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ABSTRACT
Machine learning offers tantalizing possibilities in computing and
autonomous systems: data driven components and systems are
trained to learn their environment and offer decisions comparable
or surpassing those of humans. However, adversaries can learn
the behavior of classifiers and construct adversarial examples that
cause them to make wrong decisions, with potentially disastrous
consequences. We explore this space in the context of Hardware
Malware Detectors (HMDs), which have recently been proposed
as a defense against the proliferation of malware. These detectors
use low-level features, that can be collected by the hardware per-
formance monitoring units on modern CPUs to detect malware
as a computational anomaly. An adversary can reverse engineer
existing HMDs effectively and use the reverse engineered model
to create malware that evades detection. To address this critical
problem, we developed evasion-resilient detectors that leverage
recent results in adversarial machine learning to provide a theoret-
ically quantifiable advantage in resilience to reverse engineering
and evasion. Specifically, these detectors use multiple base detec-
tors and switch between them stochastically, providing protection
against reverse engineering and therefore evasion. The detectors
rely on diversity of the baseline classifiers and their evasion advan-
tage correlates with how often they disagree. Thus, it’s critical to
study how correlated the decisions from different baseline detectors
are: a characteristic called transferability. We study transferability
across different classifier algorithms and internal settings discover-
ing that non-differentiable algorithms make the best candidates for
operation in adversarial settings.
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1 INTRODUCTION
This section should clearly state the problem being addressed and
explain the reasons for seeking a solution to this problem.

Computing systems continue to be the target of attacks by in-
creasingly sophisticated and motivated adversaries. Systems are
compromised through exploits and vulnerabilities that enable the
attackers to deploy malware with different goals including stealing
private information or creating botnets [14]. Although significant
effort continues to be directed at making systems more secure, the
goal of preventing all vulnerabilities is likely to continue to be elu-
sive. Moreover, even if a system is completely secure, attacks that
target users, for example, to trick them to execute malicious code,
are also difficult to prevent.

Thus, it is critical to invest in detection techniques that allow
us to rapidly detect the presence of malware to limit its damage.
Unfortunately, detecting malware after it compromises a system is
also becoming increasingly more complicated. Typical techniques
for malware detection [3, 7, 8, 26] have both coverage limitations
and introduce substantial overhead (e.g., 10x slowdown for infor-
mation flow tracking is typical in software [25]). These difficulties
limit malware detection to static signature-based virus scanning
tools [4] which have known limitations [15], allowing the attackers
to bypass them and remain undetected.

In response to these trends, HardwareMalwareDetectors (HMDs)
have recently been proposed tomake systemsmoremalware-resistant.
Several studies have shown that malware can be classified based
on low-level hardware features such as instruction mixes, mem-
ory reference patterns, and architectural state information such as
cache miss rates and branch prediction rates [2, 10, 13, 17, 20, 23].
In addition, the SnapDragon processor from Qualcomm appears to
be using HMDs for online malware detection, although the tech-
nical details are not published [22]. HMDs can offer a substantial
advantage to defenders because it is always on and has little impact
on performance or power [17].

Should HMDs become widely deployed, it is natural to expect
that attackers will attempt to evade detection; this is an adversarial
machine learning setting [18, 24]. Our prior work [12] explored
whether attackers can adapt malware to continue to operate while
avoiding detection by HMDs. We find that this is indeed the case:
attackers can reverse engineer a detector and use the reverse en-
gineered model to evade detection. We also explored whether re-
training can help and found that some classifiers can be retrained,
but malware can continue to reverse engineer and evade detection.
Moreover, after several cycles of evasion and retraining, classifiers
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may no longer be able to separate the evolving malware from nor-
mal programs.

To address these issues, we explored the principle of evasion re-
silient hardware malware detectors (RHMDs). Specifically, RHMDs
consist of several different baseline detectors. Instead of using all
detectors together (i.e., ensemble learning), RHMD stochastically
switches between the detectors, using only one at a time. This
random switching between detectors makes it difficult (in a theoret-
ically quantifiable way, based on Probably Approximately Correct,
or PAC, theory [24]) to reverse engineer the detector, and therefore
more difficult to evade it.

Central to the ability of RHMDs to provide guaranteed protection
is an assumption that the underlying detectors are heterogeneous. It
is important to examine this assumption especially under adversar-
ial examples. Specifically, transferability [19] is the property of how
well a two different classifiers correlate with each with respect to
adversarial examples. If transferability is high, a malicious evasive
malware can simultaneously hide from the different detectors, and
the RHMD construct does not sufficiently provide protection. In
fact, the protection provided by RHMD correlates to how often the
baseline detectors disagree. Thus, this paper explores transferability
between HMDs.

We explore transferability across different learning algorithms,
as well as with respect to the parameters used in each algorithm
(e.g., using different detection periods or different features), as well
when both the learning algorithm and the parameters change. We
discover that transferability is lowest for algorithms with non-
differentiable classification boundaries such as decision trees. In
contrast, both logistic regression and neural networks are highly
transferable among each other, but not to non-differentiable DTs.
Based on these results, we conclude by offering recommendations
for constructing RHMDs.

2 EVASION-RESILIENT HARDWARE
MALWARE DETECTORS (RHMDS)

We start from prior works [2, 10, 13, 17] that established that HMDs
can effectively detect malware (without evasion). To motivate our
transferability study, we have to first introduce and provide insights
into the structure of RHMDs: Hardware Malware Detectors that are
resilient to evasion [12].We structure this section around answering
a set of successive questions.
Question 1: Can an adversary reverse engineer an HMD?

By reverse engineering an HMD, an adversary can extract the
detection model that the HMD uses. Recent results in adversarial
classification imply that arbitrarily complex but deterministic clas-
sifiers can be reverse-engineered [24]. We confirmed this results
by showing that we can efficiently reverse engineer a number of
detectors under realistic assumptions. Specifically,Figure 1 shows
the accuracy of reverse engineering classifiers built using Logistic
Regression (left figure) or Neural Networks (right figure) using dif-
ferent features (instruction mixes, memory address distributions or
architectural features such as cache misses) and different learning
algorithms.
Question 2: Having a model of the detector, can the attacker
create malware that will evade detection?
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Figure 1: Reverse-engineering efficiency

Figure 2: Methodology for generating evasive malware
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Figure 3: Malware detection accuracy under attack

We create evasive malware by starting from normal malware
and injecting instructions at different granularity (Figure 2): at the
basic block or at the function level. Specifically, when we inject at
the basic block level, we inject instructions at every basic block. We
chose this approach because we wanted to experiment with real
malware which implies that we do not have the source code, and
in most instances, the binary resists decompilation because of ob-
fuscation and packing. The injected instructions are selected based
on the reverse engineered model to maximize evasion likelihood
based on the reverse engineered model of the detectors.

For Logistic Regression (linearmodel) andNeural Networks (non-
linear model), we showed that existing HMDs can be rendered inef-
fective using simple modifications to the malware binary (Figure 3).
In practice, malware writers have even larger leeway in imple-
menting evasive strategies; because of difficulties in de-compiling
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Figure 4: RHMD reverse engineering

obfuscated malware, we had to rely only on adding instructions.
For example, malware writers with source code can also implement
rewriting strategies that reduce the number of instructions from
categories with a large positive weight.
Question 3: Does retraining HMDs help?

We explore whether malware can evade detection even if the
detector is retrained with some samples of the evasive malware. If
retraining is possible, this opens the door to potentially periodically
updating detectors as malware evolves. We show that for the simple
evasion strategies that can fool a given detector, retraining a linear
detector is ineffective unless we sacrifice the detection performance
on normal malware; if the training set is biased towards evasive
malware, the detector can no longer detect non-evasive malware.
On the other hand, if we do not, then evasive malware detection
remains poor (and normal malware detection still suffers). Interest-
ingly, more sophisticated detectors (non-linear) can be successfully
retrained, but the attacker is still able to reverse engineer the re-
trained detector and evade it again. The detection performance
eventually degrades after several cycles of evade and retrain.
Question 4: Can we make HMDs robust to evasion?

After showing that the current generation of HMDs is vulner-
able to evasion attacks, we explore whether new HMDs can be
constructed that are robust to evasion. In particular, we propose
a new resilient HMD organization that uses multiple diverse de-
tectors and switches between them unpredictably. We show that
detectors built in this fashion are resilient to both reverse engineer-
ing (Figure 4) and evasion (Figure 5). This resilience increases with
the number and diversity of the individual detectors. In addition, we
study implementation complexity of such classifiers in hardware

3 TRANSFERABILITY
We showed that we can reverse engineer detectors that use dif-
ferent features, different detection periods, and different learning
algorithms. Based on the reverse engineered detectors, we were
able to craft evasive malware efficiently. Transferability [19] is a
property where one classifier (Classifier A) behaves similarly to
another (Classifier B) when they have different architectures (learn-
ing algorithm, features, and other parameters) and even when they
are trained with a different training set.

Specifically, transferability is of interest with respect to adver-
sarial examples where it has important implications: for example, it
implies that adversarial examples developed against one classifier
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Figure 5: RHMD evasion resilience

Figure 6: Evaluation of detection accuracy for all detectors;
the detectors were built using the three machine learning
algorithms and across all collection periods

can be effective in fooling another which is the basis for black box
attacks (such as the ones we used). Transferability also impacts our
RHMD defense. Specifically, if our baseline classifiers are highly
transferable, this means that the agree often and therefore have low
diversity with respect to adversarial examples making them easy t
evade. Thus, understanding transferability properties is critical to
our choice of baseline detectors for RHMD.

To understand the transferability properties in this application
space, in this section we study both intra-algorithm (same classifi-
cation algorithm, with different parameters) and cross-algorithm
transferability and their implications on evasion attacks. In addi-
tion, we use these results to understand the behavior of RHMD
configurations, and how to best construct them.

3.1 Experimental Setup
Dataset: we use the same dataset and data collection technique that
we used in our prior work [12]. This dataset contains 3000 malware
and 554 regular program (all for Windows Desktop machines). The
dynamic trace was collected by running both regular programs
and malwares on a Windows 7 virtual machine using Pin instru-
mentation tool [1]. The collected trace duration for each executed
program was 5000 system calls or 15 million of committed instruc-
tions, starting after a warm-up period, whichever is reached first.
The dataset was divided into 60% training to train the detectors,
and 40% testing (used to create evasive malware and test their eva-
sion transferability). Furthermore, the training and testing datasets
traces was prepared using three different collection periods (5K,
10K, and 15K). Collection period refers to the size of the instruction
window used to collect the classification features.
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(a) Logistic regression (LR) (b) Neural networks (NN) (c) Decision Tree (DT)

Figure 7: Intra-algorithm transferability results for three machine learning algorithms. Cell (i, j) reports the intra-algorithm
transferability betweendetector i (source) and detector j (target), i.e. the percentage of evasivemalware produced using detector
i that can evade detection of detector j.

Table 1: Machine learning algorithms that was used for the
transferability study

ML
Technique

Differentiable
Model

Linear
Model

LR Yes Log-linear
NN Yes No
DT No No

Algorithms: for this study, we selected three machine learning
techniques: neural networks (NN), logistic regression (LR), and
decision trees (DT). As shown in Table 1, we selected NN for its
state-of-the-art performance, LR for its simplicity, and DTs for their
non-differentiability. To train all detectors we have used scikit-
Learn [21]. NN is implemented as a multi-layer perceptron (MLP),
which has a hierarchy of a single hidden layer that has a number
of neurons equal to the number of features in the feature vector.
Additionally, we use the tanh function as the activation function.
LR and DT are trained using scikit-Learn default parameters. For
each machine learning algorithm, we train three detectors using
the three detection periods that form the training dataset. Figure 6,
reports the accuracy results for all the detectors that were trained
and used in this study for the testing dataset.

Evasion techniques: for each algorithm we construct evasive
malware samples specifically to evade the detection of the HMDs
based on the algorithm. For example, since LR uses a linear separa-
tion boundary, we inject instructions that can move the malware
fastest across this boundary. For LR and NN we have used the same
evasion techniques described in [12]. For DTs, to select what to
inject in order to craft an evasive malware, we look at the tree and
we try to find the shortest path that leads to a regular program
decision. Since in our methodology, we can only add instructions
to the malware, we need to select a path that can be taken only by
increasing the number of instructions to effect the decisions along
that path. We inject from this selection of instruction to cause the
decision to proceed along the chosen path.

Since the evasive strategy is highly specific to the features, al-
thoughwewould like to study transferability with respect to feature

selection, the transferability is extremely low in our current set up.
Specifically, our evasion strategy inserts instructions that affect the
specific feature assumed but have no effect that correlates to the
other features. For example, the insertion policy to affect instruction
mixes has negligible effects on architectural features (for example,
cache miss or branch prediction events), or memory features (mem-
ory accesses distributions). We believe this is a limitation of our
evasion policy.

3.2 Intra-algorithm transferability
Wemeasure intra-algorithm transferability between detector i (source)
and detector j (target), both trained using the same algorithm, using
the same or different collection periods, as the proportion of evasive
malware samples created using detector i that can evade detector
j. If this number is high, that means that adversarial examples are
transferable across the detectors.

We study intra-algorithm transferability for the three machine
learning algorithms across different collection periods. Figures 7a-
7c shows the intra-algorithm rates for each of the three machine
learning algorithms used in our study. In the figures, the rates on the
diagonal (i,i) represent the proportion of the evasive malwares that
were able to evade the detection by the detector i which was used
to create the evasive malware. On the other hand, the off-diagonal
rates (i,j) represents the proportion of the evasive malwares that
were able to evade detection of detector j and were created using
detector i. The first observation that can be inferred from these
figures is that all algorithms are vulnerable to intra-algorithm trans-
ferability at a non-negligible manner. Figure 7a, shows that LR is
the most vulnerable as evasive malwares across all detectors can
transfer with a rate larger than 92%. For NN, Figure 7b shows that
are also vulnerable with a transferability rate of at least 81%. On
the other hand, for the DT, Figure 7c, shows that the diagonal stand
out more, which means that this algorithm is to some extent more
robust to evasion attacks transferability. The robustness of DTs
could simply stem from their non-differentiability. The conclusion
is that differentiable algorithm like NN and LR are more vulnerable
to intra-algorithm transferability attacks than non-differentiable
algorithms like DT.
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Figure 8: Cross-algorithm transferability for three classifi-
cation algorithms. Each cell (i, j) reports the cross-algorithm
transferability between detector i (source) and detector j (tar-
get) which is the percentage of evasive malware generated
using detector i that can evade detection of detector j.

3.3 Cross-algorithm transferability
We use the same methodology to measure cross-algorithm trans-
ferability. We study cross-algorithm transferability across the three
machine learning algorithms using a setting with 10K collection
period for each. Figure 8, shows the resulting cross-algorithm trans-
ferability matrix. Recall that the rows indicate the detector that was
used to create the evasive malware while the columns indicate the
detector that was used to classify the evasive malware. The results
show that LR and NN exhibit high cross-algorithm transferability;
LR to NN cross-algorithm transferability rate is 82.33% andNN to LR
cross-algorithm transferability rate is 71.69%. What is interesting is
that the cross-algorithm transferability when we craft evasive mal-
ware using DT is low; DT to LR cross-algorithm transferability rate
is 28.6% and DT to NN cross-algorithm transferability rate is %31.89.
Additionally, DT was the most resilient detector to cross-algorithm
transferability attacks with a cross-algorithm transferability rates
of 24.53% and 32.55% from LR and NN respectively.

3.4 Combined transferability
We also investigate whether transferability occurs across classi-
fiers with both different classification algorithms and classification
periods (Figure 9). The same observations from before hold: the
non-differentiable classification algorithm exhibits low transferabil-
ity both intra and inter-algorithm, as well as in combination. In
contrast, both LR and NN exhibit high transferability between each
other, even when the classification period also changes.

4 IMPLICATIONS ON RHMD
In this section, we discuss some of the implications of the transfer-
ability results both on attacks on HMDs, as well as on the RHMD
defense. With respect to the attack, high transferability to the des-
tination classifier implies that black box attacks become easier.
Specifically, we can train any model and expect to have adversari-
ally engineered examples that fool the model to transfer to fool the
target classifier. Thus, to raise the barrier for black box attacks, we
recommend using a low transferability target such as decision trees.
We note that the choice and configuration of the detector does not

Figure 9: Combined transferability across classifiers and
change of classification period. Similar conclusions hold:
transferability to and from DT is low and between LR and
NN is high, even with different classificaiton periods.

provide perfect resilience since the attacker can test many hypothe-
ses on the model architecture and configuration until they obtain
a high transferability model. In contrast, we believe that RHMD
provides a theoretically significant advantage in the difficulty of
reverse engineering that originates from the unpredictability of the
responses from the different baseline detectors.

We believe that transferability also influences RHMDs. Intu-
itively, if the baseline detectors are highly transferable it is likely
that an evasive malware could evade each, essentially indicating
weak diversity in their decisions. In order to construct more robust
RHMDs, we consider transferability impact along 3 axes: resilience
to evasion attacks, accuracy, and implementation overhead.
Resilience to evasion: intra-algorithm transferability results show
that differentiable algorithm like NN and LR are more vulnerable
to intra-algorithm transferability attacks than non-differentiable
algorithms like DT. From RHMD perspective, this suggests that
using base detectors using differentiable algorithms and diversified
using different collection periods will not help make RHMD more
resilient since no matter which base detector the RHMD chooses
randomly for detection, there is a high probability that the evasive
sample created for any detector can transfer across all detectors.
On the other hand, non-differentiable algorithms have low transfer-
ability intra-algorithm, making it possible to use different detector
mixes without suffering high transferability within an RHMD.

In addition, the cross-algorithm transferability results show that
probability of cross-algorithm transferability across LR and NN is
very high. However, this was not the case for DT with both LR
and NN. Therefore, this suggests that having the base detectors
of the RHMD formed from NN and LR only will not help in mak-
ings RHMD more resilience due to high transferability. On the
other hand, having a mix of differentiable and nondifferentiable
algorithms to train the base detectors of the RHMD would help
on making the RHMD more resilient to evasion attacks since the
probability of cross-algorithm transferability is not high.
Accuracy: in terms of accuracy, the NN detectors showed the
best accuracy across all detection periods (Figure 6). Moreover,
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it showed moderate intra-algorithm and cross-algorithm transfer-
ability. Therefore, having NN base detectors would allow the RHMD
to have the best accuracy, while providing moderate transferability
compared to the other detectors (LR and DT).
Overhead: LR detectors are the lightest in terms of overhead. How-
ever, they have the lowest accuracy and the highest transferability
compared to the other detectors (NN and DT).

We caution that the transferability results and therefore some
of our conclusions are dependent on the evasion approach; other
evasion techniques (for example, those that rewrite the malware, or
those that attempt to evade in multiple feature spaces concurrently)
may result in different transferability properties.We explored only a
subset of the sources of diversity, excluding, importantly, differences
in training sets, and differences in the classification features, due
to limitations of our evasion methodology.

5 CONCLUDING REMARKS
We considered the problem of adversarial evasion resilient hard-
ware malware detectors (RHMDs). Hardware Malware Detectors
(HMDs) is a proposed approach for malware detection where we
classify the behavior of programs in low-level feature spaces (e.g.,
architectural signals) to identify malware as a computational anom-
aly. In prior work, we showed that HMDs can be easily evaded
through a black box attack where we reverse engineer the detector,
and use the reverse engineered model to easily evade it. We also
showed that retraining the detector eventually fails to capture the
evolving behavior of malware. As a result, RHMDs offer evasion re-
silience by using multiple baseline detectors and switching between
them stochastically, offering theoretically quantifiable advantage
in reverse engineering accuracy. With low reverse engineering
accuracy, evasion through a black box attack becomes impractical.

In this paper, we study the problem of transferability between
detectors in the context of this application. Transferability refers
to how well adversarial examples developed to evade one detector
(example the reverse engineered model) serve to evade another (e.g.,
the target detector). This property has substantial implications on
the attack as well as the defense offered by RHMD. We character-
ized transferability both within the same learning algorithm (but
with different configuration parameters), as well as across learning
algorithms. We discover that non-differentiable classifiers exhibit
low transferability both within and across algorithms. In contrast,
differentiable classifiers transfer with high probability to other dif-
ferentiable algorithms, as well as to other configurations within
the same algorithm. Based on these results, we recommend that
non-differentiable algorithms such as DTs be used in the mix of
RHMD baseline detectors.

It is interesting to explore whether the classifier captures funda-
mental properties of malware. While this is a difficult question for
machine learning in general, it is clear that some attacks have a spe-
cific and difficult to transform computational footprints. Examples
of such attacks include covert-channel attacks [5, 16], side-channel
attacks [6, 9] and ransomware [11].
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