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Abstract. Recent work demonstrated hardware-based online malware
detection using only low-level features. This detector is envisioned as a
first line of defense that prioritizes the application of more expensive
and more accurate software detectors. Critical to such a framework is
the detection performance of the hardware detector. In this paper, we
explore the use of both specialized detectors and ensemble learning tech-
niques to improve performance of the hardware detector. The proposed
detectors reduce the false positive rate by more than half compared to
a single detector, while increasing the detection rate. We also contribute
approximate metrics to quantify the detection overhead, and show that
the proposed detectors achieve more than 11x reduction in overhead
compared to a software only detector (1.87x compared to prior work),
while improving detection time. Finally, we characterize the hardware
complexity by extending an open core and synthesizing it on an FPGA
platform, showing that the overhead is minimal.

1 Introduction

Malware continues to be a significant threat to computing systems at all scales.
For example, AV TEST reports that 220,000 new malicious programs are regis-
tered to be examined every day and around 220 million total malware signatures
are available in their malware zoo in the first quarter of 2014 [2]. Moreover,
detection is becoming more difficult due to the increasing use of metamorphic
and polymorphic malware [37]. Zero-day exploits also defy signature based sta-
tic analysis since their signatures have not been yet encountered in the wild.
This necessitates the use of dynamic detection techniques [9] that can detect
the malicious behavior during execution, often based on the detection of anom-
alies, rather than signatures [4,16]. However, the complexity and difficulty of
continuous dynamic monitoring have traditionally limited its use.

This research was partially supported by the US National Science Foundation grants
CNS-1018496 and CNS-1422401.

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 3–25, 2015.
DOI: 10.1007/978-3-319-26362-5 1



4 K.N. Khasawneh et al.

Recent work has shown that malware can be differentiated from normal
programs by classifying anomalies in low-level feature spaces such as hardware
events collected by performance counters on modern CPUs [3,6]. We call such
features sub-semantic because they do not rely on a semantic model of the mon-
itored program. In recent work, a classifier trained using supervised learning to
differentiate malware from normal programs while the programs run was intro-
duced [23]. To tolerate false positives, this system is envisioned as a first step in
malware detection to prioritize which processes should be dynamically monitored
using a more sophisticated but more expensive second level of protection.

The objective of this paper is to improve the classification accuracy of sub-
semantic malware detection, allowing us to detect malware more successfully
while reducing the burden on the second level of protection in response to false
positives. We base our study on a recent malware data set [21]; more details are
presented in Sect. 2. We pursue improved detection using two approaches. First,
we explore, in Sect. 3, whether specialized detectors, each tuned to a specific
type of malware, can more successfully classify that type of malware. We find
that this is indeed the case, and identify the features that perform best for each
specialized detector. Second, in Sect. 4, we explore how to combine multiple
detectors, whether general or specialized, to improve the overall performance of
the detection. We also evaluate the performance of the ensemble detectors in
both offline and online detection.

To quantify the performance advantage from the improved detection, we
develop metrics that translate detection performance to expected overhead in
terms of the second level detector (Sect. 5). We discover that the detection per-
formance of the online detection is substantially improved, reducing the false pos-
itives by over half for our best configurations, while also significantly improving
the detection rate. This advantage translates to over 11x reduction in overhead of
the two-level detection framework. We analyze the implications on the hardware
complexity of the different configurations in Sect. 6. We compare this approach
to related work in Sect. 7.

This paper makes the following contributions:

– We characterize how specialized detectors trained for specific malware types
perform compared to a general detector and show that specialization has
significant performance advantages.

– We use ensemble learning to improve the performance of the hardware detec-
tor. However, combining specialized detectors is a non-classical application of
ensemble learning, which requires new approaches. We also explore combining
general detectors (with different features) as well as specialized and general
detectors.

– We evaluate the hardware complexity of the proposed designs by extending
the AO486 open core. We propose and evaluate some hardware optimizations.

– We define metrics for the two-level detection framework that translate detec-
tion performance to expected reduction in overhead, and time to detection.
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2 Approach and Evaluation Methodology

Demme et al. [6] showed that malware programs can be classified effectively
by the use of offline machine learning model applied to low-level features; in
this case, the features were the performance counters of a modern ARM proces-
sor collected periodically. Subsequently, Ozsoy et al. [23] explored a number
of low-level features, not only those available through performance counters,
and built an online hardware-supported, low-complexity, malware detector. Such
low-level features are called sub-semantic since they do not require knowledge
of the semantics of the executing program. The online detection problem uses
a time-series window based averaging to detect transient malware behavior. As
detection is implemented in hardware, simple machine learning algorithms are
used to avoid the overhead of complex algorithms. This work demonstrated that
sub-semantic features can be used to detect malware in real-time (i.e., not only
after the fact).

The goal of this work is to improve the effectiveness of online hardware-
supported malware detection. Better machine learning classifiers can identify
more malware with fewer false positives, substantially improving the perfor-
mance of the malware detection system. To improve detection, we explore using
specialized detectors for different malware types. We show that such specialized
detectors are more effective than general detectors in classifying their malware
type. Furthermore, we study different approaches for ensemble learning: com-
bining the decisions of multiple detectors to achieve better classification. In this
section, we overview the approach, and present the methodology and experimen-
tal details.

2.1 Programs Used for This Study

We collected samples of malware and normal programs to use in the training,
cross validation and testing of our detectors. Since the malware programs that
we use are Windows-based, we only used Windows programs for the regular
program set. This set contains the SPEC 2006 benchmarks [12], Windows system
binaries, and many popular applications such as Acrobat Reader, Notepad++,
and Winrar. In total 554 programs were collected as the non-malware component
of the data.

Our malware programs were collected from the MalwareDB malware set [21].
We selected only malware programs that were found between 2011–2014. The
malware data sets have a total of 3,690 malware programs among them.

The group of regular and malware programs were all executed within a virtual
machine running a 32-bit Windows 7 with the firewall and security services for
Windows disabled, so that malware could perform its intended functionality.
Moreover, we used the Pin instrumentation tool [5] to gather the dynamic traces
of programs as they were executed. Each trace was collected for a duration of
5,000 system calls or 15 million committed instructions, whichever is first.

The malware data set consists of five types of malware: Backdoors, Password
Stealers (PWS), Rogues, Trojans, and Worms. The malware groups and the
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Table 1. Data set breakdown

Total Traning Testing Cross validation

Backdoor 815 489 163 163
Rogue 685 411 137 137
PWS 558 335 111 111
Trojan 1123 673 225 225
Worm 473 283 95 95
Regular 554 332 111 111

regular programs were divided into three sets; training (60 %), testing (20 %)
and cross-validation (20 %). Table 1 shows the content of these sets.

We note that both the number of programs and the duration of the profiling
of each program is limited by the computational overhead; since we are collecting
dynamic profiling information through Pin [5] within a virtual machine, collec-
tion requires several weeks of execution on a small cluster, and produces several
terabytes of compressed profiling data. Training and testing is also extremely
computationally intensive. This dataset is sufficiently large to establish the fea-
sibility and provide a reasonable evaluation of the proposed approach.

2.2 Feature Selection

There are numerous features present at the architecture/hardware level that
could be used. We use the same features as Ozsoy et al. [23], to enable direct
comparison of ensemble learning against a single detector. For completeness, we
describe the rationale behind these features:

– Instruction mix features: these are features that are derived from the types
and/or frequencies of executed opcodes. We considered four features based on
opcodes. Feature INS1 tracks the frequency of opcode occurrence in each of
the x86 instruction categories. INS3 is a binary version of INS1 that tracks
the presence of opcodes in each category. The top 35 opcodes with the largest
difference (delta) in frequency between malware and regular programs were
aggregated and used as feature (INS2). Finally, INS4 is a binary version of
INS2 indicating opcode presence for the 35 largest difference opcodes.

– Memory reference patterns: these are features based on memory addresses
used by the program. The first feature we consider in this group is MEM1,
which keeps track of the memory reference distance in quantized bins (i.e.,
creates a histogram of the memory reference distance). The second feature we
consider (MEM2) is a simpler form of MEM1 that tracks the presence of a
load/store in each of the distance bins.

– Architectural events: features based on architectural events such as cache
misses and branch predictions. The features collected were: total number
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of memory reads, memory writes, unaligned memory accesses, immediate
branches and taken branches. This feature is called ARCH in the remainder
of the paper.

The features were collected once every 10,000 committed instructions of the
program, consistent with the methodology used by earlier works that use this
approach [6,23]. These prior studies demonstrated that classification at this fre-
quency effectively balances complexity and detection accuracy for offline [6] and
online [23] detection. For each program we maintained a sequence of these feature
vectors collected every 10 K instructions, labeled as either malware or normal.

3 Characterizing Performance of Specialized Detectors

In this section, we introduce the idea of specialized detectors: those that are
trained to identify a single type of malware. First, we explore whether such
detectors can outperform general detectors, which are detectors trained to clas-
sify any type of malware. If indeed they outperform general detectors, we then
explore how to use such detectors to improve the overall detection of the system.

We separate our malware sets into types based on Microsoft Malware Protec-
tion Center classification [19]. We use logistic regression for all our experiments
because of the ease of hardware implementation [13]. In particular, the collected
feature data for programs and malware is used to train logistic regression detec-
tors. We pick the threshold for the output of the detector, which is used to
separate a malware from a regular program, such that it maximizes the sum of
the sensitivity and specificity. For each detector in this paper, we present the
threshold value used.

Training General Detectors. A general detector should be able to detect all
types of malware programs. Therefore, a general detector is trained using a data
set that encompasses all types of malware programs, against another set with
regular programs. We trained seven general detectors, one for each of the feature
vectors we considered.

Training Specialized Detectors. The specialized detectors are designed to
detect a specific type of malware relative to the regular programs. Therefore, the
specialized detectors were trained only with malware that matches the detector
type, as well as regular programs, so that it would have a better model for
detecting the type of malware it is specialized for. For example, the Backdoors
detector is trained to classify Backdoors from regular programs only. We chose
this approach rather than also attempting to classify malware types from each
other because false positives among malware types are not important for our
goals. Moreover, types of malware may share features that regular programs do
not have and thus classifying them from each other makes classification against
regular programs less effective.

Each specialized detector was trained using a data set that includes regular pro-
grams and the malware type that the specialized detector is built for. On the other
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hand, the general detectors were trained using all the training data sets that we
used for the specialized detectors combined plus the regular programs. In exper-
iments that evaluate specialized detectors, the testing set (used for all detectors
in such experiments including general detectors) consists only of normal programs
and the specialized detector malware type. The reasoning for this choice is that
we do not care about the performance of the specialized detector on other types of
malware; if included these malware types would add noise to the results.

3.1 Specialized Detectors: Is There an Opportunity?

Next, we investigate whether specialized detectors outperform general detectors
when tested against the malware type they were trained for. Intuitively, each
malware type has different behavior allowing a specialized detector to more
effectively carry out classification. Moreover, the detectors in this section were
evaluated using the offline detection approach explained in Sect. 4.3.

General Vs. Specialized Detectors. We built specialized detectors for five
types of malware which are Backdoor, PWS, Rogue, Trojan and Worm. Each of
the seven general detectors’ performance was compared against the performance
of each specialized detectors in detecting the specific malware type for which the
specialized detector was trained. Moreover, each comparison between specialized
and general detectors used the same testing set for both of the detectors. The
testing set includes regular programs and the malware type that the specialized
detector was designed for.

Figures 1a, b show the Receiver Operating Characteristic (ROC) curves sepa-
rated by type of malware using the general detector and the specialized detectors
which were built using MEM1 features vector. Table 2 shows the Area Under
the Curve (AUC) values for the ROC curves that resulted from all the compar-
isons between the general and specialized detectors in each feature vector. The
ROC curves represent the classification rate (Sensitivity) as a function of false
positives (100-Specificity) for different threshold values between 0 and 1. We
found that in the majority of the comparisons, the specialized detectors indeed
perform better than or equal to the general detector.

There were some cases where the general detector outperforms the special-
ized detectors for some features. We believe this behavior occurs because the
general detector is trained using a larger data set than the specialized detector
(it includes the other malware types). There are only a limited number of cases
where the generalized detector outperforms the specialized ones for a specific
feature. In most of these cases, the detection performance is poor, indicating
that the feature is not particularly useful for classifying the given malware type.

Estimating the opportunity from deploying specialized detectors compared to
general detectors is important since it gives an intuition of the best performance
that could be reached using the specialized detectors. Thus, we compared the per-
formance of the best performing general detector against the best specializeddetec-
tor for each type of malware. Figure 2a shows the ROC curves of the INS4 general
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Fig. 1. MEM1 detectors performance

Table 2. AUC values for all general and specialized detectors

Backdoor PWS Rogue Trojan Worm

INS1 General 0.713 0.909 0.949 0.715 0.705
Specialized 0.715 0.892 0.962 0.727 0.819

INS2 General 0.905 0.946 0.993 0.768 0.810
Specialized 0.895 0.954 0.976 0.782 0.984

INS3 General 0.837 0.909 0.924 0.527 0.761
Specialized 0.840 0.888 0.991 0.808 0.852

INS4 General 0.866 0.868 0.914 0.788 0.830
Specialized 0.891 0.941 0.993 0.798 0.869

MEM1 General 0.729 0.893 0.424 0.650 0.868
Specialized 0.868 0.961 0.921 0.867 0.871

MEM2 General 0.833 0.947 0.761 0.866 0.903
Specialized 0.843 0.979 0.931 0.868 0.871

ARCH General 0.702 0.919 0.965 0.763 0.602
Specialized 0.686 0.942 0.970 0.795 0.560

detector (best performing general detector) while Fig. 2b shows the ROC curves for
the best specialized detectors. In most cases, the specialized detectors outperform
the general detector, sometimes significantly. Table 3 demonstrates this observa-
tion by showing that the average improvement opportunity using the AUC values
is about 0.0904, improving the AUC by more than 10 %. Although the improve-
ment may appear to be modest, it has a substantial impact on performance. For
example, the improvement in Rogue detection, 8 % in the AUC, translates to a 4x
reduction in overhead according to the work metric we define in Sect. 5.2).
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Fig. 2. Opportunity size: best specialized vs. best general detector

Table 3. Improvement opportunity: area under curve

General Specialized Difference

Backdoor 0.8662 0.8956 0.0294
PWS 0.8684 0.9795 0.1111
Rogue 0.9149 0.9937 0.0788
Trojan 0.7887 0.8676 0.0789
Worm 0.8305 0.9842 0.1537
Average 0.8537 0.9441 0.0904

These results make it clear that specialized detectors are more successful than
general detectors in classifying malware. However, it is not clear why different
features are more successful in detecting different classes of malware, or indeed
why classification is at all possible in this subsemantic feature space. To attempt
to answer this question, we examined the weights in the Θ vector of the logistic
regression ARCH feature specialized detector for Rogue and Worm respectively.
This feature obtains 0.97 AUC for Rogue but only 0.56 for Worm (see Table 2).
We find that the Rogue classifier discovered that the number of branches in
Rogue where significantly less than normal programs while the number of mis-
aligned memory addresses were significantly higher. In contrast, Worm weights
were very low for all ARCH vector elements, indicating that Worms behaved
similar to normal programs in terms of all architectural features. Explaining the
fundamental reasons behind these differences in behavior is a topic of future
research.
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4 Malware Detection Using Ensemble Learning

Starting from a set of general detectors (one per feature) and a set of specialized
detectors, our next goal is to explore how to compose these detectors to improve
overall detection; such composite detectors are called ensemble detectors [8].
A decision function is used to combined the results of the base detectors into a
final decision. Figure 3 illustrates the combined detector components and overall
operation.

Fig. 3. Combined detector

The general technique of combining multiple detectors is called ensemble
learning; the classic type considers combining multiple independent detectors
which are trained to classify the same phenomena [8]. For example, for malware
detection, all the general detectors were designed to detect any type of malware.
Thus, ensemble learning techniques apply to the problem of combining their
decisions directly.

On the other hand, for the specialized detectors, each detector is trained to
classify a different phenomena (different type of malware); they are each answer-
ing a different classification question. Given that we do not know if a program
contains malware, let alone the malware type, it is not clear how specialized
detectors can be used as part of an overall detection solution. In particular,
its unclear whether common ensemble learning techniques, which assume detec-
tors that classify the same phenomena, would successfully combine the different
specialized detectors.

In order to solve this problem, we evaluated different decision functions to
combine the specialized detectors. We focused on combining techniques which
use all the detectors independently in parallel to obtain the final output from the
decision function. Since all the detectors are running in parallel, this approach
speeds up the computation.

4.1 Decision Functions

We evaluated the following decision functions.

– Or’ing: If any of the detectors detects that a given input is a malware then
the final detection result is a malware. This approach is likely to improve
sensitivity, but result in a high number of false positives (reduce selectivity).
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– High Confidence: This decision function is an improved version of the or’ing
decision function. In particular, the difference is that we select the specialized
detector thresholds so that their output will be malware only when they are
highly confident that the input is a malware program. Intuitively, specialized
detectors are likely to have high confidence only when they encounter the
malware type they are trained for.

– Majority Voting: The final decision is the decision of the majority of the
detectors. Thus, if most of them agreed that the program is a malware the
final decision will be that it is a malware program.

– Stacking (Stacked Generalization): In this approach, a number of first-
level detectors are combined using a second-level detector (meta-learner) [33]).
The key idea, is to train a second-level detector based on the output of first-
level (base) detectors via cross-validation.

The stacking procedure operates as follows: we first collect the output of each of
the base detectors to form a new data set using cross-validation. The collected
data set would have every base detector decision for each instance in the cross-
validation data set as well as the true classification (malware or regular program).
In this step, it is critical to ensure that the base detectors are formed using a
batch of the training data set that is different from the one used to form the
new data set. The second step is to treat the new data set as a new problem,
and employ a learning algorithm to solve it.

4.2 Ensemble Detectors

To aid with the selection of the base detectors to use within the ensemble detec-
tors, we compare the set of general detectors to each other. Figure 4 shows the
ROC graph that compares all the general detectors. We used a testing data set
that includes the testing sets of all types of malware plus the regular programs
testing set. The best performing general detectors use the INS4 feature vector;
we used it as the baseline.

Fig. 4. General detectors comparison
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We tested different decision functions and applied to them different selec-
tions of base detectors. An ROC curve based on a cross-validation data set was
generated for each base detector to enable identification of the best threshold
values for the base detectors. Subsequently, the closest point on the ROC curve
to the upper left corner of the graph, which represents the maximum Sensi-
tivity+Specificity, was selected since the sensitivity and specificity are equally
important. However, for the High confidence decision function, the goal is to
minimize the false positives. Therefore, we selected the highest sensitivity value
achieving less than 3 % false positive rate. Since the output of logistic regression
classifier is a probability between 0 and 1, the threshold value is a fraction in
this range.

The cross-validation data set used for the general detectors includes all types
of malware as well as regular programs. However, for the specialized detector,
it only includes the type of malware the specialized detector designed for and
regular programs. We consider the following combinations of base detectors:

– General ensemble detector: combines only general detectors using classical
ensemble learning. General ensemble detectors work best when diverse fea-
tures are selected. Therefore, we use the best detector from each feature
group (INS, MEM, and ARCH), which are INS4, MEM2, and ARCH respec-
tively. Table 4 shows the threshold values for the selected base detectors which
achieves the best detection (highest sum of sensitivity and specificity). Fur-
thermore, the best threshold value is 0.781 for the stacking second-level detec-
tor.

– Specialized ensemble detector: combines multiple specialized detectors. For
each malware type, we used the best specialized detector. Thus, we selected
the specialized detectors trained using MEM1 features vector for Trojans,
MEM2 for PWS, INS4 for Rogue, and INS2 for both Backdoor and Worms.
The selected threshold values of the selected detectors are shown in Table 5.
In addition, the threshold value for the stacking second-level detector is 0.751.

Table 4. General ensemble base detectors threshold values

INS4 MEM2 ARCH

Best threshold 0.812 0.599 0.668
High confidence threshold 0.893 0.927 0.885

Table 5. Specialized ensemble base detectors threshold values

Backdoor PWS Rogue Trojan Worm

Best threshold 0.765 0.777 0.707 0.562 0.818
High confidence threshold 0.879 0.89 0.886 0.902 0.867
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Table 6. Mixed ensemble base detectors threshold values

INS4 Rogue Worm

Best threshold 0.812 0.707 0.844
High confidence threshold 0.893 0.886 0.884

– Mixed ensemble detector: combines one or more high performing specialized
detectors with one general detector. The general detector allows the detection
of other malware types unaccounted for by the base specialized detectors. In
addition, this approach allows us to control the complexity of the ensemble
(number of detectors) while taking advantage of the best specialized detectors.
In our experiments, we used two specialized detectors for Worms and Rogue
built using INS4 features vector because they performed significantly better
than the general detector for detecting their type. The threshold values of
the base detectors are shown in Table 6. The threshold value for the stacking
second-level detector is 0.5.

4.3 Offline Detection Effectiveness

As discussed in Sect. 2.2, each program is represented as multiple feature
instances collected as the program executes. To evaluate the offline detection
of a detector, a decision for each vector in a program is made. If most of the
decisions of that program records are malware, then the program is detected as
malware. Otherwise, the program is detected as regular program.

Table 7 shows the sensitivity, specificity and accuracy for the different ensem-
ble detectors using different combining decision functions. Also, it presents the
work and time advantage, which represent the reduction in work and time to
achieve the same detection performance as a software detector; these metrics
are defined in Sect. 5.2. The specialized ensemble detector using stacking deci-
sion function outperforms all the other detectors with 95.8 % sensitivity and only
4 % false positive, which translates to 24x work advantage and 12.2x time advan-
tage. The high confidence OR function also performs very well. This performance
represents a substantial improvement over the baseline detector.

The Or’ing decision function results in poor specificity for most ensembles,
since it results in a false positive whenever any detector encounters one. Majority
voting was used only for general ensembles as it makes no sense to vote when the
detectors are voting on different questions. Majority voting performed reasonably
well for the general ensemble.

For the general ensemble detector, Stacking performs the best, slightly
improving performance relative to the baseline detector. The majority voting
was almost as accurate as stacking but results in more false positives. The mixed
ensemble detector did not perform well; with stacking, it was able to significantly
improve specificity but at low sensitivity.
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Table 7. Offline detection with different combining decision functions

Decision Sensitivity Specificity Accuracy Work Time

function advantage advantage

Best – 82.4% 89.3% 85.1% 7.7 3.5

general

General
ensemble

Or’ing 99.1% 13.3% 65.0% 1.1 1.1

High
confidence

80.7% 92.0% 85.1% 10.1 3.7

Majority
voting

83.3% 92.1% 86.7% 10.5 4.1

Stacking 80.7% 96.0% 86.8% 20.1 4.3

Specialized
ensemble

Or’ing 100% 5% 51.3% 1.1 1.1

High
confidence

94.4% 94.7% 94.5% 17.8 9.2

Stacking 95.8% 96.0% 95.9% 24 12.2

Mixed
ensemble

Or’ing 84.2% 70.6% 78.8% 2.9 2.2

High
confidence

83.3% 81.3% 82.5% 4.5 2.8

Stacking 80.7% 96.0% 86.7% 20.2 4.3

4.4 Online Detection Effectiveness

The results thus far have investigated the detection success offline: i.e., given
the full trace of program execution. In this section, we present a moving window
approach to allow real-time classification of the malware. In particular, the fea-
tures are collected for each 10,000 committed instructions, and classified using
the detector. We keep track of the decision of the detector using an approxima-
tion of Exponential Moving Weighted Average. If during a window of time of
32 consecutive decisions, the decision of the detector reflects malware with an
average that crosses a preset threshold, we classify the program as malware.

We evaluate candidate detectors in the online detection scenario. The perfor-
mance as expected is slightly worse for online detection than offline detection,
which benefits from the full program execution history. The overall accuracy, sen-
sitivity, and specificity all decreased slightly with online detection. The result of
the online detection performance are in Table 8.

5 Two-Level Framework Performance

One of the issues of using a low-level detector such as the ensemble detector we
are trying to implement, lacking the sophistication of a rich-semantic detector, is
that false positives are difficult to eliminate. Thus, using the low-level detector on
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Table 8. Online detection performance

Sensitivity Specificity Accuracy

Best general 84.2 % 86.6 % 85.1 %
General ensemble (Stacking) 77.1 % 94.6 % 84.1 %
Specialized ensemble (Stacking) 92.9 % 92.0 % 92.3 %
Mixed ensemble (Stacking) 85.5 % 90.1 % 87.4 %

its own would result in a system where legitimate programs are sometimes identi-
fied as malware, substantially interfering with the operation of the system. Thus,
we propose to use the low-level detector as the first level of a two-level detection
(TLD) system. The low-level detector is always on, identifying processes that
are likely to be malware to prioritize the second level. The second level could
consist of a more sophisticated semantic detector, or even a protection mecha-
nism, such as a Control Flow Integrity (CFI) monitor [39] or a Software Fault
Isolation (SFI) [31] monitor, that prevents a suspicious process from overstep-
ping its boundaries. The first level thus serves to prioritize the operation of the
second level so that the available resources are directed at processes that are
suspicious, rather than applied arbitrarily to all processes.

In this section, we analyze this model and derive approximate metrics to
measure its performance advantage relative to a system consisting of a software
protection only. Essentially, we want to evaluate how improvements in detection
translate to run-time capabilities of the detection system. Without loss of gen-
erality, we assume that the second level consists of a software detector that can
perfectly classify malware from normal programs, but the model can be adapted
to consider other scenarios as well.

The first level uses sub-semantic features of the running programs to clas-
sify them. This classification may be binary (suspicious or not suspicious) or
more continuous, providing a classification confidence value. In this analysis,
we assume binary classification: if the hardware detector flags a program to be
suspicious it will be added to a priority work list. The software detector scans
processes in the high priority list first. A detector providing a suspicion index
can provide more effective operation since the index can serve as the software
monitoring priority.

5.1 Assumptions and Basic Models

In general, in machine learning the percentage of positive instances correctly
classified as positives is called the Sensitivity (S). The percentage of correctly
classified negative instances is called the Specificity (C). Applied to our system,
S is a fraction of malware identified as such, while C is a fraction of regular
programs identified correctly. Conversely, the misclassified malware is referred to
as False Negatives - FN, while the misclassified normal programs are referred as
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False Positives -FP. For a classification algorithm to be effective, it is important
to have high values of S and C.

We assume a discrete system where the arrival rate of processes is N with
a fraction m of those being malware. We also assume that the effort that the
system allocates to the software scanner is sufficient to scan a fraction e of the
arriving processes (e ranges from 0 to 1). Note that we derive these metrics for a
continuous system for convenience of derivation. Assuming a system with large
N this approach should not affect the derived expected values.

In the base case a software scanner/detector scans a set of running programs
that are equally likely to be malware. Thus, given a detection effort budget e,
a corresponding fraction of the arriving programs can be covered. Increasing
the detection budget will allow the scanner to evaluate more processes. Since
every process has an equal probability of being malware, increasing the effort
increases the detection percentage proportionately. Thus, the detection effective-
ness (expected fraction of detected malware) is simply e.

Clearly, this is a first-order model in that they use simple average values for
critical parameters such as the effort necessary to monitor a processes. However,
we believe the metrics are simple and useful indicators to approximately quantify
the computational performance advantage obtained in a TLD system as the
detection performance changes.

5.2 Metrics to Assess Relative Performance of TLD

In contrast to the baseline model, the TLD works as follows. The hardware
detector informs the system of suspected malware, which is used to create a
priority list consisting of these processes. The size of this suspect list, ssuspect,
as a fraction of the total number of processes is:

ssuspect = S · m + (1 − C) · (1 − m) (1)

Intuitively, the suspect list size is the fraction of programs predicted to be mal-
ware. It consists of the fraction of malware that were successfully predicted to
be malware (S · m) and the fraction of normal programs erroneously predicted
to be malware (1 − C) · (1 − m).

Work Advantage. Consider a case where the scanning effort e is limited to
be no more than the size of the priority list. In this range, the advantage of the
TLD can be derived as follows. Lets assume that the effort is k · ssuspect where
k is some fraction between 0 and 1 inclusive. The expected fraction of detected
malware for the baseline case is simply the effort, which is k ·ssuspect. In contrast,
we know that S of the malware can be expected to be in the ssuspect list and
the success rate of the TLD is k ·S. Therefore, the advantage, Wtld, in detection
rate for the combined detector in this range is:

Wtld =
k · S

k · ssuspect =
S

S · m + (1 − C) · (1 − m)
(2)
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The advantage of the TLD is that the expected ratio of malware in the
suspect list is higher than that in the general process list under the following
conditions. It is interesting to note that when S + C = 1, the advantage is 1
(i.e., both systems are the same); to get an advantage, S + C must be greater
than 1. For example, for small m, if S = C = 0.75, the advantage is 3 (the
proposed system finds malware with one third of the effort of the baseline). If
S = C = 0.85 (in the range that our sub-semantic features are obtaining), the
advantage grows to over 5.

Note that with a perfect hardware predictor (S = 1, C = 1), the advantage
in the limit is 1

m ; thus, the highest advantage is during “peace-time” when m
approaches 0. Under such a scenario, the advantage tends to S

1−C . However, as
m increases, for imperfect detectors, the size of the priority list is affected in two
ways: it gets larger because more malware processes are predicted to be malware
(true positives), but it also gets smaller, because less processes are normal, and
therefore less are erroneously predicted to be malware (false positives). For a
scenario with a high level of attack (m tending to 1) there is no advantage to
the system as all processes are malware and a priority list, even with perfect
detection, does not improve on arbitrary scanning.

Detection Success Given a Finite Effort. In this metric, we assume a
finite amount of work, and compute the expected fraction of detected malware.
Given enough resources to scan a fraction a of arriving processes, we attempt to
determine the probability of detecting a particular infection.

We assume a strategy where the baseline detector scans the processes in
arbitrary order (as before) while the TLD scans the suspect list first, and then,
if there are additional resources, it scans the remaining processes in arbitrary
order.

When e <= ssuspect, analysis similar to that above shows the detection
advantage to be ( S

ssuspect
). When e >= ssuspect, then the detection probability

can be computed as follows.

Dtld = S + (1 − S) · e · N − N · ssuspect
N · (1 − ssuspect)

. (3)

The first part of the expression (S) means that if the suspect list is scanned, the
probability of detecting a particular infection is S (that it is classified correctly
and therefore is in the suspect list). However, if the malware is misclassified (1−
S), malware could be detected if it is picked to be scanned given the remaining
effort. The expression simplifies to:

Dtld = S +
(1 − S) · (e − ssuspect)

1 − ssuspect
(4)

Note that the advantage in detection can be obtained by dividing Dtld by
Dbaseline which is simply e.
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Time to Detection. Finally, we derive the expected time to detect a malware
given an effort sufficient to scan all programs. In the baseline, the expected value
of the time to detect for a given malware is 1

2 of the scan time. In contrast, with
the TLD, the expected detection time is:

Ttld = S · ssuspect
2

+ (1 − S) · (ssuspect +
(1 − ssuspect)

2
), (5)

The first part of the expression accounts for S of the malware which are correctly
classified as malware. For these programs, the average detection time is half of the
size of the suspect list. The remaining (1 − S) malware which are misclassified
have a detection time equal to the time to scan the suspect list (since that
is scanned first), followed by half the time to scan the remaining processes.
Simplifying the equation, we obtain:

Ttld = S · ssuspect
2

+ (1 − S) · ( (1 + ssuspect)
2

), (6)

Recalling that Tbaseline = 1
2 , the advantage in detection time, which is the

ratio Ttld

Tbaseline
is:

Tadvantage = S · ssuspect + (1 − S) · (1 + ssuspect), (7)

substituting for ssuspect and simplifying, we obtain:

Tadvantage =
1

1 − (1 − m)(C + S − 1)
(8)

The advantage again favors the TLD only when the sum of C and S exceeds 1
(the area above the 45 degree line in the ROC graph. Moreover, the advantage
is higher when m is small (peace-time) and lower when m grows. When m tends
to 0, if C + S = 1.5, malware is detected in half the time on average. If the
detection is better (say C + S = 1.8), malware can be detected 5 times faster
on average. We will use these metrics to evaluate the success of the TLD based
on the Sensitivity and Specificity derived from the hardware classifiers that we
implemented.

5.3 Evaluating Two Level Detection Overhead

Next, we use the metrics introduced in this section to analyze the performance
and the time-to-detect advantage of the TLD systems based on the different
hardware detectors we investigated. We selected the work and time advantage
from these metrics to evaluate our detectors as a TLD systems; the first stage
(hardware detector) will report the suspected malware programs to the second
stage to be examined.

The time and work advantages for the online detectors are depicted in Fig. 5
as the percentage of malware processes increases. The specialized ensemble detec-
tor reduced the average time of detection to 1/6.6 of the heavy-software only
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detector that is 2x faster than single general detector when the fraction of mal-
ware programs is low. This advantage was at 1/3.1 when malware intensity
increased to the point where 20 % of the programs are malware (m = 0.2).
In addition, the specialized ensemble detector has the best average time-to-
detection. The amount of work required for detection is improved by 11x by the
specialized ensemble detector compared to using heavy-software detector only
(1.87x compared to the best single detector). Although the general ensemble
detector had a 14x improvement due to the reduction in the number of false
positives, its detection rate is significantly lower than that of the specialized
ensemble due to its lower sensitivity.

(a) Time advantage (b) Work advantage

Fig. 5. Time and work advantage as a function of malware rate

Fig. 6. Detection performance as a function of effort and malware rate
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In Fig. 6, we show the effort required by the online detectors to achieve 50 %
and 80 % detection rate for the different detectors. Note that the effort increases
with the percentage of malware. However, under common circumstances when
the incidence of malware is low, the advantage of effective detection is most
important. We see this for the specialized ensemble detector which is able to
detect 80 % of the malware while scanning less than 10 % of the programs.

6 Hardware Implementation

In this section, we describe the hardware implementation of the ensemble detec-
tors. During the execution of the program, instruction categories are collected
at the feature collection unit (FCU), after the features are sent to prediction
unit (PU) to create the prediction for 10 K periods of committed instructions
and finally online detection unit (ODU) creates a continuous signal with a value
every 10,000 instructions for the executing program during runtime.

The FCU is implemented as an observer of the Reorder Buffer (ROB). ROB is
a processor structure that keeps track of all in-flight instructions in their program
order. The feature collection implementation differs with the type of feature.
For example, for INS4, each ROB entry is augmented with instruction category
information (6 bits). The feature vector used for classification is a bit vector
with a bit for every instruction category. It is updated with each committed
instruction by setting the corresponding category to 1.

We use logistic regression to implement the detectors due to its simplicity.
The PU consists of different logistic regression units, one for each detector.

For the last part of the detection module, we use two counters in order to
keep track of the malware and normal behavior. These counters are incremented
at every 10 K instructions accordingly and subtracted from each other to make
the final decision.

The ensemble detector requires a minimal hardware investment. Taking up
only 2.88 % of logic cells on the core and using only 1.53 % of the power. While the
detector may be lightweight in terms of physical resources, the implementation
required a 9.83 % slow down of frequency. However, while this may seem high, the
vast majority of this overhead comes from collecting the MEM feature vectors;
when we do not collect this feature, the reduction in frequency was under 2 %.
If feature collection was pipelined over two cycles this cost be significantly
reduced or eliminated. Moreover, we could use detectors that use simpler features
to avoid using the MEM feature.

7 Related Work

Malware detection at the sub-semantic level was explored by several studies.
Bilar et al. use the frequency of opcodes that a specific program uses [3]. Oth-
ers use sequence signatures of the opcodes [28,34]. Runwal et al. use similarity
graphs of opcode sequences [27]. However, these works used offline analysis. In
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addition, Demme et al. use features based on performance counters [6] but did
not explore online detection.

Ensemble learning can combine multiple base detectors to take a final decision
for the improved accuracy [32]. The different base detectors are trained to solve
the same problem. In contrast to traditional machine learning approaches that
use the training data to learn one hypothesis, our ensemble approach learns a
set of hypotheses and combines them.

Ensemble learning is attractive because of its generalization ability which is
much powerful than using one learner [7]. In order for an ensemble detector to
work, the base detectors have to be diverse; if the detectors are highly correlated,
there is little additional value from combining them [26]. In this paper, the
diversity is based on different features (general ensemble detector), data sets
(mixed ensemble detector), or both (specialized ensemble detector).

The proposed specialized ensemble detector in this paper combines multiple
specialized detectors and dynamically collects sub-semantic features to perform
online detection. Researchers built ensemble malware detectors [1,10,11,14,17,
18,20,22,24,25,29,30,35,36,38], based on combining general detectors. More-
over, most of them used off-line analysis [1,10,14,25,29,30,35,36]. A few used
dynamic analysis [11,20,24] and some used both static and dynamic analy-
sis [17,18,22]. None of these works uses sub-semantic features or is targeted
towards hardware implementation (which requires simpler machine learning
algorithms). Specialized detectors were previously proposed [15] for use in mal-
ware classification (i.e., labeling malware). Labeling is used to classify collected
malware using offline analysis. This is quite a different application of specialized
detectors than the one we introduce in this paper.

8 Concluding Remarks

We build on Ozsoy et al. [23] work that uses low level features to provide a
first line of defense to detect suspicious processes. This detector then prioritizes
the effort of a heavy weight software detector to look only at programs that are
deemed suspicious, forming a two-level detector (TLD). In this paper, we seek
to improve the detection performance through ensemble learning to increase the
efficiency of the TLD.

We start by evaluating whether specialized detectors can be more effectively
classify one given class of malware. We found out that this is almost true for the
features and malware types we considered. We then examined different ways of
combining general and specialized detectors. We found that ensemble learning
by combining general detectors provided limited advantage over a single general
detector. However, combining specialized detectors can significantly improve the
sensitivity, specificity, and accuracy of the detector.

We develop metrics to evaluate the performance advantage from better detec-
tion in the context of a TLD. Ensemble learning provides more than 11x reduction
in the detection overhead with the specialized ensemble detector. This represents
1.87x improvement in performance (overhead) with respect to Ozsoy et al. [23]
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work previously introduced single detector. We implemented the proposed detec-
tor as part of an open core to study the hardware overhead. The hardware over-
head was minimal: around 2.88 % increase in area, 9.83 % reduction in cycle time,
and less than 1.35 % increase in power. We believe that minor optimizations to the
MEM feature collection circuitry could alleviate most of the cycle time reduction.

Acknowledgements. The authors would like to thank the anonymous reviewers and
especially the shepherd for this paper, Tudor Dumitras, for their valuable feedback and
suggestions, which significantly improved the paper.
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