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ABSTRACT
General Purpose Graphics Processing Units (GPGPUs) are present
in most modern computing platforms. They are also increasingly
integrated as a computational resource on clusters, data centers, and
cloud infrastructure, making them possible targets for attacks. We
present a first study of covert channel attacks on GPGPUs. GPGPU
attacks offer a number of attractive properties relative to CPU covert
channels. These channels also have characteristics different from
their counterparts on CPUs. To enable the attack, we first reverse
engineer the hardware block scheduler as well as the warp to warp
scheduler to characterize how co-location is established. We exploit
this information to manipulate the scheduling algorithms to create
co-residency between the trojan and the spy. We study contention on
different resources including caches, functional units and memory,
and construct operational covert channels on all these resources. We
also investigate approaches to increase the bandwidth of the channel
including: (1) using synchronization to reduce the communication
cycle and increase robustness of the channel; (2) exploiting the avail-
able parallelism on the GPU to increase the bandwidth; and (3)
exploiting the scheduling algorithms to create exclusive co-location
to prevent interference from other possible applications. We demon-
strate operational versions of all channels on three different Nvidia
GPGPUs, obtaining error-free bandwidth of over 4 Mbps, making it
the fastest known microarchitectural covert channel under realistic
conditions.

CCS CONCEPTS
• Security and privacy → Security in hardware; Hardware at-
tacks and countermeasures; Hardware reverse engineering; •
Computer systems organization → Single instruction, multiple
data;
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1 INTRODUCTION
General Purpose Graphical Processing Units (GPGPUs) are used
to accelerate a range of applications including security, computer
vision, computational finance, bio-informatics and many others [24].
Despite their improving performance and increasing range of ap-
plications, the security vulnerabilities of GPGPUs have not been
well studied; only a few research papers have examined security
vulnerabilities of GPGPUs [16, 19, 29, 30, 33, 46]. Often applica-
tions that use GPGPUs operate on sensitive data [4, 7, 25], which
can be compromised by security vulnerabilities present in GPGPUs.
Covert channel attacks are dangerous because they allow intentional
communication of sensitive data between malicious processes that
have no direct channel between them. A covert channel attack may
enable a malicious application without network access to communi-
cate data to another application to exfiltrate the data off the device.
Alternatively, covert communication can be used to bypass protec-
tions that track exposure of sensitive information such as sandboxing
or information flow tracking, allowing sensitive data to escape con-
tainment [10]. The presence of a covert channel can also forecast the
possibility of a side-channel attack [32], although we do not pursue
such attacks in this paper.

With multiprogramming starting to be available on GPUs [41, 44],
covert channel attacks between two kernels running concurrently on
a GPU become possible. The attack offers a number of advantages
that may make them an attractive target for attackers compared to
CPU covert channels including: (1) With GPU-accelerated com-
puting available on major cloud platforms such as Google Cloud
Platform, IBM cloud, and Amazon web service [26] this threat is
substantial [35]. The model of sharing GPUs on the cloud is evolving
but allowing sharing of remote GPUs is a possibility [3, 8, 31, 34].
Therefore, GPU covert channels may provide the attackers with ad-
ditional opportunities to co-locate, which is a pre-requisite for these
types of attacks [35]; (2) GPGPUs operate as an accelerator with
separate resources that do not benefit from protections offered by an
Operating system. In fact, due to this property they have been pro-
posed for use as a secure processor [37]; and (3) GPGPU channels
can be of high quality (low noise) and bandwidth due to the inherent
parallelism and, as we demonstrate, the ability to control noise.

At the same time, constructing covert channels on GPGPUs in-
troduces a number of challenges and operational characteristics
different from those on CPUs. One of the new challenges is to how
to establish co-location between the kernel and the spy by exploit-
ing the hardware schedulers such that the communicating kernels
can share resources. Thus, we first reverse engineer the hardware
scheduling algorithms that determine where the different blocks
and warps can be allocated to create contention (Section 3). A sec-
ond problem is to identify which resources are most effective for
communication given the throughput bound nature of GPGPUs. In
particular, GPUs have substantial parallelism, which may enable
high throughput covert communication, but only if effective isolated
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contention domains can be found. For example, a shared resource,
such as the L2 cache, may have limited capacity limiting the band-
width of communication through it. Alternatively, a resource may
have high capacity (such as the memory bandwidth), making it diffi-
cult to create measurable contention. We construct different channels
using contention on caches, contention for computational units, as
well as contention for memory operations in Sections 4, 5 and 6
respectively. We discover that contention on the functional units is
isolated by different warp schedulers: only the warps on the same
warp scheduler experience contention. Thus, to communicate, the
kernels must be mapped to the same warp scheduler, and conversely,
kernels on different warp schedulers can construct parallel covert
channels to increase bandwidth.

Having demonstrated and characterized these different channels
on three different GPGPUs, we explore improvements to the channel
bandwidth. We use the inherent parallelism in GPGPUs to increase
the bandwidth of the channel. We also implement synchronization to
increase the robustness of the communication to increase the commu-
nication efficiency in Section 7. To improve resilience to interference
from other applications, we propose exploiting the hardware sched-
ulers to block out co-location from other applications; this is a new
approach to managing noise unique to GPGPUs (Section 8). We
demonstrate the success of exclusive co-location on current GPG-
PUs which support multiprogramming based on leftover policy and
discuss some scenarios to extend our attack for proposed multipro-
gramming schemes on future GPGPUs, such as kernel preemption
and intra-SM partitioning. We discuss the potential mitigations in
Section 9. Finally, Section 10 reviews related work, while Section 11
presents some concluding remarks.

The high level contribution of the paper is the first detailed ex-
ploration of covert channel attacks on GPGPUs, including the con-
struction, characterization and optimization of different channels. In
particular, the paper makes the following contributions.

• Reverse engineering co-location: We develop a methodology
to reverse engineer the hardware scheduling algorithms and
exploit them to force colocation to enable covert communica-
tion.
• Characterizing contention behavior: We study contention on

functional units, memory resources, and different levels of
the cache. We discover a number of subtle characteristics that
significantly impact the operation of the channels.
• Demonstrating practical channels on three different GPG-

PUs. We discuss how the attacks generalize to recent GPU
multiprogramming proposals.
• We propose techniques to force exclusive co-location of spy

and trojan on current GPGPUs to prevent interference of other
workloads, achieving noise-free communication.
• Optimizing Bandwidth of the channels: we exploit parallelism

at different levels (SM, warp scheduler, cache sets) to increase
bandwidth. We use synchronization to improve bandwidth
and robustness. Together, we demonstrate on real hardware
the highest known covert channel bandwidth.

2 BACKGROUND AND THREAT MODEL
Modern GPGPUs consist of a number of programmable streaming
multiprocessors (SM, or SMX) that together access a shared global

device memory. Figure 1 presents an architecture overview of a
typical GPGPU. A program (kernel) may be broken into one or more
blocks that are assigned to one or more of the SMs. Each block con-
sists of a number of threads that are grouped into warps of typically
32 threads that are scheduled together using the Single Instruction
Multiple Thread (SIMT) model. The warps are assigned to one of a
typically few warp schedulers on the SM. In each cycle, each warp
scheduler can issue one or more instructions to the available cores.
Depending on the architecture, each SM has a fixed number of dif-
ferent types of cores such as single precision cores, double precision
cores, and special functional units. Depending on the number of
available cores an instruction takes one or more cycles to issue, but
the cores are heavily pipelined making it possible to continue to
issue new instructions to them in different cycles. Warps assigned to
the same SM compete for access to the processing cores. In addition,
warps assigned to the same warp scheduler may compete for the
issue bandwidth of the scheduler.

Each SM has a large register file with a fixed number of registers
assigned to each thread. The SM also has a shared L1 cache, and a
shared memory region that is explicitly managed by the program.
The device memory is connected to the chip using several high speed
channels, resulting in bandwidths of several hundred gigabytes per
second, but with a high latency. The impact of the latency is hidden
partially using caches, but more importantly, the large number of
warps/threads ensures the availability of ready warps to take up the
available processing bandwidth when other warps are stalled waiting
for memory. The memory is partitioned into global memory, constant
memory and texture memory that are each shared among all SMs.
They are also used to transfer data between the CPU and GPU. There
is a shared L2 cache to provide faster access to memory. Each SM has
its own on-chip shared memory, as well as several L1 caches for the
instructions, global data, constant data and texture data. As a typical
example, one of our target devices, the Nvidia Tesla K40C, includes
15 SMs, each featuring 192 single-precision CUDA cores. Each SM
uses four warp schedulers and eight instruction dispatch units [42].
The size of the global memory, L2 cache, constant memory and
shared memory are 12 GB, 1.5 MB, 64 KB and 48 KB respectively.

The current generation of GPUs supports multiprogramming, or
the ability to run multiple programs at the same time, through multi-
ple streams with multi-kernel execution within the same process, or
a multi-process service (MPS) [27], which allows concurrent kernels
from different processes. MPS is already supported on GPUs with
hardware queues such as the Hyper-Q support available on Kepler
and newer microarchitecture generations from Nvidia. Multipro-
gramming is required for our threat model since the spy and the
trojan are different programs that are trying to communicate indi-
rectly while running concurrently on the same GPU. To provide a
uniform implementation including Fermi GPUs, we utilized streams
for multiprogramming on GPU. Recent research has shown that
there are significant performance advantages to supporting multi-
programming on GPUs [36, 41, 44]. For these reasons we believe
that GPU manufacturers are moving to support multiprogramming;
for example, it is supported by the Vulkan API which is intended to
replace both graphics standards such as OpenGL and GPU compute
standards such as CUDA [28].

Our threat model consists of a standard covert communication
scenario with a trojan and spy kernels from two different applications
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Figure 1: GPGPU architecture overview

that co-exist concurrently on the same GPU. The two kernels wish to
communicate covertly. We consider a case where the trojan and the
spy are the only two applications running on the GPU to characterize
the bandwidth of the channels under the best case scenario. We later
relax that assumption and explore approaches to prevent or tolerate
noise from other applications. We assume that the two kernels can
launch applications to the same GPGPU; in a cloud setting a first
problem is to establish this ability. Since no standard sharing model
of GPGPUs in the cloud has emerged, we do not focus on this
problem [3, 8, 31, 34]. In most existing settings, the GPGPU is
shared among applications on the same physical node, via I/O pass-
through. In such settings, the problem boils down to achieving co-
location on the same cloud node [35]. In the case of non-cloud
scenarios, typically a GPGPU is also shared among applications on
the same machine/device.

3 ESTABLISHING CO-LOCATION
Our goal is to create covert channels through contention on shared
hardware resources in the GPGPU. As a first step, we need to control
the placement of concurrent applications –in our case, the trojan
and the spy. The placement defines what resources the applications
share and therefore what covert channels are available for use. In
this section, we show how to establish co-location as the first step
in constructing covert channels. In particular, we reverse engineer
the block assignment algorithm on real GPUs and show how to
exploit it to establish co-location. It is likely that future GPGPUs
may use alternative placement algorithms; however, we believe that
the reverse engineering approach we use can be used for not only
Nvidia GPUs, but also a large class of placement algorithms that are
both deterministic and do not use preemption. We support this claim
by considering the scheduling algorithms for other multiprogrammed
GPUs that were recently proposed in literature [41, 44].

3.1 Co-location on existing GPGPUs
The Nvidia thread block assignment and kernel co-location algo-
rithms are unpublished; thus, it is necessary to reverse engineer the
placement algorithm. First, we explore whether blocks belonging
to two kernels can be co-located on the same SM. We launch two
kernels on different streams. In each kernel, we read the SM ID
register (smid) for each block to determine the ID of the SM on

which the kernel is running. In addition, we use the clock() func-
tion to measure the start time and stop time of each block. By using
this information, and repeating the experiment for different numbers
and configurations of blocks, we reverse engineered the placement
algorithm.

We found that the blocks for the first kernel are assigned to differ-
ent SMs in a mostly round-robin manner. If there are SMs that are
idle, or that have a leftover capacity, they can be used for blocks of
the second kernel, again in a mostly round-robin assignment. Other-
wise, the blocks of the second kernel are queued until at least one
SM is released. Therefore, if each kernel is launched with a number
of blocks equal to or exceeding the number of SMs on the device,
such that each block does not exhaust the resources of the SM,
they achieve co-residency within an SM. This multiprogramming
mechanism on current GPUs is called the Leftover policy.

We also discovered that there is another level of sharing within
the SM that impacts the contention behavior. In particular, on many
GPGPUs, there are a number of warp schedulers available on each
SM. Each warp is associated with one of these warp schedulers. If
different warps share the same scheduler, we show that their con-
tention behavior is different since the warps on the same scheduler
compete for the issue bandwidth that is assigned to the scheduler.

We experimented with the assignment algorithm of warps to
warp schedulers and discovered that it is also round robin. With this
knowledge, the spy and the trojan can set up their kernel parameters
to achieve co-location on the same SM and if desired on the same
warp scheduler. For example, on the Tesla K40C, with 15 SMs and
4 warp schedulers, if each of the spy and the trojan launch a kernel
with 15 blocks each using 4 warps (i.e., 128 threads), they will each
have a warp on each of the warp schedulers of each of the 15 SMs
on the GPGPU.

3.2 Co-location on other GPGPUs
The left-over policy allows co-location of kernels opportunistically.
Recent papers [41, 44] improve multiprogramming on GPUs using
intra-SM resource partitioning that execute multiple kernels to more
effectively utilize the GPU. We believe that this approach of varying
the configuration of launched kernels and observing how they are
scheduled can be used to reverse engineer any deterministic and
non-preemptive co-location algorithm. In this section, we consider
the co-location problem relative to these proposed schedulers.

Wang et al. [41] support a simultaneous multi-kernel by fine
grained context switching at the granularity of thread block. To
schedule thread blocks of the new kernel to an SM, those thread
blocks of previously scheduled kernels that have the highest resource
usage on the victim SM may be preempted. Thus, this scheduler
makes co-location easier by allowing the spy and the trojan to reside
on the same SM even if other applications are already running there.
By using just one thread block for each spy and trojan on each SM,
the spy and trojan will be guaranteed not to be preempted. However,
the co-location of other workloads on the same SM possibly adds
noise to the covert channel. We discuss this issue in Section 8.

Xu et al. [44] propose a dynamic intra-SM resource partitioning
that does not use preemption. Intra-SM partitioning attempts to
co-schedule kernels that are compatible in their resource usage to
the same SM. Since this multiprogramming scheme does not use
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preemption, we can force exclusive co-location of the two kernels by
manipulating their initial behavior so that the scheduler finds them
compatible.

We also consider a case where the two kernels cannot be co-
located on the same SM, for example, in cases where there is no
leftover capacity on the SMs used by the first kernel. In this case,
covert communication is still possible through contention on re-
sources that are shared between all SMs such as global memory or
the L2 cache. This inter-SM covert channels can also be applied
to some proposed GPU multiprogramming which allows executing
multiple kernels only on disjoint sets of SMs on GPUs (i.e., no
intra-SM scheduling). For example, Adriaens et al. [1] use inter-SM
resource partitioning. Similarly, Tanasic et al. [36] propose kernel
allocation at the granularity of the whole SM to support multipro-
gramming. It is likely that these multiprogramming mechanisms
are not as efficient as intra-SM resource partitioning, due to the
limited number of SMs and large overhead of context switching on
GPUs. Moreover, multiprogramming at the granularity of the full
SM cannot address resource under-utilization occurring within an
SM.

4 CACHE COVERT CHANNELS
In this section, we present the first of three classes of covert channels
we investigate in the paper: covert channels through the caches. We
illustrate the principles using constant caches, but the attack applies
to other caches on the system. We selected constant memory because
the size of both the L1 and L2 caches is small allowing us to create
contention easily.

The attack proceeds in two steps. First, an offline step uses the
microbenchmarking approach introduced by Wong et al. [43] to infer
the constant memory and cache characteristics at each level of the
hierarchy. The second step is the communication step where we use
contention to create the covert channel.

4.1 Attack Step I: Offline Characterization of
Constant Memory Hierarchy

The parameters of the constant memory hierarchy at each level of
the cache hierarchy can be extracted from latency measurement of
loading different size arrays from constant memory using a strided
access pattern. The cache is first warmed by accessing the array,
which is subsequently accessed again while timing the accesses [43].
The size of the array is increased and the access latency observed.

Figure 2 and Figure 3 show the latency measurements for the L1
cache and L2 cache respectively on the Kepler Tesla K40C GPU.
Each point on the figure represents an experiment with the array size
shown on the x-axis. While the latency remains constant, the array
fits in cache. When the array spills out of the cache, the latency starts
increasing. First, the spill causes misses only in one set. As we keep
increasing the array size, spills in additional sets occur: the number
of steps in the figure is equal to the number of cache sets. The cache
line size corresponds to the width of each step. From the cache size,
number of cache sets and cache line size, we can calculate the cache
associativity. For example, for the Kepler (Tesla K40) and Maxwell
(Quadro M4000) GPUs we find that the constant memory L1 cache
is 2kB, 4-way set associative with 64 byte cache line, while the L2
cache is 32kB 8-way set associative with 256 byte cache line. In

the Fermi (Tesla C2075) GPU, constant memory L1 cache is 4kB,
4-way set associative with 64 byte cache line and L2 cache has the
same parameters as in Kepler and Maxwell.
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Figure 2: L1 constant cache, stride 64 bytes.
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Figure 3: L2 constant cache, stride 256 bytes.

4.2 Covert channel through L1
We set up an experiment with two concurrent kernels using different
streams on the GPU. On the Kepler K40C device, there are 15 SMs,
so we use 15 thread blocks for each kernel to be sure of co-residency
on the same SM. The trojan kernel communicates by either creating
contention or doing nothing to encode 1 or 0 respectively. To create
contention on one set, the trojan allocates an array with the size of
L1 cache (2 KB) and loads it with a stride of 512 bytes to make
the accesses hash into the same set. The spy also loads a 2KB array
with the same stride as the trojan while timing the access: a high
latency indicates 1 since the array was replaced by the trojan, and
a low latency indicates a 0. Our results show that in the case of
contention (i.e. sending 1), the measured latency by the spy is about
112 clock cycles, but without contention (i.e. sending 0), the latency
is 49 clock cycles. This difference allows the spy to easily determine
the bit being transmitted. Note that we create contention over only a
single set of the cache, rather than over the whole cache, reducing
the memory traffic and accelerating the attack.

To communicate multiple bits, the trojan and the spy have to stay
synchronized. Due to scheduling variability and/or the presence of
noise, loss of synchronization can occur. To simplify this problem in
this experiment, we launch two kernels to communicate each bit of
the message. Clearly, this incurs some overhead to launch the kernels,
but it simplifies synchronization by leveraging the stream operations,
resulting in error free bandwidth of around 40Kbps. In Section 7,
we use synchronization through covert communication (on different
sets of the cache) to remove the need to continue to relaunch the
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kernels. Implementing this synchronization makes the attack more
robust to noise, and more resilient to loss of synchronization; it also
improves the channel bandwidth significantly.

4.3 Covert channel through L2
When two kernels cannot be co-located on the same SM, they can
still communicate through the L2 constant cache that is shared be-
tween all SMs. The process of creating a covert channel is the same
as the L1 channel. However, the parameters of the L2 cache are
different: we consider array size of 32kB and stride value of 4096
bytes (16 sets × 256 bytes) to fill just one cache set. The measured
bandwidth in this scenario is about 20Kbps.

Figure 4 shows the bandwidth achieved by the attack on three
Nvidia GPGPUs selected from three generations of microarchitec-
ture (Fermi, Kepler and Maxwell). We modified the attack to fit
the cache parameters, but otherwise left it unchanged. All bits were
received correctly with no errors. Thus, high bandwidth covert chan-
nels are feasible through both levels of the cache.
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Figure 4: Cache channel bandwidth

Note that, to ensure overlap between spy and trojan processes
and error free communication, we need to iterate sending each bit
a sufficient number of times (20 times for L1 channel and 2 times
for L2 Channel for Kepler GPU in our experiments). The minimum
number of iterations is limited by two factors. First, without syn-
chronization, we must ensure that sufficient iterations are present for
the spy and trojan to overlap. Moreover, the clock() function on the
GPGPU returns inconsistent results if the size of the code segment
being timed is small. These factors place a limit on the minimum
number of iterations necessary to detect contention.

Decreasing the duration below 20 iterations causes errors, since
the two kernels sometimes do not overlap. Figure 5 demonstrates the
bit error rate as the bandwidth of channel increases (by decreasing
the number of iterations) for the Kepler and Maxwell GPUs. The L1
and L2 channels on Fermi GPU also show nearly identical behavior
around the reported error-free bandwidth.

5 FUNCTIONAL UNIT CHANNELS
Next we explore covert channels that use contention on the functional
units (FUs) of the GPGPU. Conceptually, measurable contention can
be created on functional units: when two kernels issue instructions
to the same functional units, each should observe these instructions
to execute slower than if either of them was issuing instructions

(a) L1 Channel

(b) L2 Channel

Figure 5: Bit error rate of L1 and L2 cache channels

on its own. While this general intuition holds true, we discover
that contention behavior is significantly more complicated. The
functional units are pipelined, isolating the contention to contention
on the initial dispatch of operations to the functional units. This
behavior is also moderated by the warp schedulers: we discover
that mostly contention is isolated to warps belonging to the same
warp scheduler, which must compete for the issue bandwidth of this
scheduler. We first characterize the contention behavior, then show
how we can exploit it to construct covert channels.

5.1 Step I: Characterizing contention behavior on
the functional units

We set up an experiment to characterize the impact of contention
on the performance of the different types of functional units. Each
GPGPU has a number of computational cores that are specialized
for different instructions; these include single precision units (SP),
double precision units (DPU), and special function units (SFU). The
number of functional units varies by the architecture and the type of
the functional unit. We show only floating point operations because
they have the most stringent issue limitations making it easier to
create contention, and achieving the highest bandwidth.

For different types of operations, we launch just one kernel which
executes a fixed number of operations to the functional unit being
characterized. We increase the number of warps and measure the
latency of each operation. Figure 6 presents latency plots for different
single precision floating point operations (__sinf and sqrt which
are executed on SFUs and Add and Mul which are executed on SPs)
on different architectures. Figure 7 presents latency plots for double
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Figure 6: Latency of one single precision operation for different number of warps averaged over 128 iterations
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Figure 7: Latency of one double precision operation for different number of warps averaged over 128 iterations

precision Add and Mul on Fermi and Kepler GPUs (Maxwell GPU
does not have double precision units).

The latency plotted in Figure 6 and Figure 7 is an approximate
measure in this case since it is a function of not only contention but
also the number of iterations of the experiment and the depth of the
functional unit pipeline. The latency places an upper bound on the
bandwidth of the channel since even if contention is possible with a

single operation, the latency is the minimum delay of a communica-
tion cycle. However, the shape of the delay curve is more important
since it establishes the degree of contention at which observable
changes in measurable delay occur.

The number of available resources in each SM is shown in Table 1
for the three GPUs. In the Maxwell GPU (Figure 9), each SM is
divided into quadrants, and each quadrant has its own registers, in-
struction buffer, and scheduler that spans 32 single-precision CUDA
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Figure 8: Kepler SM architecture overview

Figure 9: Maxwell SM architecture overview

cores and 8 SFUs. Each warp scheduler manages the resources for
one of the quadrants. In contrast, the Fermi and Kepler GPUs (Fig-
ure 8) implement soft sharing where the warp schedulers do not have
dedicated resources and instead issue instructions to a shared set of
resources on the core.

Main Observations: Due to the different number of warp sched-
ulers, the number of functional units of each type and the depth of
the pipeline for each functional unit, we can see different behavior
in each plot. The figures show the latency observed by warp 0 which
is assigned to the first scheduler on the GPGPU. As we add warps,
we see a step in latency plots, at the points where the number of
operations causes contention either for scheduler issue bandwidth
or for available functional units. For all experiments, the latency
stays fixed as we increase the number of warps up to the point where
the number of issued instructions matches the number of functional
units for that operation. After that point, increasing number of warps
leads to an increase in latency for the warps that are co-located on
the same warp scheduler with the last added warp. Contention is
isolated to warps belonging to the same warp scheduler. This result
held even for the Kepler GPU which has soft sharing of the resources.
For Kepler, the latency steps are not visible for single precision Add
and Mul operations, due to the large number of available SP units.
In contrast, in Maxwell the latency steps are eventually observable
because the resources are split into quadrants (Figure 9).

5.2 Step II: Constructing FU covert channels
The trojan generates operations to the target functional unit to create
contention when it desires to communicate 1, while it stays idle
when it desires to communicate 0. Because of limited number of
SFUs and clear jumps in latency on all three architectures, we elect
to use contention on the SFUs. In particular, we take advantage of
the more clear steps and lower latency of __sinf operation to create
and demonstrate a covert channel through the warp schedulers and
special functional units. Similar channels can be constructed using
other resources.

We launch two concurrent kernels on different streams on GPU.
To be sure that thread blocks of the two kernels can be co-located on
each SM, we consider a number of blocks for each kernel equal to
the number of SMs for different architectures. To be compatible with
latency plots in Figure 6, we use the minimum number of required
warps that will cause observable latency difference using the __sinf
operation on the Spy side. This requirement translates to having each
block of the spy and the trojan use 3 warps, 12 warps and 10 warps,
for the Fermi, Kepler and Maxwell architectures respectively. The
spy kernel does a number of __sinf operations which are executed
on the SFUs. To send 0, the trojan does nothing so just 3 warps
of the spy (or 12, 10, on the Kepler and Maxwell respectively) are
scheduled to issue instructions and execute on SFUs. The latency in
this case is about 41 clock cycles for Fermi (18 for Kepler and 15 for
Maxwell) which is equal to the latency when there is no contention.
For sending 1, the trojan executes a number of __sinf operations,
so that its warps are scheduled to issue instructions alongside of
the spy warps. In this case, there is contention on the SFUs and
latency is increased to 48 clock cycles for Fermi (24 for Kepler
and 20 for Maxwell). The measured covert channel bandwidth is 21
Kbps, 24 Kbps and 28 Kbps on Fermi, Kepler and Maxwell GPUs
respectively.

6 GLOBAL MEMORY CHANNELS
In this section, we explore constructing covert channels through
global memory, which provides an additional resource for contention
when kernels are not co-located on the same SM. We also explore
the impact of the access pattern on interference (coalesced vs. un-
coalesced addresses). In particular, Jiang et al. [14] demonstrated a
side channel attack on GPUs that times an AES encryption kernel
running on the GPU from the CPU side. This attack relies on an ob-
servation that key-dependent differences in the coalescing behavior
of memory accesses, lead to key-dependent encryption times which
are used to infer the secret key. Thus, we wanted to explore whether
the same phenomena can be exploited to produce high quality covert
channels inside the GPU.

Using normal load and store operations, we did not observe reli-
able contention in the global memory. We believe that this is due to
the high memory bandwidth. In particular, to saturate the memory
bandwidth, many global memory operations are required, each with
high latency, significantly harming achievable bandwidth. To cre-
ate contention, we focused on atomic operations. Since the atomic
operations rely on atomic units that are limited in number, it is
possible to cause measurable contention. At the same time, atomic
operations are extremely slow, which can limit the bandwidth of
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Table 1: Number of available resources in each SM.

GPU Warp Scheduler Dispatch Unit SP DPU SFU LD/ST

Tesla C2075 (Fermi) 2 2 32 16 4 16

Tesla K40C (Kepler) 4 8 192 64 32 32

Quadro M4000 (Maxwell) 4 8 128 0 32 32

the covert communication; nevertheless, this channel achieves com-
parable bandwidth to other inter-SM channels. We defined three
scenarios to understand the observable contention in global mem-
ory as follows. As before, the spy executes the operation described
in each scenario while the trojan executes the same operations to
transmit 1, or does nothing to transmit 0. In all three scenarios, the
spy and trojan kernels access two different arrays located in global
memory.

• Scenario 1: Each thread does atomic additions on one partic-
ular global memory address. This address differs for different
threads.
• Scenario 2: Each thread does atomic additions on strided

global memory addresses. These addresses differ for different
threads and accesses for all threads in each warp are coa-
lesced.
• Scenario 3: Each thread does atomic additions on consecutive

global memory addresses. These addresses differ for different
threads and accesses for all threads in each warp are un-
coalesced.

The bandwidth of the three scenarios for each of the three GPUs
is shown in Figure 10. For each GPU, we tune the number of iter-
ations to the minimum that will cause observable contention. On
the Kepler and Maxwell GPUs the throughput of global memory
atomic operation is significantly higher than that of the Fermi since
atomic operations are supported through the L2 cache and due to the
addition of more atomic units in hardware [42]. Atomic operation
throughput to a common global memory access is improved by 9x
to one operation per clock cycle causing the overall time to commu-
nicate a bit to decreased significantly. It is interesting to note that
the coalescing behavior that benefited Jiang et al.’s attack can not
be exploited to create the covert channel attack. Coalescing causes
timing variability to a single kernel, benefiting an external adversary
that times this kernel and has no effect on timing of a competing
kernel. However, our experiments show that the coalescing behavior
on GPUs improves the channel bandwidth. The poor coalescing sig-
nificantly reduces the possibility of using the faster L2-level atomic
operation support, significantly slowing down the covert communi-
cation across the two different kernels. We can see that scenario 3
results in the lowest achievable covert channel bandwidth.

7 IMPROVING THE ATTACK
In this section, we explore several improvements and optimizations
to increase the bandwidth and reliability of the covert channels.

We use two general approaches to increase the bandwidth of a
covert channel on a single resource: (1) identifying opportunities for
parallelizing the communication so that multiple trojans are com-
municating to multiple spies concurrently; and (2) implementing
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Figure 10: Global atomic covert channel bandwidth

synchronization to eliminate the loss of bandwidth that results from
timing drift or, alternatively, the overhead of successively launching
kernels. It is also possible to use multiple resources simultaneously
to increase bandwidth. As an example, we experimented with send-
ing two bits concurrently, one through L1 constant cache and one
through the SFUs, achieving 56 Kbps bandwidth for Kepler and
Maxwell GPUs. This approach is orthogonal to single-resource chan-
nel optimizations, allowing us to increase the bandwidth in those
cases as well. We do not report multi-resource bandwidth since it is
possible to use multiple resources on the CPU as well.

7.1 Improving the Cache Channels
The implementations we discussed so far are susceptible to loss
of synchronization where the trojan and spy are not in sync with
each other. This can occur due to natural drift due to unpredictable
pipeline dependencies, or due to interference from other workloads.
To overcome this issue, the covert channels we presented so far,
forces overlap between the trojan and the spy by timing the launch
of the kernel, leading to significant overhead and loss of bandwidth.
Moreover, in the presence of competing applications, co-location
may be difficult to achieve repeatedly.

To improve both the robustness and the bandwidth of the attack,
in this section, we implement synchronization between the spy and
the trojan through the covert channel. With synchronization, the
two kernels are launched only once and use synchronization to
communicate continuously. We illustrate the synchronization process
for the L1 and L2 covert channels, but it is possible to implement
synchronization for other channels as well.

The synchronized implementation uses three different sets of
cache to fully synchronize sending and receiving bits, as follows. As
with the basic cache side channel we use one set for communication.
The two other sets are used to signal ready-to-send from the trojan to
the spy and ready-to-receive from the spy to the trojan respectively.
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DSendN,DRecvN : N is number of bits to transmit and receive
ReadyToSend(): sends ReadyToSendSig to Spy; ReadyToReceive(): sends ReadyToReceiveSig to Trojan
wait(S): while loop that breaks on signal S
prime(): fills the communication cache line; probe(): access the communication cache line and return 0 on a hit and 1 on a miss
Trojan protocol:

for i← 0 to N−1 do

ReadyToSend()

wait(ReadyToReceiveSig)

if DSend i = 1 then
prime()

Spy protocol:

for i← 0 to N−1 do

wait(ReadyToSendSig)

ReadyToReceive()

DRecvi← probe()

Description:

Handshake stage

Transmitting and receiving stage

Figure 11: Synchronization communication protocol

The synchronized protocol is shown in Figure 11 and explained
below.

On the Trojan side, for sending each bit:

• First, the trojan sends a ready-to-send signal by filling the
pre-agreed on cache set with its data.
• Next it waits on the ready-to-receive cache set to ensure the

spy is ready to receive the bit.
• Finally, we send the bit by either filling the set or not. The

algorithm moves back to step 1.

Correspondingly, on the Spy side, for receiving each bit:

• First, the spy repeatedly checks the ready-to-send set to check
if the trojan has sent the signal.
• Once it detects the ready-to-send signal (by measuring cache

misses on the set), it sends the ready-to-receive signal on the
corresponding set.
• Finally, we receive the bit through checking the access time

observed on the communication set.

Infrequently, due to noise or other factors loss of synchronization
can occur leading to deadlock where the spy and trojan are each
waiting in a different part of the communication loop. To address
this situation, we changed the algorithm to time out (by bounding the
number of wait iterations) when the expected signal is not received
in time. In the case of a timeout at the sender or the receiver, we
regain synchronization by repeating the step prior to the wait. With
this modification, the communication works seamlessly. We use a
three way handshake to ensure that the trojan and spy are concur-
rently active at the bit communication component of the program;
attempting a two way handshake led to noise and frequent loss of
synchronization.

Although communication through three sets (rather than just
one in the original channel) is required to fully synchronize the
communication, removing the overhead of launching kernels for
each bit of message increases the bandwidth to 61, 75 and 75 Kbps
for the Fermi, Kepler and Maxwell GPUs, respectively.

To further improve the synchronized channel bandwidth, we uti-
lize SIMT execution model of GPUs to send M bits through M
different cache sets concurrently in each round. Two cache sets are
used for signaling and we use the remaining cache sets for com-
munication, such that one bit can be communicated through each

cache set by different threads in parallel. For example, in Kepler
and Maxwell GPUs L1 constant cache has 8 sets, enabling transfer
of 6 bits concurrently. This parallelism increases the bandwidth to
207, 285 and 285 Kbps for the Fermi, Kepler and Maxwell GPUs,
respectively. Our experiments demonstrate that by sending 2 bits, 4
bits and 6 bits concurrently, we are able to achieve 1.8x, 2.9x and
3.8x bandwidth improvement in Kepler GPU. Note that the ratio
of bandwidth improvement is sublinear in the number of bits; we
believe that this is due to both port contention, as well as the higher
possibility of a cache miss in each kernel iteration.

The next approach to improve the bandwidth is to exploit the inter-
SM parallelism available on the GPGPU. In particular, if we manage
to colocate the trojan and the spy on multiple SMs, each of these
instances can communicate independently using resources on the
SM. With 15 SMs available in Tesla K40C device, the trojan is able
to send 15 bits simultaneously and the bandwidth of communication
is increased 15 times. Table 2 shows the covert channel communica-
tion bandwidth for the baseline attack (column 1), the attack with
synchronization (column 2), the attack with synchronization and
sending multiple bits through different cache sets (column 3) and the
attack with all three improvements (column 4). Clearly, high quality,
high bandwidth covert channels are feasible on GPGPUs.

For the L2 constant cache covert channel, we can create con-
tention in parallel, either by filling the cache in parallel or by using
each thread block to communicate through one particular L2 cache
set. In theory, this should enable the trojan to send 16 bits (number
of L2 cache sets) simultaneously. However, we observe only an 8x
improvement in the best case, which we conjecture is due to cache
port contention and cache bank collisions.

7.2 Improving the SFU Channel
Like the L1 covert channel, there is an opportunity to improve the
bandwidth by having a spy and a trojan communicate on each SM
for a 15x increase in bandwidth. However, the warp scheduler offers
additional opportunities to increase the bandwidth. In Section 5, we
also reverse engineered the warp assignment algorithm and found it
to be round robin. By measuring latency for each warp, we noticed
that by increasing number of warps one by one we see latency
increasing only in the warps that are assigned to the same warp
scheduler. This effect is likely due to the limit on the number of
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Table 2: Improved L1 Channels

GPU L1 Baseline Sync. Sync. and multi-bits Sync., multi-bits and parallel
Fermi 33 Kbps 61 Kbps 207 Kbps 2.8 Mbps
Kepler 42 Kbps 75 Kbps 285 Kbps 4.25 Mbps
Maxwell 42 Kbps 75 Kbps 285 Kbps 3.7 Mbps

Table 3: Improved SFU covert channel communication bandwidth on different GPU architectures.

GPU Baseline Parallel through warp schedulers Parallel through warp schedulers and SMs

Tesla C2075 (Fermi) 21 Kbps 28 Kbps 380 Kbps

Tesla K40C (Kepler) 24 Kbps 84 Kbps 1.2 Mbps

Quadro M4000 (Maxwell) 28 Kbps 100 Kbps 1.3 Mbps

instructions that can be dispatched by each warp scheduler. Certainly,
this behavior is more clear in Maxwell GPUs in which each warp
scheduler has its own functional units, but it is also present in the
Kepler and the Fermi architectures where the functional units are
soft-shared among the schedulers.

We use the observation that contention is isolated among the
different warp schedulers to parallelize the covert channel attack
by sending one bit through each warp scheduler concurrently. We
consider K warps for spy which K is multiple of N (the number
of warp schedulers) such that the latency of K warps alone is in
the area of constant delay in the __sinf plots of Figure 6 for each
architecture. For the trojan, we consider M warps such that M is also
multiple of N and the latency of M+K is on one of the steps in the
plot. Each warp of the trojan and the spy is assigned to one of the N
different warp schedulers. We select one warp from each scheduler
from the trojan to send one bit and another corresponding warp on
the spy side to receive the bit. We are successfully able to parallelize
the communication in this way, leading to a bandwidth that is N
times more than the baseline channel. We are also able to carry out
this communication independently on each of the S SMs, leading
to increasing the bandwidth by another factor of S. The Covert
channel bandwidth for the baseline channel is compared to the two
parallelization steps (across SMs, and across warp schedulers in each
SM) in Table 3. Note that the Fermi GPU has two warp schedulers
per SM while Kepler and Maxwell have four warp schedulers per
SM.

8 MITIGATING NOISE
We consider the presence of interference from other workloads
which can affect the covert channel in two ways: (1) Co-location:
the other workloads may prevent the spy and trojan from being
launched together, or may cause them to be assigned to different SMs
preventing the high quality covert channels that are present inside an
SM; and (2) Noise: even if the spy and trojan are co-located, a third
application may use the resources used for covert communication
adding noise or even completely disrupting communication.

The high parallelism available on GPGPUs can result in high
degrees of noise that challenge error detection and correction. Thus,
our primary approach to manage noise is to try to prevent it com-
pletely by manipulating the block scheduler to achieve exclusive

co-location between the spy and trojan at the level of the SM or
the full GPGPU. We take advantage of concurrency limitations on
current GPUs which use leftover policy for multiprogramming. In
particular, we have the trojan and spy ask for resources in a way that
they can be co-located with each other but that also makes it difficult
for other applications to co-locate with them. For example, the spy
may ask for the maximum available amount of the shared memory
(or registers, thread blocks, threads, etc..) while the trojan asks for
only the leftover amount of that resource. If there are not enough
registers or shared memory available per multiprocessor to process
at least one block, a competing kernel will be blocked until these
resources become available. In this way, once the spy and trojan are
launched, they can execute on the GPU (or SM) exclusively and
communicate without interference.

In our Fermi (Tesla C2075) and Kepler (Tesla K40C) GPUs, the
maximum shared memory per thread block is equal to maximum
shared memory per SM (48KB). Since each of the spy and trojan
needs just one thread block for communication, if the spy block asks
for the maximum shared memory, it can saturate the SM in term
of shared memory. In this case, the trojan block can be co-located
on the same SM, if it does not use any shared memory. Any other
application that uses shared memory, cannot be executed until the
spy finishes and there are enough resources for thread blocks of the
third application to be scheduled.

To improve the chances for exclusive co-location, we can also
launch additional kernels that do not generate noise to exhaust other
resources but do not use the resources that are claimed by the trojan
and spy. If such kernels are launched at the same time as the kernel
and spy, the scheduler will prefer to run them with the trojan and
spy since it prioritizes kernels based on their launch time.

Note that, on our Maxwell GPU architecture (Quadro M4000),
the maximum shared memory per SM is twice the maximum shared
memory per thread block. So if the thread blocks of both trojan and
spy ask for the whole shared memory we can exclusively run on
each SM and noise is prevented.

To evaluate our exclusive co-location strategies, we executed the
Rodinia benchmark applications [5] on a third stream, alongside the
spy and trojan communication using L1 cache channel. By forcing
exclusive co-location of the spy and trojan through saturating shared
memory on each SM, we were able to prevent interference against all
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interfering workloads and workload mixtures and achieved error free
communication in all cases. These workloads include applications
which use shared memory and those that do not. They also include
workloads such as Heart Wall that uses constant memory and that
would interfere with the L1 covert channel if it were co-located with
the malicious kernels. We note that if the interfering workload is
launched before the spy and trojan, the built in synchronization in
the kernels allows one of them to wait for the other. When the second
kernel is launched, the resource request pattern ensures exclusive
co-location after that.

As we discussed in Section 3, Wang et al.’s [41] intra-SM resource
partitioning mechanism simplifies co-location of two malicious ker-
nels on the same SM. However, it also allows other workloads to
execute on the same SM, necessitating approaches for noise avoid-
ance or tolerance. In contrast, the approach by Xu et al. [44] does
not support preemption and thus allows exclusive co-location similar
to current GPUs. When exclusive co-location to prevent noise is not
possible, noise could be avoided or tolerated using techniques such
as the following.

• Dynamically identifying idle resources: The approach is simi-
lar to whitespace communication in wireless networks where
the radios opportunistically discover and use available chan-
nels without prior agreement [2], and solutions from that
space can be leveraged for our problem. For example, the
sender may scan through available resources (e.g. cache sets)
in a pre-agreed on order until it discovers idle ones and trans-
mits a beacon pattern on them. The receiver follows by scan-
ning sets until it observes the beacon.
• Error correction: transmit error correcting codes with the data

(sacrificing some of the bandwidth).

Since we were able to establish exclusive co-location on our GPUs
and achieved noise free communication, we did not pursue either of
those directions.

9 POSSIBLE MITIGATIONS
In this section, we provide a brief discussion of possible mitigations
which we hope to explore in future work. One approach is to use
partitioning to ensure possibly communicating applications do not
have a way to effect measurable contention to each other. Partitioning
can be done spatially (e.g., partitioning the cache [9, 17, 39], or
temporally (e.g., ensuring instructions from different kernels do not
execute in the same time period).

Specifically on GPUs, partitioning can be achieved at intra-SM
and inter-SM level resources through scheduling of different applica-
tion thread blocks or warps to separate them temporally or spatially.
In addition, it is possible to fairly partition shared hardware resources
among multiple simultaneous kernels based on their workload and
resource requirements and make these partitions private to each ap-
plication to eliminate interference. Although these approaches may
lead to performance degradation and add some hardware overhead,
they can prevent covert and side channel attacks which are results of
unrestricted access to shared hardware resource from two or more
co-located applications.

Another mitigation approach is to attempt to detect anomalous
contention [6]. Given the different nature of GPGPU workloads and
the degree of contention that is likely to arise naturally, a detailed

evaluation of this class of solutions is necessary to assess its effective-
ness. Solutions are possible that add entropy either to the assignment
of the resources [40] or to the measurement of time [20]. Finally,
scheduling algorithms that interfere with co-location, accommodate
preemption, or prevent exclusive co-location (to introduce noise),
can significantly complicate the attack.

10 RELATED WORK
Olson et al [30] developed a taxonomy of vulnerabilities and secu-
rity threats for accelerators based on threat types (Confidentiality,
Integrity, and Availability) and risk categories (what part of the ac-
celerator they affect). Although the paper offers no concrete attacks,
it highlights that security of accelerators warrants significant atten-
tion. Olson et al. [29] also propose sandboxing accelerators when
the CPU and the accelerators share the same address space (e.g.,
under a Heterogeneous System Architecture configuration). This
type of defense does not protect against side- and covert-channel
vulnerabilities.

Lee et al. [16] reveal three major security threats in GPUs in-
cluding: lack of initialization of newly allocated memory pages,
un-erasable portion of GPU memory (e.g., constant data) and lack
of prevention of threads of a kernel to access the contents stored in
the local and private memories, written by threads of other kernels.
When multiple users share the same GPU, there is information leak-
age between concurrently running processes or from processes that
recently terminated. They utilize information leakage that occurs
due to not clearing newly-allocated memory in the GPU to extract re-
arranged webpage textures of Chromium and Firefox web browsers
(both use GPU-accelerated rendering) from Nvidia and AMD GPUs.

Similar attacks are presented by Di Pietro et al. [33] who also
exploit non-zeroed state available in shared-memory, global-memory
and registers. Maurice et al. [22] show that the attacks translate to
virtualized and cloud computing environments where the adversary
launches a virtual machine after the victim’s virtual machine using
the same GPU. This class of vulnerability can be closed by clearing
memory before it gets reallocated to a different application.

Because GPGPUs have separate physical resources, PixelVault
proposes using them as secure co-processors [37]. Recent work has
shown that GPGPUs are vulnerable to disclosure attacks through
the driver from a privileged user on the CPU, bringing into question
the security of the PixelVault model [46]. Such attacks require root
access and are outside our threat model.

Covert channels have been explored by many studies in the con-
text of CPUs (e.g., [11, 13, 18, 21, 23, 32, 38]). For an overview, an
excellent recent study characterized the bandwidth of several CPU
contention-based covert channels including cache based covert chan-
nels [13] in a noisy setting. They derived a theoretical upper bound
on capacity of practical channels and found the L1 covert channels
(216 Kbps) and memory bus (565 Kbps) to be the two of highest
upper bound capacity channels in theory. However, these are theoret-
ical bounds and no channels under realistic conditions were demon-
strated. Gruss et al. [12] study covert channels under the assumption
that the attacker and the victim have accessed to shared memory
pages (e.g., from shared libraries). They show a Flush+Reload attack
with 2.3 Mbps and 0% error rate and a Flush+Flush attack with
3.9 Mbps and 0.84% error rate. Note that these attacks do not rely
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on contention and are not possible if there are no shared pages be-
tween the trojan and spy. These channels were also not tested under
noisy environments, and therefore these results should be considered
an upper bound on the achievable bandwidth. Maurice et al. [23]
characterize noise on cache covert channels and propose an error
handling protocol to build a reliable covert channel through which
they can build an ssh connection. They obtained a bandwidth of 360
Kbps with 0% error rate for covert channel on Amazon EC2. The
GPGPU covert channels we demonstrated obtain robust and error
free communication with much higher bandwidth, by exploiting
the inherent parallelism in GPGPUs, and controlling noise through
exclusive co-location.

A few defenses against covert channels have appeared in the
context of CPU channels. Chen et al. [6] proposed a framework
to detect and mitigate timing covert channel on shared hardware
resources on a CPU by monitoring conflicts. Hunger et al. propose
a different approach to the detection of contention [13]. Yan et al.
propose a record and replay framework that reconfigures shared
resources during replay to detect unnatural contention indicative of
covert channels [45].

Side-channel vulnerabilities are a dual of covert channel vulnera-
bilities where the leakage through the side channel is exploited by a
spy to derive sensitive information from an executing victim; many
CPU side channel attacks have been explored, including attacks on
caches (e.g., [18, 32]). Several defenses and mitigations for these
attacks have been proposed (e.g., [9, 17, 39, 40]). Two recent pa-
pers [14, 19] demonstrate the feasibility of side channel attacks on
GPGPUs. Luo et al. [19] utilize a power-based side-channel attack
on a GPU to gain secret information from an AES implementation
being accelerated by the GPU.

Jiang et al. [14] conduct the first timing attack at the architecture
level on GPU. Due to inherent SIMT and memory coalescing behav-
ior present on GPUs, they identify the correlation between execution
time of a single kernel and unique cache line requests. By calculating
the number of unique cache line requests for different guessed keys
and observing the correlation with the measured execution time,
the correct key at the last round of AES encryption is extracted.
The same group [15] presented another attack on table-based AES
encryption. They found correlation between execution time of one
table lookup of a warp and a number of bank conflicts generated
by threads. They use these key-dependent differences in timing to
correlate measured execution time to the key at the last round of the
AES encryption as it executes on the GPU. Unlike the channels we
explore in this paper, these timing channels are measured from the
CPU side, limiting their bandwidth, and requiring each kernel to be
able to launch (or anticipate the launch) of the other to time it.

We also found that the self-contention exploited [14] cannot be
used for covert communication. Although memory coalescing and
shared memory bank conflicts make a large difference in the timing
of one kernel, these artifacts had little measurable effect on the
timing of a competing kernel.

11 CONCLUDING REMARKS
This paper demonstrates the feasibility of covert channel communica-
tion on GPGPUs. We explored how the communicating kernels can

leverage the block scheduler and then warp to warp scheduler map-
ping to achieve co-residency. Based on their co-residency options
(on the same SM or across SMs), the SM local resources or inter-
SM shared resources can be used for contention. We demonstrated
attacks on constant caches, functional units and global memory on
three generations of Nvidia GPUs. We explored different optimiza-
tions to increase the bandwidth using synchronization and available
parallelism on the GPGPU. We also demonstrated preventing in-
terference from other workloads (Rodinia benchmark) on covert
communication. Our experiments on constructing covert channels
through different shared hardware resources show that high band-
width (over 4 Mbps) and error free covert communication is feasible
on GPGPUs. Our future works will include exploring the possibility
of side channel attacks on GPGPUs, as well as implementation of
some mitigation techniques against covert- and side-channels.

12 ACKNOWLEDGEMENT
This material is based on research sponsored by the National Science
Foundation grants CNS-1422401 and CNS-1619450.

REFERENCES
[1] Jacob T. Adriaens, Katherine Compton, Nam Sung Kim, and Michael J. Schulte.

2012. The case for GPGPU spatial multitasking. In Proceedings of the 2012
IEEE 18th International Symposium on High-Performance Computer Architecture
(HPCA ’12). 1–12. https://doi.org/10.1109/HPCA.2012.6168946

[2] Paramvir Bahl, Ranveer Chandra, Thomas Moscibroda, Rohan Murty, and Matt
Welsh. 2009. White space networking with wi-fi like connectivity. In ACM
SIGCOMM Computer Communication Review (SIGCOMM ’09), Vol. 39. 27–38.
https://doi.org/10.1145/1594977.1592573

[3] Michela Becchi, Kittisak Sajjapongse, Ian Graves, Adam Procter, Vignesh Ravi,
and Srimat Chakradhar. 2012. A virtual memory based runtime to support
multi-tenancy in clusters with GPUs. In 21st international symposium on High-
Performance Parallel and Distributed Computing (HPDC’12). Delft, The Nether-
lands, 97–108. https://doi.org/10.1145/2287076.2287090

[4] Andrea Di Biagio, Alessandro Barenghi, Giovanni Agosta, and Gerardo Pelosi.
2009. Design of a Parallel AES for Graphic Hardware using the CUDA frame-
work. In IEEE International Symposium on Parallel & Distributed Processing
(IPDPS’09). IEEE, Rome Italy. https://doi.org/0.1109/IPDPS.2009.5161242

[5] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,
Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Hetero-
geneous Computing. In Proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC ’09). 44–54. https://doi.org/10.1109/IISWC.
2009.5306797

[6] Jie Chen and Guru Venkataramani. 2014. CC-Hunter: Uncovering Covert Timing
Channels on Shared Processor Hardware. In 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’14). IEEE, Cambridge UK, 216–228.
https://doi.org/10.1109/MICRO.2014.42

[7] Renan Correa Detomini, Renata Spolon Lobato, Roberta Spolon, and Marcos An-
tonio Cavenaghi. 2011. Using GPU to exploit parallelism on cryptography. In 6th
Iberian Conference on Information Systems and Technologies (CISTI’11). IEEE,
Chaves Portugal. http://ieeexplore.ieee.org/document/5974171

[8] Khaled M. Diab, M. Mustafa Rafique, and Mohamed Hefeeda. 2013. Dynamic
Sharing of GPUs in Cloud Systems. In IEEE 27th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW). May,
IEEE, Cambride, MA, USA, 947–954. https://doi.org/10.1109/IPDPSW.2013.102

[9] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks. ACM Transactions on Architecture and Code Opti-
mization 8, 4 (2012). https://doi.org/10.1145/2086696.2086714

[10] William Enck, Peter Gilbert, Seungyeop Han, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. 2014. TaintDroid: an
information-flow tracking system for realtime privacy monitoring on smartphones.
ACM Transactions on Computer Systems (TOCS) 32, 5 (2014). https://doi.org/10.
1145/2619091

[11] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Un-
derstanding and mitigating covert channels through branch predictors. ACM
Transactions on Architecture and Code Optimization 13, 1 (2016), 10. hhttp:
//dx.doi.org/10.1145/2870636

https://doi.org/10.1109/HPCA.2012.6168946
https://doi.org/10.1145/1594977.1592573
https://doi.org/10.1145/2287076.2287090
https://doi.org/0.1109/IPDPS.2009.5161242
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/MICRO.2014.42
http://ieeexplore.ieee.org/document/5974171
https://doi.org/10.1109/IPDPSW.2013.102
https://doi.org/10.1145/2086696.2086714
https://doi.org/10.1145/2619091
https://doi.org/10.1145/2619091
hhttp://dx.doi.org/10.1145/2870636
hhttp://dx.doi.org/10.1145/2870636


Constructing and Characterizing Covert Channels on GPGPUs MICRO-50, October 14–18, 2017, Cambridge, MA, USA

[12] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In 13th International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’16). June, 279–299. https://doi.org/10.1007/978-3-319-40667-1_14

[13] Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sriram Vishwanath,
and Mohit Tiwari. 2015. Understanding contention-based channels and using
them for defense. In IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA’15). IEEE, Burlingame CA USA, 639–650. https:
//doi.org/10.1109/HPCA.2015.7056069

[14] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. 2016. A complete key recovery
timing attack on a GPU. In IEEE International Symposium on High Performance
Computer Architecture (HPCA’16). IEEE, Barcelona Spain, 394–405. https:
//doi.org/10.1109/HPCA.2016.7446081

[15] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. 2017. A Novel Side-Channel
Timing Attack on GPUs. In Proceedings of the on Great Lakes Symposium on
VLSI (VLSI’17). 167–172. https://doi.org/10.1145/3060403.3060462

[16] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim. 2014. Stealing
Webpage Rendered on your Browser by Exploiting GPU Vulnerabilities. In IEEE
Symposium on Security and Privacy (SPI’14). IEEE, San Jose CA USA, 19–33.
https://doi.org/10.1109/SP.2014.9

[17] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B. Lee. 2016. Catalyst: Defeating last-level cache side channel attacks
in cloud computing. In IEEE International Symposium on High Performance
Computer Architecture (HPCA’16). Barcelona, Spain, 406–418. https://doi.org/10.
1109/HPCA.2016.7446082

[18] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
level cache side-channel attacks are practical. In IEEE Symposium on Security and
Privacy (SP’15). IEEE, San Jose, CA, USA. https://doi.org/10.1109/SP.2015.43

[19] Chao Luo, Yunsi Fei, Pei Luo, Saoni Mukherjee, and David Kaeli. 2015. Side-
Channel Power Analysis of a GPU AES Implementation. In 33rd IEEE Interna-
tional Conference on Computer Design (ICCD’15). https://doi.org/10.1109/ICCD.
2015.7357115

[20] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. TimeWarp:
rethinking timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. In 39th Annual International Symposium on Computer Ar-
chitecture (ISCA’12). Portland, OR, USA, 118–129. https://doi.org/10.1109/ISCA.
2012.6237011

[21] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller,
Lothar Thiele, and Srdjan Capkun. 2015. Thermal covert channels on multi-
core platforms. In 24th USENIX Security Symposium. Washington, D.C., 865–
880. https://www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/masti

[22] Clémentine Maurice, Christoph Neumann, Olivier Heen, and AurÃl’lien Fran-
cillon. 2014. Confidentiality Issues on a GPU in a Virtualized Environment. In
International Conference on Financial Cryptography and Data Security. 119–135.

[23] Clémentine Maurice, Manuel Weber, Micheal Schwarz, Lukas Giner, Daniel
Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer. 2017. Hello
from the Other Side: SSH over Robust Cache Covert Channels in the Cloud.
In Network and Distributed System Security Symposium (NDSS’17). January.
https://doi.org/10.14722/ndss.2017.23294

[24] Wen mei Hwu. 2011. GPU Computing Gems (1st. ed.). Elsevier.
[25] Naoki Nishikawa, Keisuke Iwai, and Takakazu Kurokawa. 2011. High-

performance symmetric block ciphers on CUDA. In Second International Con-
ference on Networking and Computing (ICNC’11). Osaka Japan, 221–227.
https://doi.org/10.1109/ICNC.2011.40

[26] NVIDIA. 2017. GPU Cloud Computing. (2017). Retrieved August 20, 2017 from
http://www.nvidia.com/object/gpu-cloud-computing.html

[27] NVIDIA. 2017. Multi-Process Service. (2017). Retrieved March 2017 from https:
//docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

[28] NVIDIA. 2017. The Vulkan API. (2017). Retrieved August 20, 2017 from
https://developer.nvidia.com/Vulkan

[29] Lena E. Olson, Jason Power, Mark D. Hill, and David A. Wood. 2015. Bor-
der Control: Sandboxing Accelerators. In 48th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO’15). Waikiki HI USA, 470–481.
https://doi.org/10.1145/2830772.2830819

[30] Lena E. Olson, Simha Sethumadhavan, and Mark D. Hill. 2015. Security Implica-
tion of Third-Party Accelerator. IEEE Computer Architecture Letters 15, 1 (2015),
50–53. https://doi.org/10.1109/LCA.2015.2445337

[31] Antonio J Peña, Carlos Reaño, Federico Silla, Rafael Mayo, Enrique S Quintana-
Ortí, and José Duato. 2014. A complete and efficient CUDA-sharing solution for
HPC clusters. Parallel Comput. 40, 10 (2014), 574–588. https://doi.org/10.1016/j.
parco.2014.09.011

[32] Colin Percival. 2005. Cache missing for fun and profit. In BSDCan. https:
//doi.org/10.1.1.144.872

[33] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. 2016. CUDA leaks:
Information Leakage in GPU Architecture. ACM Transactions on Embedded
Computing Systems (TECS) 15, 1 (2016). https://doi.org/10.1145/2801153

[34] Vignesh T. Ravi, Michela Becchi, Gagan Agrawal, and Srimat Chakradhar.
2011. Supporting GPU sharing in cloud environments with a transparent run-
time consolidation framework. In 20th international symposium on High per-
formance distributed computing (HPDC’11). San Jose, CA, USA, 217–228.
https://doi.org/10.1145/1996130.1996160

[35] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey,
you, get off of my cloud: exploring information leakage in third-party compute
clouds. In Proc. ACM conference on Computer and communications security
(CCS’09). Chicago, Illinois, USA, 199–212. https://doi.org/10.1145/1653662.
1653687

[36] Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro, and
Mateo Valero. 2014. Enabling preemptive multiprogramming on GPUs. In 41st an-
nual international symposium on Computer architecuture (ISCA’14). Minneapolis,
Minnesota, USA, 193–204. http://dl.acm.org/citation.cfm?id=2665702

[37] Giorgos Vasiliadis, Elias Athanasopoulos, Michalis Polychronakis, and Sotiris
Ioannidis. 2014. Pixelvault: Using gpus for securing cryptographic opera-
tions. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’14). Scottsdale Arizona USA, 1131–1142.
https://doi.org/10.1145/2660267.2660316

[38] Zhenghong Wang and Ruby B. Lee. 2006. Covert and Side Channels Due
to Processor Architecture. In 22nd Annual Computer Security Applications
Conference (ACSAC ’06). IEEE, Miami Beach, FL, USA, 473–482. https:
//doi.org/10.1109/ACSAC.2006.20

[39] Zhenghong Wang and Ruby B Lee. 2007. New cache designs for thwarting
software cache-based side channel attacks. In 34th annual international symposium
on Computer architecture (ISCA’07). San Diego, CA, 494–505. https://doi.org/10.
1145/1250662.1250723

[40] Zhenghong Wang and Ruby B. Lee. 2008. A novel cache architecture with
enhanced performance and security. In 41st IEEE/ACM International Symposium
on Microarchitecture (MICRO’08). IEEE, Lake Como Italy, 83–93. https://doi.
org/10.1109/MICRO.2008.4771781

[41] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao Zhang, and
Minyi Guo. 2015. Simultaneous Multikernel: Fine-grained Sharing of GPGPUs.
IEEE Computer Architecture Letters 15, 2 (2015), 113–116. https://doi.org/10.
1109/LCA.2015.2477405

[42] NVIDIA Whitepaper. 2012. VIDIA’s Next Generation CUDA Compute Architec-
ture: Kepler GK110. (2012).

[43] Henry Wong, M. M. Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas
Moshovos. 2010. Demystifying GPU microarchitecture through microbenchmark-
ing. In IEEE International Symposium on Performance Analysis of Systems &
Software (ISPASS’10). https://doi.org/10.1109/ISPASS.2010.5452013

[44] Qiumin Xu, Hyeran Jeon, Keunsoo Kim, Won Woo Ro, and Murali Annavaram.
2016. Warped-Slicer: Efficient Intra-SM Slicing through Dynamic Resource
Partitioning for GPU Multiprogramming. In ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA’16). IEEE, Seoul South Korea. https:
//doi.org/10.1109/ISCA.2016.29

[45] Mengjia Yan, Yasser Shalabi, and Josep Tolrrellas. 2016. ReplayConfusion:
Detecting Cache-based Covert Channel Attacks Using Record and Replay. In 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’16).
IEEE, Taipei Taiwan. https://doi.org/10.1109/MICRO.2016.7783742

[46] Zhiting Zhu, Sangman Kim, Yuri Rozhanski, Yige Hu, Emmett Witchel, and Mark
Silberstein. 2017. Understanding the Security of Discrete GPUs. In Proceedings
of the General Purpose GPUs (GPGPU’10). Austin TX USA, 1–11. https:
//doi.org/0.1145/3038228.3038233

https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1109/HPCA.2015.7056069
https://doi.org/10.1109/HPCA.2015.7056069
https://doi.org/10.1109/HPCA.2016.7446081
https://doi.org/10.1109/HPCA.2016.7446081
https://doi.org/10.1145/3060403.3060462
https://doi.org/10.1109/SP.2014.9
https://doi.org/10.1109/HPCA.2016.7446082
https://doi.org/10.1109/HPCA.2016.7446082
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/ICCD.2015.7357115
https://doi.org/10.1109/ICCD.2015.7357115
https://doi.org/10.1109/ISCA.2012.6237011
https://doi.org/10.1109/ISCA.2012.6237011
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/masti
https://doi.org/10.14722/ndss.2017.23294
https://doi.org/10.1109/ICNC.2011.40
http://www.nvidia.com/object/gpu-cloud-computing.html
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://developer.nvidia.com/Vulkan
https://doi.org/10.1145/2830772.2830819
https://doi.org/10.1109/LCA.2015.2445337
https://doi.org/10.1016/j.parco.2014.09.011
https://doi.org/10.1016/j.parco.2014.09.011
https://doi.org/10.1.1.144.872
https://doi.org/10.1.1.144.872
https://doi.org/10.1145/2801153
https://doi.org/10.1145/1996130.1996160
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1653662.1653687
http://dl.acm.org/citation.cfm?id=2665702
https://doi.org/10.1145/2660267.2660316
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1109/ACSAC.2006.20
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1109/MICRO.2008.4771781
https://doi.org/10.1109/MICRO.2008.4771781
https://doi.org/10.1109/LCA.2015.2477405
https://doi.org/10.1109/LCA.2015.2477405
https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1109/ISCA.2016.29
https://doi.org/10.1109/ISCA.2016.29
https://doi.org/10.1109/MICRO.2016.7783742
https://doi.org/0.1145/3038228.3038233
https://doi.org/0.1145/3038228.3038233

	Abstract
	1 Introduction
	2 Background and Threat Model
	3 Establishing co-location
	3.1 Co-location on existing GPGPUs
	3.2 Co-location on other GPGPUs

	4 Cache Covert Channels
	4.1 Attack Step I: Offline Characterization of Constant Memory Hierarchy
	4.2 Covert channel through L1
	4.3 Covert channel through L2

	5 Functional Unit Channels
	5.1 Step I: Characterizing contention behavior on the functional units
	5.2 Step II: Constructing FU covert channels

	6 Global Memory Channels
	7 Improving the Attack
	7.1 Improving the Cache Channels
	7.2 Improving the SFU Channel

	8 Mitigating Noise
	9 Possible Mitigations
	10 Related Work
	11 Concluding Remarks
	12 ACKNOWLEDGEMENT
	References

