
1

Hardware-based Malware Detection using
Low-level Architectural Features

Meltem Ozsoy∗, Member, IEEE, Khaled N. Khasawneh†, Student Member, IEEE, Caleb
Donovick‡, Student Member, IEEE, Iakov Gorelik‡, Student Member, IEEE, Nael
Abu-Ghazaleh†, Senior Member, IEEE Dmitry Ponomarev‡, Senior Member, IEEE

Abstract—Security exploits and ensuant malware pose an increasing challenge to computing systems as the variety and complexity
of attacks continue to increase. In response, software-based malware detection tools have grown in complexity, thus making it
computationally difficult to use them to protect systems in real-time. Therefore, software detectors are applied selectively and at
a low frequency, creating opportunities for malware to remain undetected. In this paper, we propose Malware-Aware Processors
(MAP) - processors augmented with a hardware-based online malware detector to serve as the first line of defense to differentiate
malware from legitimate programs. The output of this detector helps the system prioritize how to apply more expensive software-
based solutions. The always-on nature of MAP detector helps protect against intermittently operating malware. We explore the use
of different features for classification and study both logistic regression and neural networks. We show that the detectors can achieve
excellent performance, with little hardware overhead. We integrate the MAP implementation with an open-source x86-compatible core,
synthesizing the resulting design to run on an FPGA.

Index Terms—malware detection, architecture, security, low-level features

F

1 INTRODUCTION

COMPUTING systems are under continuous attacks
by increasingly motivated and sophisticated adver-

saries. These attackers use vulnerabilities to compromise
systems and deploy malware. Malware is a general term
for malicious software, which can be defined as any soft-
ware system that can damage non-damaging software
systems [38] . A recent IT industry survey shows that
the number of security incidents in 2014 rose by 48%
from 2013, to an astounding 42.8 million incidents [49].
An estimated 11% of these incidents cost $10 million or
more each. The US Director of National Intelligence has
ranked cybercrime as the top national security threat,
higher than that of terrorism, espionage, and weapons
of mass destruction [15].

Although significant effort continues to be directed
at making systems more difficult to attack, the number
of exploitable vulnerabilities is overwhelming. Attack-
ers obtain privileged access to systems in a variety of
ways, such as drive-by-downloads with websites ex-
ploiting browser vulnerabilities [8], network-accessible
vulnerabilities [56] or even social engineering attacks [5].
Many vulnerabilities are not publicly known [65], and
the slow update cycles make vulnerabilities exploitable
long after they are discovered. Attackers only need to
succeed in exploiting a single vulnerability to completely
compromise a system. Thus, it is essential to invest in
approaches to detect malware so that infections can be
stopped and damage contained.

∗Security and Privacy Lab., Intel Corp., Hillsboro, OR
Email:{meltem.ozsoy}@intel.com
†CSE and ECE Departments, University of California, Riverside, CA
92521, Email:{kkhas001,naelag}@ucr.edu
‡CS Department, Binghamton University, Binghamton, NY 13902–
6000. Email:{cdonovi1,igoreli1,dima}@cs.binghamton.edu

Increasing sophistication of malware makes its de-
tection more difficult. A significant challenge faced by
malware detection is related to constrained resources —
the resource requirements needed for detection make it
prohibitive to monitor every application all the time.
Typical techniques proposed for online malware de-
tection include VM introspection [25], dynamic binary
instrumentation [18], information flow tracking [64], [47],
and software anomaly detection [27]. These solutions
each have coverage limitations and introduce substantial
overhead (e.g., 10x slowdown for information flow track-
ing is typical in software [63]). The problem is especially
critical for mobile environments where memory limita-
tions and the energy cost of detection impose substantial
limits on the resources that a system can dedicate to
online malware detection. For these reasons, dynamic
analysis techniques are typically conducted only on
the cloud (for example, Google’s Bouncer [44]), using
automated inputs and for a limited time. On the user
side, these difficulties limit malware detection to static
signature-based scanning tools [20] which have known
limitations [42] that allow attackers to bypass them and
remain undetected.

In this paper, we motivate and present MAP
(Malware-Aware Processor) — a hardware-based mal-
ware detector that uses low-level features to classify
malware from normal programs as they execute. Because
it is implemented using low-complexity hardware, mal-
ware monitoring can be always on with negligible over-
head. We use the term low-level to mean architectural
information about an executing program that does not
require modeling or detecting program semantics. Low-
level information includes architectural events such as
cache miss rates, branch prediction outcomes, dynamic
instruction mixes, and data reference patterns.

2

Successful offline classification based on low-level fea-
tures has recently been shown by Demme et al. [17].
MAP advances the state of the art relative to this work
in the following ways:
• Real-time malware detection: real-time detection

includes a new time-series component where suc-
cessive decisions from the classifier are evaluated
to detect anomalous behavior. We explore simple
Exponentially Weighted Moving Average (EWMA)
approach for detecting malware. In contrast, the
offline problem uses after-the-fact analysis with the
benefit of the complete data for the process lifetime.
Thus, the online detection results demonstrate (for
the first time) that classification over windows of
execution can also separate malware from normal
programs.

• Hardware implementation using simpler classi-
fiers: a hardware implementation has significant
benefits over software detection for this problem.
First, direct access to hardware features is possible at
low cost. Hardware detection can be always on, for
all programs, with low complexity and power over-
head. In contrast, software implementations require
additional resources, are limited by the available
performance counters, and incur significant costs.
On the other hand, hardware implementations ne-
cessitate simpler classifiers than those available in
software. This paper demonstrates that such simple
classifiers can be effectively used to detect malware.

• Exploration of complexity/detection tradeoffs: we
investigate both linear classifiers as well as neural
network based classifiers. We explore the tradeoff
between complexity and classification effectiveness.
We also study a number of optimizations to the
hardware implementation of both the base classifier
and the time-series detector.

• Two level detection framework: False positives
are likely to occur due to simple classification al-
gorithms and the low-level features used. Thus,
hardware detection is not sufficient on its own. We
propose a two-level detection framework with MAP
being the first line of defense. The goal of MAP is
to prioritize running processes such that a heavy-
weight software solution can be guided to protect
or scan more suspicious processes first, reducing the
effort and time to detection as compared to using
the second level for all processes. To avoid building
complex and stateful low-level models in hardware,
the first-level hardware detector is based on the low-
level features that are easily collectable in hardware.
In contrast, the slow second-level software detector
can be an IDS that is using full semantic informa-
tion.

A major advantage of MAP is that it can react to
a malware quickly, acting as a low-level alert system
for further software protection. The hardware detector
of MAP is always on, without affecting the available
resources and with minimal energy consumption. At the

same time, it can be built to use architectural events that
are expensive and difficult to obtain at the software level
(e.g., through performance counters). MAP is envisioned
to operate synergistically with existing virus scanning
utilities and other one-time analysis tools; it continues to
monitor the system to detect any malware that evades
such tools.

We developed a fully functional hardware descrip-
tion of MAP hardware detector using Verilog, and in-
tegrated it within an open source x86-compatible core
implementation. Our evaluations show that MAP data
collection delay fits within a single cycle of the proces-
sor. Moreover, for features related to instructions, the
logic is located at the commit stage of the processor
pipeline, therefore avoiding any negative impact on the
cycle time, instruction throughput and execution time
of the program. At a time where CPU manufacturers
are showing increasing willingness to invest in hardware
support for security [33], [58], [61], [55], [24], MAP offers
an attractive mixture of significant impact on security
and low complexity.

We did not consider how the detector should evolve to
the changing nature of malware: a practical deployment
will require a secure channel to update the detector
configuration. Our contribution is to study the use of
online hardware detection of existing malware. In par-
ticular, we did not explore how attackers will react
to the presence of such a detector to attempt to hide
the behavior of malware. Adversarial classification is
a branch of machine learning that can assist with the
evolution of attackers over time as commonly occurs in
a security context [16]. Techniques from this space (such
as feature randomization [60]) can be integrated into our
design to make it more resilient to attacker evolution.

The remainder of the paper is organized as follows.
Section 2 and Section 3 overview the malware detection
approaches and examine a number of candidate low-
level features. Section 4 presents the proposed online
detectors. Section 5 presents the implementations of
the proposed detectors, and evaluates their timing and
complexity. Section 6 presents an evaluation of the real-
time detection system based on MAP. In Section 8 we
present the related work. Finally, Section 9 offers our
concluding remarks.

2 BACKGROUND AND PRELIMINARIES: LOW-
LEVEL MALWARE DETECTION
Malware detectors typically use high-level information
such as behavior models of programs based on sys-
tem calls, accessed/created files and thread creation
events [20] to capture common features of malware.
In contrast, MAP uses low-level information that can
be collected during the execution of programs such as
architectural events, instructions and memory addresses,
and the mix of executed instruction types.We refer to
these features as low-level features.

In this section, we show that low-level information
collected and processed in hardware can effectively dis-

3

tinguish malware from normal programs using simple
classifiers. The classification in this section is done after-
the-fact, similar to prior work [17], but differs in that the
classifiers are simpler and more suitable for hardware
implementation. Moreover, the section introduces the set
of features that we use as representatives of the different
available classes of low-level information.

We study two different classification algorithms for
MAP: (1) Logistic Regression (LR), which is a simple
linear classification algorithm. LR attempts to linearly
separate malware from normal programs in the feature
space. In general, the programs are not linearly separable
so LR provides a probability between 0 to 1 for the
likelihood of a program being malware. To convert this
likelihood to a binary decision, we pick a threshold
above which programs are considered malware; and (2)
Neural Network (NN) which consist of a network of
perceptrons that when trained, approximates a classifica-
tion function that most likely could have generated the
training data. LR is equivalent to a single perceptron in
an NN [7]; thus, we expect NNs to perform better than
LR but also to have higher implementation complexity.

For this experiment, the classifiers are trained based
on the chosen low-level features collected using the
PIN toolset [14]. In a hardware implementation these
features would be collected directly from the hardware;
for example, opcode frequencies can be collected directly
at the commit stage of the processor pipeline.

2.1 Data Set & Data Collection

We used the University of Mannheim malware dataset
for this study [3]. We downloaded the corresponding
samples of 1,087 malware programs from the Offensive
Computing website [45]. Using the VirusTotal [59] mal-
ware classification interface, we identified different types
and families of these programs. We followed Microsoft’s
classification [4] which identified 9 malware families in
total which are shown in Table 1. For normal program
samples, we used a variety of programs including sys-
tem programs, browsers, text editing applications and
the SPEC2006 benchmarks. Overall, we analyzed 467
regular programs in our evaluations.

TABLE 1: Malware Dataset

Family Train Test-1 Val Test-2 Total
Vundo 14 2 5 21 42
Emerleox 10 5 4 33 52
Virut 8 3 7 46 64
Sality 12 2 4 46 64
Ejik 7 6 4 101 118
Looper 10 3 6 145 164
AdRotator 14 1 2 119 136
PornDialer 11 6 4 196 217
Boaxxe 13 6 0 211 230

In order to collect the data, we used a virtual ma-
chine running a 32-bit Windows 7 operating system. We
disabled the firewall and Windows Security Services on

this machine and connected it to the network to support
malware operations.

The collected data was divided into training, testing,
and validation sets as shown in Table 1. We used a
balanced training set (roughly equal number of malware
and normal programs).

3 FEATURE SELECTION

There is a large number of different candidate low-
level features available at the microarchitecture level. We
explore this space by evaluating three types of features:
(1) features based on executed instructions; (2) features
based on memory address patterns; (3) features based on
architectural events. We selected candidates from each
category driven by both ease of collection through binary
instrumentation as well as estimated implementation
complexity. We introduce these selected features in the
remainder of this section. We also evaluate their off-line
detection performance using our candidate classifiers to
allow comparison to prior work [17] which used more
complex classifiers and in some cases different features.

3.1 Features Related to Architectural Events
One group of features is based on microarchitectural
events which are not directly visible to the program.
Demme et al. [17] used performance counters on the
ARM chip to capture architectural features including
the number of memory reads, memory writes, software
updates to the program counter, unaligned memory
accesses, immediate branches and taken branches. We
explore these same features for the x86 instruction set
with the exception of software updates to the PC which
are not possible on x86. We call these features ARCH.

The value of the architectural features is collected once
every 10,000 committed instructions following the value
used by Demme et al. [17]; we later study the imact of
the instruction window size on detection performance.
At the end of each period, the detection algorithm clas-
sifies whether this execution period is representative of
malware or of a normal program based on the collected
feature data. These architectural features attempt to cap-
ture the similarity of the architectural events between
malware.

TABLE 2: Features based on Architectural Events

Feature Description

ARCH
Frequency of memory read/writes, taken &
immediate branches and unaligned memory
accesses

3.2 Features Related to Memory Addresses
The typical operations of malware include accessing files
and updating/reading windows registry entries. This
type of behavior results in similar access patterns to
memory addresses during program execution. In or-
der to capture this behavior, we examined the use of

4

memory addresses as a detection feature. Specifically,
we calculated the distance between the memory address
of the current load/store instruction and the memory
address of the first load/store operation in the group of
10K instructions. We used two different approaches for
memory address features: (i) We created a histogram of
read distances and write distances separately quantized
into bins. At every period, we store the frequency of
each bin to create the feature vector (MEM1 in Table 3);
and (ii) this feature is similar to MEM1, but in this case
we only use a binary existence vector for the read/write
histogram features. The feature bits are set to one if a
distance that falls into that bin is encountered during
the execution (MEM2).

TABLE 3: Features based on Memory Addresses

Feature Description

MEM1 Frequency of memory address distance his-
togram

MEM2 Memory address distance histogram mix

3.3 Features Related to Instructions

The distribution of executed instructions are another
promising feature for classification. Instruction opcode is
one of the features previously used for offline malware
detection [51], [52], [9], [63].

We constructed opcode features in two ways. First,
we created a list of most frequently used opcodes from
malware and regular programs, we combined the top 35
opcodes that showed the largest difference in frequency
between malware and regular programs (INS2 in Ta-
ble 4).We also used the same opcode features in the form
of a binary vector, where each element indicates if an
instruction with that opcode has been executed (INS4).

TABLE 4: Features based on Instructions

Feature Description
INS1 Frequency of instruction categories
INS2 Frequency of opcodes with largest difference
INS3 Existence of categories
INS4 Existence of opcodes

The instruction category features are based on Intel
XED2[12] instruction category classes. Instead of track-
ing individual opcodes, we track frequencies of the
instruction categories. There are 58 different instruction
categories and the feature vector has one entry for each
category. For example, all arithmetic instructions are
in the BINARY category, all bit manipulation instruc-
tions are in LOGICAL category and data movement
instructions are in DATAXFER category. We use fre-
quency of categories (INS1) and existence of categories
(INS3) as separate feature vectors. Using categories as
features generalizes the instruction types such that many
similar instructions are counted only with one feature.
In contrast, INS2 tracks frequency of opcodes that are

commonly encountered either in malware or regular pro-
grams, while INS4 tracks the existence of these opcodes
in the period.

3.4 Features Related to Branches
Another low-level indicator of activity of the program
is its control flow behavior, which we capture through
the branch instruction characteristics such as frequencies
of branch opcodes and distribution of branch target dis-
tances. We selected 33 branch opcodes for testing branch
frequencies, and we created 20 different distance groups
for branches: 10 groups have positive distances and the
other 10 groups have negative distances. We have two
versions of each feature, one based on frequency and one
on existence resulting in the four features in Table 5.

TABLE 5: Features based on Branches

Feature Description
BRNCH1 Existence of direction categories
BRNCH2 Existence of branch categories
BRNCH3 Frequency of direction categories
BRNCH4 Frequency of branch categories

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
e
n
si

ti
v
it

y

False Positive

Logistic Regression

BRNCH1

BRNCH2

BRNCH3

BRNCH4

 0 0.2 0.4 0.6 0.8 1

False Positive

Neural Network

BRNCH1

BRNCH2

BRNCH3

BRNCH4

Fig. 1: Detection Performance of Branch-related Features

3.5 Offline detection evaluation
Evaluation of classification performance is based on the
sensitivity and specificity of the model. Sensitivity (S) is
the fraction of malware that are classified correctly and
Specificity (C) is the fraction of normal programs classi-
fied correctly (1-C is the fraction of false positives). To
evaluate classification performance and to select the best
performing thresholds and features, Receiver Operating
Characteristics (ROC) graphs[6] are used. We present the
ROC graph for each feature in Figure 2.

In order to evaluate the features, we use after-the-
fact detection performance: simply, if the majority of
classifier decisions show malicious behavior then the
program is labeled as malware, otherwise it is labelled
as regular. The threshold for each feature selected at the
point where (S+C) sum is maximized.

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
e
n
s
it

iv
it

y

False Positive

Logistic Regression

ARCH

MEM1

MEM2

INS1

INS2

INS3

INS4

COMB

 0 0.2 0.4 0.6 0.8 1

False Positive

Neural Network

ARCH

MEM1

MEM2

INS1

INS2

INS3

INS4

COMB

Fig. 2: Detection Performance of all Features

Figure 2 shows the Receiver-Operating Characteristics
(ROC) graph for the two classifiers across the different
features we studied. In an ROC graph, S is plotted as
a function of FP rate. FP rate is calculated by dividing
the number of false positives by the number of actual
negative instances (FPrate = FP/(FP + TN), where
TN is the number of True Negatives). The upper left
corner of an ROC graph (0,1) provides the best classi-
fication performance with no false positives and 100%
Sensitivity. We discuss the performance of the different
features in more detail below.

Architectural Features. ARCH feature can correctly
identify 70% of malware with only 10% false positives
with the basic LR model. For the more complex NN
model, the classification rate increases to 88%; however,
the false positives also increase to 20%. Architectural
features have already been shown to be effective for
Android malware[17] using complex machine learning
classifiers; they are also somewhat effective for detecting
malware on x86 using simpler classifiers. Because of their
modest classification performance, we did not pursue
these features further.

Memory Address Features. Detection performance of
both MEM1 and MEM2 features significantly outper-
forms the ARCH feature. Both the NN and the LR
models can detect 90% of malware with the NN model
having only 4% false positives for MEM1. The frequency
based feature (MEM1) not only classifies better than
the histogram mix feature (MEM2), but also achieves
the best false positive rate among all features using the
NN. However, the mix features (MEM2) are easier to
collect and are simpler to classify (they do not require
multiplication), allowing low complexity hardware im-
plementations.

Instruction Mix Features. Instruction traces provide
significant information about program execution. These
features provide the highest accuracy among the set we
considered: Figure 2 shows that most of the instruc-
tion based features achieve nearly 100% sensitivity with

around 10% false positive rate using the NN model.
The LR model is less effective than NN model for all
features. Our hardware implementation is based on the
INS2 feature which can detect all malware in our test set
with only 9% and 16% false positive rates for NN and
LR respectively.

Branches Features. We performed simulation of those
features on both linear regression model and neural net-
work model, using selected interval of 10K instructions.
The ROC graph for branch features is presented in Fig-
ure 1. The figure shows that BRNCH4 performance using
linear regression outperform the performance of the rest
of features vectors with 100% sensitivity and 18.6% false
positives. On the other hand, the BRNCH2 performance
using neural network gave the best performance since
it can detect 100% of the malware with only 7.2% false
positives.

Combining Features. In addition, we evaluated the use
of combinations of features to attempt to combine their
strengths. All features can be combined together to create
a powerful detection. This design point is marked as
COMB in Figure 2. As expected, both models perform
best when all features are used together. However, this
significantly increases the implementation complexity of
MAP.

4 ONLINE MALWARE DETECTION

In this section, we introduce the online detection com-
ponent of MAP. Detecting malware execution during
runtime is a time-series analysis problem where the
time-series consists of the successive decisions of the
classifier. To be effective, the detection algorithm must
filter out occasional false positives and quickly detect
true malicious behavior.

To make a decision that considers past behavior of
programs, but is not dominated by them, we use Ex-
ponentially Weighted Moving Average (EWMA) [30].
EWMA is a form of a low-pass filter commonly used
to smooth out transients in a time-series signal, giving
more weight to more recent inputs. EWMA computation
requires floating point operations and is not suitable for
efficient hardware implementation. Instead, we use a
fixed-point implementation by first considering binary
decisions from the base classifier (making the time-series
consist of 1’s for malware and 0’s for normal decisions).
We then use a window of these decisions with integer
weights that best correspond to the chosen smoothing
factor (α), which determines how much weight to give
to the latest classification compared to the weight given
to prior samples.

In Figure 3 we show the precise EWMA result (for
α = 0.2) and a fixed point hardware implementation
for an arbitrary binary input stream. For the results in
Figure 3, the input stream is assumed to have 20 bits
and the window size for fixed point implementation is
8. As seen from the graph, the approximate hardware

6

implementation closely tracks the precise EWMA esti-
mate. The hardware implementation has a weight for
each input in a window: the weight of an input in kth

order (Wk) is calculated by Wk = 2bn/2c+
∑bk/2c

i=1 2i where
n is the window size and 0 ≤ k < n. There are two
accumulators, one for regular labels and one for malware
labels. The last step performs a subtraction operation and
obtains the absolute difference between the summations.

Hardware EWMA

Fig. 3: EWMA vs. Fixed-point Approximation

Figure 4 shows the impact of the window size on the
detection performance for the LR-based model with a
trained threshold. While small windows cause around
100% false positive rate, the number of false positives
decreases significantly with larger windows. As the
window size continues to increase, false negatives also
increase because malware behavior is more likely to be
missed with larger windows. We use a window size of
16 to balance these two effects.

2 6 10 14 18 22 26 30 34 38 42 46

0

0.2

0.4

0.6

0.8

1
S C

Window Size

Fig. 4: Effect of Window Size on Detection Performance

5 IMPLEMENTATION

In this section, we describe the design and implemen-
tation of MAP using both the Logistic Regression (LR)
and the Neural Network (NN) classifiers. In addition, we
introduce some optimizations to simplify the implemen-
tation and evaluate their effect. The MAP logic is located
at the end of the processor pipeline after the instruction
commit stage; for instruction-based features, we only
consider committed instructions. For the NN classifier,
we consider the trade-offs between performance and
complexity: increasing the number of neurons improves
detection at the cost of more complex hardware imple-
mentation.

5.1 The MAP Microarchitecture
The general MAP microarchitecture is depicted in Fig-
ure 5. The Feature Collection (FC) component collects

and prepares the feature being used for classification and
provides it as an input to the Prediction Unit (PU). The
PU implements the classifier (the LR or the NN) that
provides a binary decision on one feature vector with
1 indicating malware, and 0 indicating normal program.
The output of the PU is therefore a time-series consisting
of the sequence of the PU decisions over time. This time-
series is the input to the Online Detection (OD) module
that carries out the time-series moving average analysis
to provide a real-time decision on the currently executing
program as explained in Section 4.

Feature
Collection

Prediction Unit

Processor
Pipeline

+

M R

Wi

Theta

+ Sum

>

Online Detection

. . .

M > R

Fig. 5: MAP Microarchitecture with LR

For the implementation analyzed in this paper, we
use the INS2 feature. Thus, the FC unit collects the
committed instruction trace from the commit stage of
the core pipeline. Other features require collection from
the appropriate source of the feature events, such as the
branch prediction unit, the memory management unit,
or the fetch logic.

The MAP logic operates as follows. The FC unit col-
lects and sends the features to the PU. The PU classifies
the collected feature vector every classification period
(we used 10K instruction period as with prior work [17]).
The predictions are sent to the online detection module
which applies the time-series algorithm as described in
Section 4 to make a decision about the process. The
counters in the OD module are treated as part of the
process state; they are stored, restored and reset along
with the process state on a context switch. A more secure
option would be to store these counters in hardware.
Since there are only two 32-bit registers in the OD mod-
ule, it can synchronize with running processes without
creating extra complexity.

5.1.1 Logistic Regression Prediction Unit
We implemented the logistic regression prediction unit
using INS2 feature. The feature vector has 50 elements to
represent selected opcodes. The Θ vector represents the
weight of each feature as a floating point number based
on the detector training. In the future, we envision a
secure process that allows the update of Θ to allow the
detector to evolve with evolving malware.

In a standard implementation of logistic regres-
sion [29], the features are multiplied with their weights
(Θ) and accumulated to calculate the hypothesis. As
a final step, the hypothesis is translated to a value
between 0 and 1 by sigmoid function and the input is

7

labeled according to the threshold. In theory, updating
the feature vector for every commit and calculating the
result at the checking granularity (10K instructions) is
sufficient. However, in our implementation it is not
necessary to wait for the end of the period. For every
new committed instruction, we set the corresponding
element of the feature vector to 1 and add its weight
to the total value. However, we only send the detection
signal to the OD unit when 10K instructions have com-
mitted. Therefore, in our implementation, the multipli-
cation operation is not required. The feature weights (Θ),
created after training, are all floating point numbers, but
they are converted to 16-bit fixed point numbers with
3 integer and 13 fractional bits. The use of fixed-point
arithmetic instead of floating point significantly reduces
the complexity of our design [11]. For our studies, we
used scalar pipeline. For a superscalar pipeline, there
will be multiple bits set for each committed instruction
and multiple adders will be required.

The final step of logistic regression is the sigmoid
function and prediction. Sigmoid is an asymptotic func-
tion that creates values between 0 and 1. We discretize
the prediction to produce a boolean classification using
simple thresholding: if the classification threshold is 0.5,
then all hypothesis values larger than 0 (sigmoid(0) =
0.5) will be classified as class 1 (malicious programs).
The implementation of actual sigmoid function is not
necessary since the threshold can be compared to the
sum, instead of the sigmoid of the sum. In the last step
of our LR implementation, we only compare this value
with the predetermined threshold and send the result to
the OD module.

5.1.2 Neural Network Prediction Unit
We implemented the neural network classifier as a multi-
layer perceptron (MLP) with 50 input features and a
single hidden layer with 19 neurons. This configuration
provides the best detection performance in the feature
space we explored. In parallel to our machine learning
model [53], we use tanh as an activation function. An
MLP with a single hidden layer operates by training a
set of weights for each hidden neuron and the output
neuron. Each hidden neuron calculates the dot product
of their weights and feature vector, this value is then
passed to a sigmoid function (in our case tanh). The out-
put neuron operates like the hidden neurons except the
output neuron uses the outputs of the hidden neurons
as inputs, instead of using the feature vector.

We evaluated two designs with the same functionality.
Our base design was implemented with performance
constraints so that the neural network calculations are
done in parallel. We then optimized this design for space
constraints by serializing the operation of the neural
network, which significantly reduced the number of
operational units.

Similar to our LR implementation, both NN designs
accumulate feature weights as feature data becomes
available. Next, we calculate

∑L
i=1 tanh(ai) · wi where

L is the number of hidden neurons, ai are the accu-
mulated neuron values and wi are the weights for each
neuron in the output layer. Notice that we could not
emit the actual implementation of the tanh function
while implementing the NN logic, because this time the
output neuron requires the actual tanh of the values
calculated in the hidden layer. To reduce the complexity
of both designs tanh is approximated by a Look-up
Table (LUT) [41]. In particular, the lookup table based
implementation of tanh function has a total absolute
error of 0.062425 (error integrated over all input values of
tanh). To further reduce complexity, we used fixed-point
operations instead of floating point ones. To prevent
the loss of precision and to reduce overflows, we use
16-bit values (3 integer plus 13 fractional bits) prior
to multiplication and 32-bit values (6 integer plus 26
fractional bits) post multiplication. Finally we do not
perform the final sigmoid operations, opting instead to
simply compare the resulting sum to a precalculated
threshold.

Base Design. The base neural network design operates
by calculating tanh(ai) for each ai in parallel. Next,
each tanh(ai) is multiplied by wi (the corresponding
weight) to generate the inputs to the ouput neuron
in parallel. Finally, the products are summed using a
reduction tree of adders to compute the sum in log2(L)
cycles. The final sum is compared with the threshold to
produce the prediction. This design allows the classifier
to be activated every cycle and produce a prediction in
T (tanh)+T (mul)+T (add) · log2(L)+T (compare) cycles,
where T (x) is the number of cycles needed to perform
x. However, the design requires L 16 bit accumulators,
tanh LUTs and multipliers, along with dL2 e 32 bit adders.

Optimized Serial Design. The serial design operates
by storing the accumulated values in a buffer, then
multiplexing the values through a pipeline consisting of
tanh, multiply, and accumulate. The final sum is com-
pared to the threshold to produce the prediction. This
design requires T (setup) +T (tanh) +T (mul) +T (add) +
L + T (compare) cycles to complete. While this unit is
active, the accumulation of the feature data continues.
However, another classification cannot be initiated until
the previous feature set has been fully processed. Similar
to the base parallel design, the serial design requires L
16-bit accumulators. However, as shown in Figure 6, the
serial design requires only 1 tanh LUT, 1 multiplier and
1 32 bit accumulator.

5.2 FPGA Implementation and Cycle Time Impact
We implemented MAP on an open source x86 processor
(AO486) [2] using Verilog. The processor is a 32-bit in-
order pipelined implementation of the Intel 80486 ISA.
We synthesized the core with the MAP logic at the end of
the pipeline on an Altera DE2-115 FPGA board [1] using
Quartus II 13.1 software. We evaluated three different
prediction unit options for MAP and summarized their
time, area and power impact in Table 6. The MAP design

8

Fig. 6: Neural Network Serial Design

with the LR prediction unit is extremely light-weight in
terms of complexity and its impact on the core power
and area is under 1%. The increase of the cycle time
is caused by the exception transfer to the processor
pipeline. However, it can be easily eliminated if the MAP
exception transfer is performed over two cycles. For the
NN prediction units, the base design requires substantial
area and consumes significant power; in contrast, the
optimized design uses only 5.67% of the core area. The
cycle time impact of the NN designs could be reduced
by deepening their pipelines. The processor area break-
down is shown in Figure 7 and MAP takes up 0.28-5% of
the logic cells depending on the prediction unit choice.

We note that this overhead is relative to the small Intel
80486 class open core we extended. When considering
modern cores which have two orders of magnitude more
transistors, the overhead is likely to constitute a much
lower percentage of the total core area.

TABLE 6: MAP’s effect on core

LR NN Base NN Serial
Logic Cells +0.28% +13.12% +5.67%
Frequency -1.93% -2.28% -5.53%
Power Usage +0.08% +5.23% +1.66%

Our goal of implementing MAP on an FPGA was to
show that it has minimal impact on the processor cycle
time, power and area for a realistic system implemented
within an x86 processor.

5.3 Two-level Framework and Integration Issues

We envision MAP to be part of a two-level framework
where the hardware unit alerts the Operating System
to invoke a more sophisticated analysis or isolation

AO486 Processor Core
Execute : 20.02 %
Writeback : 16.26 %
I-cache + D-cache : 12.61 %
TLB : 11.88 %
Register read : 8.94 %
Memory read : 7.09 %
Decode : 6.01 %
Uop decode : 3.83 %
Fetch : 0.7 %
MAP : 0.2-5 %
*Other : 12.66 %

*exception handling, register file,
module interconnections, prefecthing

unit, ...

M
A
P

TLB

D
e
co
d
e

uop

I-cache
+

D-Cache

Fe
tc
h

Writeback

Execute
Memory
read

Register
read

Fig. 7: MAP integrated into AO486 processor core

tool to monitor processes identified by the hardware
component to be suspicious. Although our goal in this
paper is primarily to explore the design space of the
hardware component, it is important to understand how
the integration between the hardware and the system
can be carried out securely. For instance, malware may
corrupt the operating system handlers to disable the
communication between MAP and the software infras-
tructure. One possibility is to leverage recent hardware
support for isolation, such as the ARM Trustzone [62]
or the Intel SGX [40] to ensure that the communication
with the second level of protection is secure. In a similar
vein, the hardware component must be able to adapt
to evolving malware. This requires a secure update
mechanism (e.g., via attestation [54]) that allows the
weights and thresholds of the classifier to be adapted
by a trusted authority (for example, security provider);
this is a problem similar to secure firmware update.

For simplicity, we assumed that the output of the
first level classifier is a discrete malware/no-malware
decision. However, the output of the classifier is a con-
fidence value which we discretized using a threshold.
One could then pass this confidence value to the second
level allowing it to more finely prioritize the scanning
of the processes based on the confidence in the decision
and the availability of resources. Alternatively, MAP may
even provide richer information to the second level,
for example providing a summary of the feature vector
exhibited by the suspcious application.

6 EVALUATION MAP IN ONLINE DETECTION

In this section, we present the online detection results
showing both conventional detection effectiveness (such
as the ROC graph), as well as the translation from
prediction unit outputs to online detection signals at
runtime. We also present a sensitivity study of the impact
of the classification instruction window size, which we
have been fixing at 10K instructions, on the effectiveness
of the detection.

9

6.1 Detection Effectiveness

Our hardware implementation of online detection is
based on INS2 feature, because of the ease of collecting
the feature vector in hardware as well as its excellent
performance during offline analysis. In Figure 8, we
show the detection success using the ROC graphs. The
first graph shows the sensitivity of the detector that
is based on an LR prediction unit. As seen from the
results, it can detect almost 90% of the malware with
6% false positive rate at its most optimal configuration.
The same feature can detect 93% of malware with the
same false positive rate, if after-the-fact detection was
possible. The second ROC graph in Figure 8 shows
detection performance of the detector with an NN-based
prediction unit. While the INS2 feature can detect all
malware with 7% false positive rate with after-the-fact
detection, it can still detect 94% of malware at runtime
with the same false positive rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
e
n
s
it

iv
it

y

False Positive

Logistic Regression

S=0.89, C=0.94
S=0.94, C=0.93

online

offline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

False Positive

Neural Network

S=0.89, C=0.94
S=0.94, C=0.93

online

offline

Fig. 8: Online Detection Performance

Next, we show how periodic signals from Prediction
Unit (PU) are translated into a detection signal at run-
time by the Online Detection (OD) counters. In Figures 9
and 10, we show the first 200 instances of 10K instruction
periods for a malware sample from Virut family and
one of the Spec2K6 benchmarks (mcf). In Figure 9, the
prediction unit is implemented using the LR model. For
Virut sample, the PU output shows that the executed
program is a malware in the beginning. However, after
some period of time the output becomes indicative of
a regular program, causing PU to output zeros. The
online detection logic smooths these infrequent signals
and correctly predicts that the executed program is mal-
ware. Similarly, for mcf, the ”malicious program” output
signals are smoothened by the OD unit.

In Figure 10, we show the generation of the detection
signal by the OD unit from the periodic outputs of
the PU that implements the NN model. As seen from
the figure, the NN prediction is more sensitive to the
behavior of the program compared to the LR. For Virut,
NN generates some ”regular program” outputs even in
the first phase of Virut. Again, smoothing these discrete

signals from the PU output successfully creates a con-
tinuous correct detection result at runtime. For mcf, the
NN model generates less ones than LR, because of the
sensitivity of the model is higher.

A MAP configuration must fit within the desired hard-
ware budget. With a neural network, it is possible to get
better sensitivity than with logistic regression. However,
the hardware requirements for the LR implementation
are almost negligible and therefore, subject to hardware
budget constraints, it may prove to be a more attractive
candidate.

6.2 Impact of Classification Window
Thusfar, we have been using a classification window of
10K instructions: the features are accumulated for the
duration of this window, and a classification decision on
the feature is taken using LR or NN. In this study, we
evaluate the sensitivity of the detection to the size of this
window for INS2 feature using LR.

We collected the feature data for different window
sizes and carried out the classification. The results of
these experiments are presented in Figure 11. The ac-
curacy of detection was poor for low classification win-
dows. However, as the window size is increased, the
detection accuracy increases, but it is not stable until the
window size approaches 10K instructions. These results
support the choice of 10K classification windows.

0.75	

0.8	

0.85	

0.9	

0.95	

1	

1k	 2k	 3k	 4k	 5k	 6k	 7k	 8k	 9k	 10k	 15k	
Collec&on	frequency	

Accuracy	

Fig. 11: Sensitivity to Classification Window Size

7 FEATURE SELECTION TO REDUCE FEATURE
SIZES

The features used by MAP’s classifiers use long vectors
that measure the frequency or existence of different low-
level events. For example, the INS2 feature vector con-
sists of 50 bits corresponding to the constituent opcodes.
However, it is possible that some of these opcodes do not
contribute significantly to the classification success. If we
recognize and remove these features, we end up with
smaller feature vectors, which simplifies the hardware
implementation.

We first looked at the Θ vector resulting from using
logistic regression on all 50 opcodes. Since Θ has a
weight for each opcode, the opcodes with low weights
are unlikely to be contributing meaningfully to the

10

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

Fig. 9: Translation of Prediction Unit Output to Online Detection Signal at Runtime with LR-Based Detector

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

Fig. 10: Translation of Prediction Unit Output to Online Detection Signal at Runtime with NN-Based Detector

classification result. Thus, we sorted the opcodes in a
descending order based on the absolute value of their
weights. Furthermore, we trained 50 detectors in the
following way. The first detector uses only the opcode
with the highest weight. The second detector adds the
next highest opcode, and so on. The final detector is the
original INS2 detector with all 50 opcodes.

The detectors performance is shown in Figure 12. The
figure shows that the performance with only 6 opcodes
is only slightly worse than the one that uses all the
opcodes. A detector built with just six highest-weighted
opcodes can detect 90% of the malware with 20% false
positives.

The feature selection approach above is simple but
ad hoc in nature. Therefore, we explored two formal
feature selection methods. The first method, Stepwise
Regression [34], is an iterative method where at each
iteration, all the features are tested using F-test and only
the best feature among them is added to the model.
The F-test is used to check if the means between two
features are significantly different. The best feature is the
feature that has the least p-value. The p-value represents
the probability that the results could have happened by
chance. The method terminates when all the features
(opcodes) have been added or when the p-value for the
remaining features is below a predefined threshold. In
our experiment, we selected a high threshold so that we
make sure to include all the opcodes in the model. We

(a) Sensitivity and specificity (b) Accuracy

Fig. 12: INS2 feature size impact using sorted weights

sorted the opcodes based on the order they were selected
to be included in the model and 50 detectors were built
iteratively and evaluated, as with the previous experi-
ment. The performance of the detectors is presented in
Figure 13. The graph shows a notable increase in the
accuracy when using the first three opcodes that were
included to the model using stepwise regression. The
detector can detect 83% of the malware with 8% false
positives.

The second feature selection method that we used

11

(a) Sensitivity and specificity (b) Accuracy

Fig. 13: INS2 feature size impact using stepwise regres-
sion

was the sequential method, which is also an iterative
method that tries to sequentially add features (opcodes)
to the model until it reaches the point where no further
improvement in prediction is achieved when adding
more features. The sequential method calculates the
mean criterion (sum of squared errors) values for all
candidate features subsets at each step. Then the subset
that minimizes the mean criterion value is chosen. As
before, we sorted the opcodes based on the order they
were selected to construct 50 detectors. Figure 14 shows
the performance of the detectors. The sequential feature
selection method outperformed the other two methods
(sorted weights, and stepwise regression) in terms of
decreasing the feature vector size while keeping the
performance high. The detector that was built using the
first five opcodes that were included in the model by
the sequential method can detect all malware programs
with less than 16% false positives.

(a) Sensitivity and specificity (b) Accuracy

Fig. 14: INS2 feature size impact using sequential method

To show the optimization that can be achieved when
reducing the features vector size, we estimated the area
and power of the MAP hardware implementation of
various feature vectors. Figure 15 shows the INS2 feature

size impact on the area and power of the MAP logic.
The results show that a detector built by the sequential
method using just first five highest-weight opcodes re-
duces the power of the MAP logic by 50%, the number
of logic cells by 33%, and the number of registers by
17% compared to an implementation that uses all of the
opcodes.

(a) Power (b) Logic cells and registers

Fig. 15: INS2 feature size impact on MAP hardware
complexity

8 RELATED WORK

Malware Detection. Malware detection is an area that
has attracted extensive research and commercial interest
over the past decade. In general, malware detection
techniques are either static (focusing on the structure
of a program or system) or dynamic (analyzing the be-
havior during execution) [31]. Detection approaches are
also classified as signature-based (looking for signatures
of known malware) or anomaly-based (modeling the
normal structure/behavior of programs or systems and
detecting deviations from this model).

Static approaches including virus and spyware scan-
ners are the first line of defense in malware detection.
Originally, these scanners are operated using pattern
matching to look for signatures of known malware.
However, these approaches can be easily evaded using
program obfuscation or simple code transformations that
preserve the function of the malware but make it not
match the patterns known to the scanner [43]. More
advanced detectors based on semantic signatures have
been proposed, and significantly improved the perfor-
mance of static scanners [13]. Static approaches are lim-
ited and can be bypassed by sophisticated attackers [42].
In particular, code obfuscation techniques (polymorphic
malware), and malware encryption (packing or meta-
morphic malware) are both sufficient to hide even from
these more advanced detectors [42].

Dynamic detection observes the behavior of the pro-
gram (or the system) as it runs and interacts with the en-
vironment. Dynamic behavior-based detection attempts
to detect deviations from normal behavior of a program
as it operates. It detects anomalies in the observed

12

behavior compared to its model of normal behavior,
which is often program-specific, to identify malware.
A large number of software malware detectors have
been investigated that vary in terms of the monitored
events, the normal behavior model, and the detection
algorithm [28], [50], [32], [31], [37]. The advantage of
dynamic detection is that it is resilient to metamorphic
and polymorphic malware [42], [39]; it can even detect
previously unknown malware. However, disadvantages
include a typically high false positive rate, and the high
cost of monitoring during run-time. Moreover, since
detection is a one time (or periodic) process, malware can
evade detection either probabilistically or by recognizing
that it is being observed and acting normally for that
period.

Most similar to our work, RiskRanker uses a rule-
based lightweight detection pass to rank the risk posed
by different Android based Apps [26]. The analysis
requires around 4 days of processing time, to identify
a high risk set (comprising about 3% of the scanned
118,000 Apps). About one fourth of this set was found to
actually have malware, including 322 zero-day exploits.
MAP uses the same premise of a two-level monitoring;
however, we do so in real-time for live systems.

Use of Low-level Features. A number of earlier works
explored low-level features for malware detection. Bi-
lar et al [9] examine the frequency of opcode use in
malware. Santos et al and Yan et al evaluate opcode
sequence signatures [52], [63], while in particular, opcode
sequence signatures were found to effectively classify
metamorphic malware. Runwal et al [51] study opcode
sequence similarity graphs. These techniques obtain this
information from running programs and malware inside
heavyweight profiling tools such as Pin [14]. Moreover,
all of these works consider offline analysis, rather than
online detection.

Demme et al [17] collect performance counter statis-
tics for programs and malware under execution. They
show that offline machine learning tools can effectively
classify malware. They conjecture that an online de-
tector can therefore be built but do not explore this
idea further. Our work builds on this evidence to de-
velop a lightweight online hardware-supported malware
detector. Tang et al [57] demonstrated that unsuper-
vised learning on low-level feature can also successfully
classify malware offline; unsupervised learning may be
more amenable to detecting novel malware and attacker
evolution. However, unsupervised learning also requires
more sophisticated analysis implying more complex
hardware implementations.

In general, we expect our proposed solution to operate
effectively with other solutions by monitoring the pro-
cesses to detect any malware that escapes detection using
these other techniques. An orthogonal line of research
pursues protection of application secrets even in the
presence of compromised system software layers and
malware [21], [22], [40].

9 CONCLUDING REMARKS

This paper contributes an always-on hardware malware
detection engine called MAP. MAP is integrated at the
commit stage of a conventional processor, which enables
it to collect low-level features with low power consump-
tion, and without software interference. MAP builds
on recent important work that showed that hardware
counters can be used to classify malware from normal
programs off-line [17]. We explore the use of different
low-level features for online detection, and show that
these features using logistic regression can achieve ex-
cellent sensitivity and reasonable false positive rates.

Because of the false positives which are common in
anomaly-based malware detection approaches, we pro-
pose to use MAP in combination with a heavier-weight
software-based detector. In particular, MAP prioritizes
the scanning order of processes such that those pro-
cesses that are most anomalous are scanned first. There
are a number of interesting integration issues when
interfacing the two levels that form part of our future
research. Moreover, the always-on nature of MAP makes
it difficult for malware to avoid detection. We developed
the hardware design for MAP and showed that its delay,
complexity and energy consumption are small.

Our future work considers a number of follow-up
directions. First, we would like to understand the phe-
nomena that causes malware to behave differently from
normal programs in the low-level feature space, to be
able to better select features and anticipate attacker
evolution. For example, most modern malware uses one
of a relatively few packer utilities to encrypt the code and
avoid signature based detection; perhaps the signature of
these packers are contributing to the detection efficiency.
Second, with every use of anomaly detection in an
adversarial setting, one must expect the attackers to
attempt to adapt. Thus, the behavior is not static and the
detectors must evolve in reaction to attacker evolution.
This problem of adversarial learning is well-studied
in the machine learning community and we hope to
integrate suitable approaches from that community to
address this important issue. Finally, we would like to
explore improvements to the detection including the use
of alternative machine learning algorithms, the use of
ensemble learning to build detectors specific to different
malware categories to enhance detection success, and
performance and power optimizations to the detection
implementation.

We also expect our technique to be esepcially sen-
sitive to Code Reuse Attacks, including both return-
oriented [56] and jump-oriented [10] which remain
dangerous vulnerabilities despite some promising so-
lutions [46], [66], [35], [36]. In particular, these attacks
have a unique computational footprint which will nat-
urally allow our low level classifiers to identify it as
malware. Similarly, certain classes of side channel and
covert channel attacks [48], [19], [23] are also extremely
dangerous and difficult to detect, but have a distinctive
computational footprint that results from the need to

13

cause contention on shared resources.

10 ACKNOWLEDGEMENT
This material is based on research sponsored by the
National Science Foundation grant CNS-1018496. Caleb
Donovick was partially supported through the REU
supplement award CNS-1338672. Iakov Gorelik was par-
tially supported by the REU Site Award CCF-1005153.

REFERENCES
[1] “De2-115 development and education board,” 2010,

http://www.altera.com/education/univ/materials/boards/
de2-115/unv-de2-115-board.html.

[2] “The ao486 project,” 2014, accessed May 2014 at http://
opencores.org/project,ao486.

[3] “Laboratory for dependable distributed systems university of
mannheim,” 2014, accessed Feb. 2014 at http://pi1.informatik.
uni-mannheim.de/malheur/.

[4] “Malware protection center,” 2014, accessed May 2014 at
http://www.microsoft.com/security/portal/mmpc/shared/
malwarenaming.aspx.

[5] S. Abraham and I. Chengalur-Smith, “An overview of social en-
gineering malware: Trends, tactics, and implications,” Technology
in Society, vol. 32, no. 3, pp. 183–196, 2010.

[6] Y. Abu-Mostafa, M. Magdon-Ismail, and H. Lin, Learning from
Data: A short course. AMLBook, 2012.

[7] C. Aldrich and L. Auret, Unsupervised process monitoring and fault
diagnosis with machine learning methods. Springer, 2013.

[8] S. Bandhakavi, S. King, P. Madhusudan, and M. Winslett, “Vex:
Vetting browser extensions for security vulnerabilities.” in Proc.
USENIX Security Symposium, 2010.

[9] D. Bilar, “Opcode as predictor for malware,” 2007.
[10] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented

programming: a new class of code-reuse attack,” in Proceedings
of ASIACCS. ACM, 2011, pp. 30–40. [Online]. Available:
http://doi.acm.org/10.1145/1966913.1966919

[11] J. Cavanagh, Computer Arithmetic and Verilog HDL Fundamentals.
CRC Press, 2009.

[12] M. Charney, “Xed2 user guide,” 2011, http://software.intel.com/
sites/landingpage/pintool/docs/56759/Xed/html/main.html.

[13] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant,
“Semantics-aware malware detection,” in Proc. IEEE Symposium
on Security and Privacy, 2005, pp. 32–46.

[14] C.Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Proc.
PLDI, 2005.

[15] C. Cooper, “Intelligence chief offers dire warn-
ing on cyberattacks,” 2013, an article on CNET
retrieved from http://www.cnet.com/news/
intelligence-chief-offers-dire-warning-on-cyberattacks/.

[16] N. Dalvi, P. Domingos, M. Sumit Sanghai, and D. Verma, “Ad-
versarial classification,” in Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining,
2004, pp. 99–108.

[17] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. Stolfo, “On the feasibility of online
malware detection with performance counters,” in Proceedings of
the 40th Annual International Symposium on Computer Architecture,
ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 559–570.
[Online]. Available: http://doi.acm.org/10.1145/2485922.2485970

[18] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware
analysis via hardware virtualization extensions,” in Proceedings of
the 15th ACM conference on Computer and communications security
(CCS), 2008, pp. 51–62.

[19] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Pono-
marev, “Non-monopolizable caches: Low-complexity mitigation
of cache side channel attacks,” ACM Trans. Architecture and Code
Optimization, vol. 8, no. 4, pp. 1–35, Jan. 2012.

[20] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on au-
tomated dynamic malware-analysis techniques and tools,” ACM
Computing Surveys (CSUR), vol. 44, no. 2, 2012.

[21] J. Elwell, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev, “A
non-inclusive memory permissions architecture for protecting
against cross-layer attacks,” in Proc. International Symposium on
High Performamce Computer Architecture (HPCA), Feb. 2014.

[22] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. Abu-
Ghazaleh, and R. Riley, “Iso-x: A flexible architecture for
hardware-managed isolated execution,” in Proc. International Sym-
posium on Microarchitecture (MICRO), Dec. 2014.

[23] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Covert
channels through branch predictors,” in Proc. of the Workshop on
Hardware and Architecture Security and Privacy (with ISCA), 2015.

[24] “Intel architecture instruction set extensions programming ref-
erence,” 2014, accessed Feb. 2014 at http://download-software.
intel.com/sites/default/files/319433-015.pdf.

[25] T. Garfinkel and M. Rosenblum, “A virtual machine introspection
based architecture for intrusion detection,” in Proc. Usenix Sym-
posium on Network and Distributed System Security (NDSS), 2003.

[26] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
scalable and accurate zero-day android malware detection,” in
Proceedings of the 10th international conference on Mobile systems,
applications, and services (MobiSys), 2012, pp. 281–294.

[27] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “Both-
unter: Detecting malware infection through ids-driven dialog
correlation,” in Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium, 2007.

[28] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection
using sequences of system calls,” Journal of computer security,
vol. 6, no. 3, pp. 151–180, 1998.

[29] D. W. Hosmer Jr. and S. Lemeshow, Applied Logistic Regression.
John Wiley & Sons, 2004.

[30] R. J. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder,
Forecasting with exponential smoothing. Springer, 2008.

[31] N. Idika and A. Mathur, “A survey of malware detection
techniques,” technical Report, Departemnt of Computer
Science, Purdue University. Accessed Feb. 2014 at:
http://cyberunited.com/wp-content/uploads/2013/03/
A-Survey-of-Malware-Detection-Techniques.pdf.

[32] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of mal-
ware: from a survey towards an established taxonomy,” Journal
in computer Virology, vol. 4, no. 3, pp. 251–266, 2008.

[33] V. G. Jim Guilford, Kirk Yap, “Fast SHA-256 Implementations on
Intel Architecture Processors,” Intel Corporation, Tech. Rep., May
2012.

[34] J. B. Kadane and N. A. Lazar, “Methods and criteria for model
selection,” Journal of the American statistical Association, vol. 99, no.
465, pp. 279–290, 2004.

[35] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev,
“Branch regulation: Low overhead mitigation of code reuse at-
tacks,” in Proceedings of ISCA, 2012.

[36] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-
Ghazaleh, “Scrap: Architecture for signature-based protection
from code reuse attacks,” 2013 IEEE 19th International Symposium
on High Performance Computer Architecture (HPCA), vol. 0, pp. 258–
269, 2013.

[37] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou,
and X. Wang, “Effective and efficient malware detection at the
end host.” in USENIX Security Symposium, 2009, pp. 351–366.

[38] S. Kramer and J. Bradfield, “A general definition of malware,”
Journal in Computer Virology, vol. 6, no. 2, 2010.

[39] L. Martignoni, M. Christodorescu, and S. Jha, “Omniunpack:
Fast, generic, and safe unpacking of malware,” in IEEE Annual
Computer Security Applications Conference (ACSAC), 2007, pp. 431–
441.

[40] F. McKeen, I. Alexandrovich, A. Berenzon, C.Rozas, H. Shafi,
V. Shanbhogue, and U. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Wkshp. on Hardware and
Architectural Support for Security and Privacy, with ISCA’13, 2013.

[41] P. Meher, “An optimized lookup-table for the evaluation of sig-
moid function for artificial neural networks,” in VLSI System on
Chip Conference (VLSI-SoC), 2010 18th IEEE/IFIP, Sept 2010, pp.
91–95.

[42] A. Moser, c. Kruegel, and E. Kirda, “Limits of static analysis of
malware detection,” in IEEE Annual Computer Security Applications
Conference (ACSAC), 2007, pp. 421–430.

[43] C. Nachenberg, “Computer virus-antivirus coevolution,” Commu-
nications of the ACM, vol. 40, no. 1, pp. 46–51, Jan. 1997.

[44] J. Oberheide and C. Miller, “Dissecting the android bouncer,”
2012, presentation at SummerCon, accessed online in October
2015 from http://diyhpl.us/∼bryan/papers2/security/android/
summercon12-bouncer.pdf.

14

[45] “Open Malware,” accessed Feb. 2014 at: http://www.
offensivecomputing.net/.

[46] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda,
“Gfree: Defeating return-oriented programming through gadget-
less binaries,” in Proc. of Annual Computer Security Applications
Conference (ACSAC), 2010, pp. 49–58.

[47] M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri, “SIFT: A
low-overhead dynamic information flow tracking architecture for
smt processors,” in Proceedings of the ACM International Conference
on Computing Frontiers, May 2011.

[48] C. Percival, “Cache missing for fun and profit,” 2005, http://
www.daemonology.net/papers/htt.pdf.

[49] PWC CIO and CSO Offices, “The global state of information
security survey,” 2015.

[50] M. Roesch, “Snort: Lightweight intrusion detection for networks.”
in Proc. Usenix System Adminsitration Conference (LISA), 1999, pp.
229–238.

[51] N. Runwal, R. M. Low, and M. Stamp, “Opcode graph
similarity and metamorphic detection,” J. Comput. Virol., vol. 8,
no. 1-2, pp. 37–52, May 2012. [Online]. Available: http:
//dx.doi.org/10.1007/s11416-012-0160-5

[52] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and
P. G. Bringas, “Idea: Opcode-sequence-based malware detection,”
in Engineering Secure Software and Systems. Springer, 2010, pp. 35–
43.

[53] M. Schmid, “A feed forward multi-layer neural network,” 2010.
[54] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla,

“Scuba: Secure code update by attestation in sensor networks,”
in Proceedings of the 5th ACM workshop on Wireless security, 2006,
pp. 85–94.

[55] “Software Guard Extensions Programming Reference,” 2014, ac-
cessed Feb. 2014 at http://download-software.intel.com/sites/
default/files/319433-015.pdf.

[56] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of CCS.
ACM Press, Oct. 2007, pp. 552–61.

[57] A. Tang, S. Sethumadhavan, and S. Stolfo, “Unsupervised
anomaly-based malware detection using hardware features,” in
Research in Attacks, Intrusions and Defenses, ser. Lecture Notes in
Computer Science, 2014, vol. 8688, pp. 109–129.

[58] P. Team, “Pax non-executable pages design & implementation,”
http://pax.grsecurity.net/docs/noexec.txt.

[59] “VirusTotal,” accessed Feb. 2014 at: https://www.virustotal.com/
en/.

[60] Y. Vorobeychik and B. Li, “Optimal randomized classification
in adversarial settings,” in Proceedings of the 13th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2014), 2014.

[61] “Crimeware protection: 3rd generation intel core vpro
processors,” 2014, accessed Feb. 2014 at http://www.intel.com/
content/dam/www/public/us/en/documents/white-papers/
3rd-gen-core-vpro-security-paper.pdf.

[62] J. Winter, “Trusted computing building blocks for embedded
linux-based arm trustzone platforms,” in Proceedings of the 3rd
ACM workshop on Scalable trusted computing, 2008, pp. 21–30.

[63] G. Yan, N. Brown, and D. Kong, “Exploring discriminatory
features for automated malware classification,” in Detection of
Intrusions and Malware, and Vulnerability Assessment. Springer,
2013, pp. 41–61.

[64] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection
and analysis,” in Proceedings of the 14th ACM conference on Com-
puter and communications security (CCS), 2007, pp. 116–127.

[65] H. Zhang, D. She, and Z. Qian, “Android root and its providers:
A double-edged sword,” in Proceedings of ACM Conference on
Computer and Communications Security (CCS), 2015.

[66] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,”
in Proc. 22nd Usenix Security Symposium, 2013.

Meltem Ozsoy is a Research Scientist at
Intel Labs, Hillsboro, OR. She received her
PhD in Computer Science from SUNY Bing-
hamton. Her research interests are in the
areas of computer architecture and secure
system design.

Khaled N. Khasawneh is a PhD student in
the Department of Computer Science and
Engineering at the University of California
at Riverside. He received his MS degree in
Computer Science from SUNY Binghamton
in 2014. His research instersts are in archi-
tecture support for security.

Iakov Gorelik is currently a software engi-
neer at CitiBank. He received his Bachelors
Degree in Computer Science from SUNY
Binghamton.

Caleb Donovick is an undergraduate stu-
dent in the Department of Computer Science
at SUNY Binghamton.

Nael Abu-Ghazaleh is a Professor in the
Computer Science and Engineering depart-
ment and the Electrical and Computer Engi-
neering department at the University of Cal-
ifornia at Riverside. His research interests
are in the areas of secure system design,
parallel discrete event simulation, networking
and mobile computing. He received his PhD
from the University of Cincinnati in 1997.

Dmitry Ponomarev is a Professor in the
Department of Computer Science at SUNY
Binghamton. His research interests are in the
areas of computer architecture, secure and
power-aware systems and high performance
computing. He received his PhD from SUNY
Binghamton in 2003.

