringas, “Idea: Opcode-sequence-based malware detection,”
in Engineering Secure Software and Systems. Springer, 2010, pp.
35–43.

[40] R. K. Shahzad and N. Lavesson, “Veto-based malware detection,”
in Proc. IEEE Int. Conf. on Availability, Reliability and Security
(ARES), 2012, pp. 47–54.

[41] S. Sheen, R. Anitha, and P. Sirisha, “Malware detection by pruning
of parallel ensembles using harmony search,” Pattern Recognition
Letters, vol. 34, no. 14, 2013.

[42] C. Smutz and A. Stavrou, “When a tree falls: Using diversity in
ensemble classifiers to identify evasion in malware detectors,” in
Proc. Network and Distributed System Security Symposium (NDSS),
2016.

[43] M. Sokolova and G. Lapalme, “A systematic analysis of perfor-
mance measures for classification tasks,” Information Processing and
Management, vol. 45, no. 4, pp. 427–437, jul 2009.

[44] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised
anomaly-based malware detection using hardware features,” in
International Symposium on Research in Attacks, Intrusions and De-
fenses (RAID). Springer, 2014, pp. 109–129.

[45] R. Wahbe, S. Lucco, T. Anderson, and S. Graham, “Efficient
software-based fault isolation,” in ACM SIGOPS Symposium on
Operating Systems Principles (SOSP). New York: ACM Press, 1993,
pp. 203–216.

[46] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, Second Edition (Morgan Kaufmann Series in
Data Management Systems). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2005.

[47] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 5,
pp. 241–259, 1992.

[48] G. Yan, N. Brown, and D. Kong, “Exploring discriminatory fea-
tures for automated malware classification,” in Detection of Intru-
sions and Malware, and Vulnerability Assessment. Springer, 2013,
pp. 41–61.

[49] Y. Ye, L. Chen, D. Wang, T. Li, Q. Jiang, and M. Zhao, “SBMDS:
an interpretable string based malware detection system using svm
ensemble with bagging,” Journal in computer virology, vol. 5, no. 4,
pp. 283–293, 2009.

[50] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android mal-
ware detection using ensemble learning,” IET Information Security,
2015.

[51] I. You and K. Yim, “Malware obfuscation techniques: A brief
survey,” in Proc. International Conference on Broadband, Wireless
Computing, Communication and Applications, 2010, pp. 297–300.

[52] B. Zhang, J. Yin, J. Hao, D. Zhang, and S. Wang, “Malicious
codes detection based on ensemble learning.” in Lecture Notes in
Computer Science, vol. 4610. Springer, 2007, pp. 468–477.

[53] H. Zhang, D. D. Yao, and N. Ramakrishnan, “Detection of stealthy
malware activities with traffic causality and scalable triggering
relation discovery,” in Proceedings of the 9th ACM Symposium
on Information, Computer and Communications Security, ser. ASIA
CCS ’14. New York, NY, USA: ACM, 2014, pp. 39–50. [Online].
Available: http://doi.acm.org/10.1145/2590296.2590309

[54] H. Zhang, D. D. Yao, and N. Ramakrishnan, “Causality-
based sensemaking of network traffic for android application
security,” in Proceedings of the 2016 ACM Workshop on
Artificial Intelligence and Security, ser. AISec ’16. New York,
NY, USA: ACM, 2016, pp. 47–58. [Online]. Available: http:
//doi.acm.org/10.1145/2996758.2996760

[55] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,”
in Proc. 22nd Usenix Security Symposium, 2013.

Khaled N. Khasawneh is a PhD student in
the Department of Computer Science and
Engineering at the University of California,
Riverside. He received his MS degree in
Computer Science from SUNY Binghamton
in 2014. His research instersts are in archi-
tecture support for security and adversarial
machine learning.

Meltem Ozsoy is a Research Scientist at In-
tel Labs, Hillsboro, OR. She received her PhD
in Computer Science from SUNY Bingham-
ton. Her research interests are in the areas
of computer architecture and secure system
design.

Caleb Donovick is a PhD student in the
Department of Computer Science at Stanford
University.

Nael Abu-Ghazaleh is a Professor in the
Computer Science and Engineering depart-
ment and the Electrical and Computer Engi-
neering department at the University of Cali-
fornia at Riverside. His research interests are
in the areas of secure system design, paral-
lel discrete event simulation, networking and
mobile computing. He received his PhD from
the University of Cincinnati in 1997.

Dmitry Ponomarev is a Professor in the
Department of Computer Science at SUNY
Binghamton. His research interests are in the
areas of computer architecture, secure and
power-aware systems and high performance
computing. He received his PhD from SUNY
Binghamton in 2003.

