
RIC: Relaxed Inclusion Caches for Mitigating LLC
Side-Channel Attacks

Mehmet Kayaalp
IBM Research

mkayaal@us.ibm.com

Khaled N. Khasawneh
University of California,

Riverside
kkhas001@ucr.edu

Hodjat Asghari Esfeden
University of California,

Riverside
hasgh001@ucr.edu

Jesse Elwell
Vencore Labs

jelwell@vencorelabs.com

Nael Abu-Ghazaleh
University of California,

Riverside
naelag@ucr.edu

Dmitry Ponomarev
Binghamton University

dima@cs.binghamton.edu

Aamer Jaleel
Nvidia Corporation

ajaleel@nvidia.com

ABSTRACT
Recently, side-channel attacks on Last Level Caches (LLCs)
were demonstrated. The attacks require the ability to evict
critical data from the cache hierarchy, making future ac-
cesses visible. We propose Relaxed Inclusion Caches (RIC),
a low-complexity cache design protecting against LLC side
channel attacks. RIC relaxes inclusion when it is not needed,
preventing the attacker from replacing the victim’s data
from the local core caches thus protecting critical data from
leakage. RIC improves performance (by about 10%) and
retains snoop filtering capabilities of inclusive cache hierar-
chies, while requiring only minimal changes to the cache.

1. INTRODUCTION
Side channel attacks represent a dangerous vulnerability

that exploits weaknesses in the implementation of otherwise
secure systems and algorithms. A particularly dangerous
form of side channel attacks is the one targeting shared mi-
croprocessor resources on multi-core processors. Such at-
tacks can be launched remotely without special privileges,
removing the need for physical proximity present for many
analog channels, and significantly lowering the barrier for
launching side channel attacks. For example, such attacks
can be used on cloud computing systems to allow a malicious
application to exfiltrate sensitive data from other co-located
applications [1, 2, 3, 4].

Initially, cache side-channel attacks were performed through
L1 caches. To successfully perform an attack, the adversary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC 2017 Austin, Texas USA
c© 2017 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

needs to achieve co-residency with the victim process on
the same core, which can be challenging [1, 5]. Moreover,
a number of defenses have been proposed to mitigate the
L1-based attacks [6, 7]. Consequently, the focus of recent
attacks shifted from first-level caches to shared Last-Level
Caches (LLC). Successful and fast secret key reconstruction
from the LLC side channel has been shown under different
assumptions about the attacker’s capabilities [8, 2, 3, 9].

In light of serious threat posed by cache based side-channel
attacks, it is important to protect cache hierarchies from
these attacks, but without over-designing for security. De-
fenses developed for the L1 cache do not translate effec-
tively to the new attacks on LLCs because of differences in
the size, sharing, and complexity between these two levels
of the cache. Recently, Liu et al. [10] proposed the first
known solution for protecting against side-channel attacks
on the LLC. Their design uses a combination of partition-
ing (via page coloring) and locking, which are individually
known for protection against L1 attacks [11, 12], to allow
these techniques to scale to the large number of threads that
share the LLC. The solution requires support from the OS
and the programming language to mark and allocate secure
pages respectively. Locking and partitioning reduces the
dynamic availability of cache space, which can cause perfor-
mance degradation under certain workload combinations.

In this paper, we introduce Relaxed Inclusion Caches (RICs),
a new low-complexity mitigation for LLC side-channel at-
tacks that simultaneously improves performance relative to
inclusive caches. We observe that Prime+Probe, the most
general of side-channel attacks, on the LLC is possible be-
cause of the inclusive nature of modern cache hierarchies.
Inclusion simplifies cache coherence because the LLC can
serve as a snoop filter. However, inclusive hierarchies make
systems vulnerable to the LLC attacks. Specifically, if an
attacker can evict the victim’s critical data from the shared
LLC, the inclusive property guarantees that this data will
also be evicted, using back-invalidations, from the local core
caches of the core where the victim process executes. As

10.475/123_4

a result of the data being evicted from the private core
caches, the next access to the critical data by the victim
will miss into the private caches and thus will be visible to
the attacker through the LLC. RIC avoids the eviction of
critical data from the local caches, thus defeating the at-
tacks. RIC also improves performance relative to inclusive
caches, because it reduces data replication and uses the ca-
pacity of the cache hierarchy more efficiently. Compared to
non-inclusive caches, RIC also retains snoop filtering thus
simplifying cache coherence.

2. LLC SIDE CHANNELS: THREAT MODEL
To understand the attack principles, consider ciphers, such

as AES, Blowfish, or Twofish where, for performance rea-
sons, most implementations use precomputed lookup tables.
The indices to these tables are used to perform the cryp-
tographic functionality and are partially derived from the
secret key. Therefore, by detecting the cache sets accessed
by the cipher (through the LLC side channel), the attacker
learns which entry of the table was accessed, thus obtaining
information about the secret key.

There are two general approaches for cache side channel
attacks, including the ones on LLC: Flush+Reload [8] and
Prime+Probe [3, 9]. Flush+Reload LLC attacks [8] rely
on cryptographic lookup tables, which are not a secret by
themselves, being shared between the victim process and
the attacker process. As a result, the attacker can use the
clflush x86 instruction to flush specific cache lines that con-
tain cryptographic tables from all cache levels, including the
LLC. When the data is accessed again, the attacker can tell
whether the victim accessed the same sets (cache hit) or not
(cache miss). Flush+Reload can be defeated by disallow-
ing sharing for critical data.

Prime+Probe is the most general cache side channel at-
tack because it does not require sharing of the critical data
between the attacker and the victim [3, 2, 9]. The attacker
fills the cache with its own data during the prime stage.
It later probes the cache with the same data, while timing
the access. If it detects a cache miss, this indicates that
the victim accessed the corresponding cache set, exposing
the cache sets the victim is accessing. Recent commercial
processors implement inclusive cache hierarchies to simplify
cache coherence [13, 14]. With inclusive caches, the attacker
can evict the victim’s data from the LLC, and the inclusion
property guarantees the data eviction from the local core
cache of the victim, causing victim’s next access to reach
the LLC and exposing the access to the attacker.

Liu et al. [3] demonstrated an LLC Prime+Probe attack
against ElGammal cipher. ElGammal cipher computes the
critical data on-the-fly; the fact that the data is writable has
implications on relaxed inclusion which we discuss later. Ira-
zoqui et al. [2] demonstrated a similar attack on AES, albeit
one that makes a number of assumptions on the synchro-
nization between the victim and the attacker and assumes
that attacker has access to the ciphertext. Kayaalp et al. [9]
presented a Prime+Probe attack on LLCs that does not
require large pages (as do the previous two attacks).

Consistent with these published attacks [8, 3, 2, 9], we
assume an attacker and a victim are co-located on the same
machine, but not necessarily on the same core. The attacker
process has no special privileges.

3. RIC: RELAXED INCLUSION CACHES

LLC attacks rely on the inclusive property of modern
cache hierarchies where a cache line that is replaced from
the LLC is evicted from the private core caches (L1 and
L2). To achieve security, retain snoop filtering, and improve
performance in a low-complexity manner, we propose a side
channel protection for inclusive caches that relaxes the in-
clusion property where it is safe to do so.

In particular, we relax inclusion in the following two cases:

• Read-only data, which includes the critical data for
most ciphers (which is constant) as well as all instruc-
tions. It is safe to relax inclusion on read-only data
since such data is never modified and therefore does
not require cache coherence. Thus, the data can be
safely cached in a non-inclusive way while retaining
snoop filtering. In particular, when the data is present
in the core caches but not in the LLC, there is no
need to snoop the core caches since the data cannot be
modified.

• Thread private data: We recognize that a few impor-
tant ciphers, such as ElGamal [15], also compute and
write the critical data before using it [3]. For ElGamal,
in the sliding window implementation of modular ex-
ponentiation, the multipliers are critical data and they
are computed on-the-fly, therefore requiring read and
write access. Such ciphers would not be protected from
by relaxing inclusion on read-only data. We observe
that it is also safe to relax inclusion on data that is
not shared such as thread-private data. For such data,
even if it is updated, we know that it is only accessed
by a single thread and coherence is not needed. Care
must be taken if a thread is migrated from one core
to another. In this case, any modified data must be
flushed, or written through to the LLC.

Relaxing inclusion on read-only data provides side channel
protection for most ciphers. The critical data is typically
maintained in the form of precomputed tables that are only
read during the execution of cryptographic codes, and never
modified. Moreover, attacks on the instruction cache sets
have also been proposed [3, 9]; these sets are also protected
by this form of relaxed inclusion since instructions are read-
only. Similarly, for ciphers that modify data, if the critical
data is private, inclusion may be relaxed on such data also
providing protection from Prime+Probe LLC side channel
attacks.

To implement RIC, the caches are extended with a single
bit per cache line to mark relaxed inclusion. Upon replace-
ment, a relaxed inclusion cache line does not generate back-
invalidations to enforce inclusion. Snoop filtering is used as
is for relaxed inclusion data because it is either never mod-
ified or never shared, correctness is preserved despite the
relaxed inclusion property.

With respect to read-only data, relaxing the inclusion
property for all read-only memory pages avoids the need
to mark critical data, and also increases the performance
gains from this technique. Identifying thread-private data
automatically is more difficult in general [16]. For appli-
cations that are not multi-threaded, the full memory im-
age of the process may be treated as thread-private. How-
ever, for multi-threaded applications, protecting writeable

 0

 0.5

 1

 1.5

 2

bzip
2-gobmk

dealII-l
ibquantum

gobmk-lib
quantum

h264-bzip
2

h264-gobmk

libquantum-povray

mcf-gobmk
G-Mean

N
o
rm

a
liz

e
d

 I
P
C

 t
h
ro

u
g

h
p

u
t

Benchmark

2 cores
Inclusive RIC-cache Non-Inclusive

 0

 0.5

 1

 1.5

 2

asta
r

bzip
2

calculix
dealII

h264
povray

sje
ng

G-Mean

N
o
rm

a
liz

e
d

 I
P
C

 t
h
ro

u
g

h
p

u
t

Benchmark (gobmk+mcf+libquantum)

4 cores
Inclusive RIC-cache Non-Inclusive

 0

 0.5

 1

 1.5

 2

dealII-h
264

dealII-p
ovray

dealII-s
jeng

h264-sje
ng

povray-h264

povray-sje
ng

G-Mean

N
o
rm

a
liz

e
d

 I
P
C

 t
h
ro

u
g

h
p

u
t

Benchmark (gobmk+mcf+libquantum+bzip2+calculix+astar)

8 cores
Inclusive RIC-cache Non-Inclusive

Figure 1: RIC Performance: 2MB LLC

 0

 0.5

 1

 1.5

 2

bzip
2-gobmk

dealII-l
ibquantum

gobmk-lib
quantum

h264-bzip
2

h264-gobmk

libquantum-povray

mcf-gobmk
G-Mean

N
o
rm

a
liz

e
d

 I
P
C

 t
h
ro

u
g

h
p

u
t

Benchmark

Inclusive RIC-cache Non-Inclusive

 0

 0.5

 1

 1.5

 2

asta
r

bzip
2

calculix
dealII

h264
povray

sje
ng

G-Mean

N
o
rm

a
liz

e
d

 I
P
C

 t
h
ro

u
g

h
p

u
t

Benchmark (gobmk+mcf+libquantum)

Inclusive RIC-cache Non-Inclusive

 0

 0.5

 1

 1.5

 2

dealII-h
264

dealII-p
ovray

dealII-s
jeng

h264-sje
ng

povray-h264

povray-sje
ng

G-Mean

N
o
rm

a
liz

e
d

 I
P
C

 t
h
ro

u
g

h
p

u
t

Benchmark (gobmk+mcf+libquantum+bzip2+calculix+astar)

Inclusive RIC-cache Non-Inclusive

Figure 2: RIC Performance: 4MB LLC

data requires application support to mark the data as pri-
vate/relaxed inclusion. A limitation of RIC is that it cannot
protect writeable critical data that is not private (i.e., that
is shared among threads); however, we are not aware of any
ciphers that would benefit from such an implementation.

Special considerations have to be given to memory page
permission changes. A permission change in the PTE en-
try of a read-only page can occur for the following reasons:
(a) the permissions are modified, for example via mprotect

system call; (b) the page is torn down, for example via mun-

map/exit system call; (c) the page is swapped out of memory
to secondary storage. For cases (b) and (c) above, the data
corresponding to these pages cannot be accessed from the
cache because the mappings are removed from the page ta-
ble. For scenario (a) above, in order to avoid using stale
data in the local caches (the data with old ”read-only” per-
mission), the OS can flush those lines from the cache using
the same mechanisms already in place for cases (b) and (c).

Another scenario that requires attention is that of private
data that is marked with relaxed inclusion when the thread
that is operating on the data migrates after a context switch
from one core to another. In this case, if the data has been
replaced from the LLC, stale data may be read from memory.
Thus, thread migration events must be either avoided or
accompanied with a flush of the private caches.

Parameter Configuration

Window Size
8-way issue, 128-entry ROB, 32-entry
Issue Queue, 48-entry LSQ

L1 I-Cache 32 KB, 4-way, 64B line, 1 cycle hit
L1 D-Cache 32 KB, 4-way, 64B line, 1 cycle hit
L2 Unified Cache 256 KB, 8-way, 64B line, 10 cycle hit

L3 Unified Cache
2 MB/512 KB, 16-way, 64B line, 30
cycle hit

Memory latency 300 cycles

Table 1: Configuration of the simulated processor

4. PERFORMANCE EVALUATION OF RIC
In this section, we present performance evaluation of RIC.

We extend the MSim multicore simulator [17] which imple-
ments inclusive caches, to model non-inclusive caches as well
as RIC. Unless otherwise stated, the configuration of the
simulator is shown in Table 1. In the first study, we paired
the SPEC 2006 benchmarks following the methodology de-
scribed in [18] in terms of the selection of workloads, and
evaluated the combined throughput of 2-, 4-, and 8-threaded
workloads.

The RIC configuration in the experiments relaxes exclu-
sion only on memory marked by the compiler to be read-
only. For SPEC 2006, since the benchmarks are single-
threaded, it is possible to treat all memory as private, ob-
taining using RIC the same performance as non-inclusive
caches, but at a much lower complexity, and without any
back-invalidate traffic.

Figure 1 and Figure 2 show the performance of RIC com-
pared to inclusive and non-inclusive caches, for systems with
a 2MB and 4MB LLC cache respectively. Each figure has 3
graphs corresponding to a 2 core, 4-core, and 8-core system
respectively. The benchmark names shown in parenthesis at
the bottom of each chart are included with every workload.
For example, every 4-core workload contains: gobmk, mcf,
libquantum and the fourth benchmark is denoted with the
bar’s label. As can be seen in the figure, non-inclusive caches
noticeably outperform inclusive caches on average, and the
difference increases as the ratio of the local core cache size to
the LLC size is increased. Of course, this advantage comes
at a cost of not having a snoop filter. RIC caches prevent
invalidations of read-only data and increase the effective size
of the cache, which leads to higher performance compared
to inclusive caches. While non-inclusive cache has perfor-
mance benefits, it is significantly more complex because it
does not support snoop filtering. On the other hand, the
RIC design is secure, retains snoop filtering advantages and
outperforms inclusive caches. The advantage of RIC and
non-inclusive caches is higher with a 2MB LLC because the

 0

 0.5

 1

 1.5

 2

 2.5

 3

gobmk mcf

libquantum
bzip

2
calculix

asta
r

dealII
povray

Im
p

ro
v
e
m

e
n
t

in
 I
P
C

Benchmark

2MB 4MB

(a) IPC of individual cores

 0

 0.2

 0.4

 0.6

 0.8

 1

dealII-h
264

dealII-p
ovray

dealII-s
jeng

h264-sje
ng

povray-h264

povray-sje
ng

G-Mean

Fr
a
ct

io
n
 o

f
b

a
ck

 i
n
v
a
lid

a
te

s
e
lim

in
a
te

d

Benchmark

2MB 4MB

(b) Reduction in back invalida-
tions

 0

 0.2

 0.4

 0.6

 0.8

 1

gobmk mcf

libquantum
bzip

2
calculix

asta
r

dealII
povray

Fr
a
ct

io
n
 o

f
b

a
ck

 i
n
v
a
lid

a
te

s
e
lim

in
a
te

d

Benchmark

2MB 4MB

(c) Back invalidate rate

Figure 3: Performance of a Selected Benchmark Mix

cache size is more constrained; the effective increase in the
cache size that comes from relaxing inclusion has a larger ef-
fect. The advantage also increases with the number of cores
due to the higher pressure on the shared cache.

In order to explain the reasons for the performance ad-
vantages, we first show the individual IPC (committed In-
structions per Cycle) of the cores in one of the 8-core experi-
ments in Figure 3a. First, we observe that some applications
have almost no benefit from RIC, while others (e.g., gobmk)
benefit significantly, especially when the LLC size is small.
Figure 3b shows that the percentage of back-invalidations
eliminated by RIC is fairly constant across the benchmarks.
However, Figure 3c shows that the rate of back-invalidations
varies significantly between the applications, explaining the
difference in impact for RIC relative to inclusive caches.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

dealII-h
264

dealII-p
ovray

dealII-s
jeng

h264-sje
ng

povray-h264

povray-sje
ng

G-Mean

M
e
m

o
ry

 p
re

ss
u
re

Benchmark (gobmk+mcf+libquantum+bzip2+calculix+astar)

Inclusive RIC-cache Non-Inclusive

Figure 4: Memory pressure

Finally, we examine the impact of RIC on the memory
pressure experienced by the system in Figure 4. Non-inclusive
caches reduce the memory pressure in this configuration (8
core, 4MB LLC) by about 30%, while RIC reduces the mem-
ory pressure by about 10%, roughly corresponding to the
improvement in IPC for this configuration.

5. RIC HARDWARE COMPLEXITY
To evaluate the impact that RIC has on hardware com-

plexity, we modeled it using Cacti [19] version 6.5. The cache
that we modeled is based on an L3 cache that is consistent
with recent Intel Core i7 series processors, which represents
the LLC in these designs. The configuration parameters of
this cache are shown in Table 2. The format of each cache
line is shown in Figure 5 which depicts the width (in bits)
of the various fields of each cache line, including the newly
added relaxed inclusion bit that is added to support RIC.

Parameter Value

Total Size 8MB
Line Size 64 bytes
Associativity 16-way
Sets 8192
Tag Bits 29
Physical Address Width 48 bits
Process Technology 32 nm

Table 2: RIC cache model configuration

Data BitsTag Bits

512291 1

Dirty Bit Existing Bit(s) Added Bit(s)
Relaxed-Inclusion Bit

Figure 5: RIC cache line

We conservatively assumed that the only status bit neces-
sary is a ”dirty” bit, although more status bits might be nec-
essary for a specific implementation (i.e. to support cache
coherency). Given this assumption, the total size of each
cache line is 542-bits, thus our hypothesis was that RIC’s
addition of a single read-only bit would have a negligible
impact on the complexity of the cache as a whole. Our eval-
uation of the RIC cache focuses on three key aspects of the
design: the cache’s access time, its hardware cost in terms of
die area, and its energy consumption. Due to the addition
of the read-only bit, the access time of the modeled cache is
increased by 0.018%, the total area of the cache is increased
by 0.176%, and the total dynamic energy per read access
is increased by 0.122%. Moreover, RIC does not affect the
primary operation of the cache; the bit is only used to filter
out back-invalidations upon replacement of a cache line.

6. SECURITY ANALYSIS OF RIC
We measured the leaked critical information through the

side channel to establish the security properties of RIC. We
simulate encryption of 15MBs of random data using core
AES implementation of OpenSSL 1.0.1j, where the critical
data size is 4KB. Table 3 shows the number of evictions of
the lookup table entries from the L1 cache for different cache
sizes (which would be visible to the attacker). Even with a
12KB 3-way set associative cache, the data is completely

protected. Compare this to core cache sizes which are over
256K even for mobile processors.

L1 Size
Number of

evictions
Percentage of all
critical accesses

4KB 1-way 7,831,093 4.99%
8KB 2-way 163,262 0.10%

12KB 3-way 0 0.00%

Table 3: Evictions of L1 Critical Data under RIC

Consider now that the LLC is protected from the attacks
using RIC. However, to provide a complete protection, the
possibility of a coordinated attack on multiple cache levels
also has to be considered. If an attacker simultaneously tar-
gets the LLC and the local core caches, then not all defenses
work synergistically with RIC under such a threat model,
and the defenses for the local caches have to be chosen care-
fully.

Specifically, only the techniques that guarantee that the
critical data remains in the local caches and cannot be evicted
by the attacker’s accesses to the local caches themselves
would provide security. These include cache line locking
[12], static partitioning, or secure dynamic partitioning [11].
On the other hand, techniques that do not have such prop-
erty, such as randomized victim selection [12, 6] or fuzzy
timers [20] do not complement RIC against coordinated at-
tacks. The vulnerability occurs because these defenses allow
the critical data to be evicted from the core caches, thereby
exposing victim’s accesses to the attacker through the LLC.

On the other hand, if the LLC is protected through parti-
tioning or randomization (and not RIC), then any technique
for protecting the local core caches will be secure. However,
those techniques have substantial performance and complex-
ity implications when applied at the LLC level as discussed
in Section 7.

7. RELATED WORK
RIC and Alternative Cache Hierarchies: From a per-
formance perspective, RIC fits in the category of relaxing
cache coherence protocols [16, 21]. Most similar to our work,
Cuesta et al. [16] propose eliminating the overhead of coher-
ence tracking of private data in Distributed Shared Memory
(DSM) architectures. Alisafaee [21] improves on this solu-
tion by allowing coherence to be relaxed for data that is pri-
vate temporarily or shared across a subset of the processors.
Both of these approaches do not consider read-only data or
coherence relaxation in the context of on-chip/snooping bus
protocols.

One simple solution from the security standpoint is to
completely move away from the inclusive property to retain
critical data in the core caches. However, this approach
eliminates the substantial performance and complexity ben-
efits of snoop filtering. One could ask whether solutions in
the space between inclusive and non-inclusive caches, which
were proposed for performance reasons, are sufficient for se-
curity. As a representative of this class of work, we consider
TLA caches [18] and NCID caches [22].

TLA caches [18] have been proposed to bridge the perfor-
mance gap between inclusive and non-inclusive hierarchies,
while retaining the snoop filtering capability. TLA achieves

this by ensuring that data lines with high temporal local-
ity are not back-invalidated from the local core caches upon
the LLC eviction. However, TLA caches are still vulnera-
ble to advanced side channel attacks, because the attacker
can carefully control the temporal locality in its access pat-
terns to effectively degenerate TLA caches into traditional
inclusive caches.

The NCID design [22] is a non-inclusive cache architecture
with inclusive directory. It allows the data in the LLC to
be non-inclusive or exclusive, but retains tag inclusion in
the LLC directory to support complete snoop filtering. The
NCID design is not secure against side-channel attacks; an
attacker can oversubscribe the NCID directory by streaming
through large amounts of data, causing the secure data to be
discarded as in the baseline inclusive cache. Enlarging the
directory to a secure configuration significantly increases the
overhead. Besides the area overhead, NCID changes the core
circuitry of the caches.
Existing L1 Defenses: Most defenses proposed for L1
caches do not apply directly at the LLC level. One simple
technique to make caches immune to side channel attacks
is static partitioning to create isolation [23]. Unlike the L1
cache which is only shared when a core is hyperthreaded, on
a many-core system the number of threads sharing the LLC
can exceed the number of ways available in the cache, mak-
ing cache way-based partitioning impossible. These limita-
tions also apply to designs that provide a mixture of exclu-
sive and shared cache ways [11]. Locking of critical data [12,
24] in the cache prevents it from being replaced by the at-
tacker’s prime operations. The solution requires support
from the OS, programming language and compiler to mark
the critical data, in addition to a bit for each cache line to in-
dicate whether it is locked. Randomization, exemplified by
NewCache [6], randomizes the victim selection process on
cache replacements, so that the attacker cannot glean useful
information from its cache misses. The solution requires an
index remapping table, extra bits in the cache to indicate
which lines are subject to the random victim selection, and
also support from the software layers to mark such critical
data [6].
LLC Defenses: Zhou et al. [25] introduced a software
based solution for mitigating leakage through the LLC. In
particular, the solution has two components: (1) To defeat
Flush+Reload attacks, they use a copy-on-access to du-
plicate pages shared across VMs when they are being ac-
cessed concurrently; and (2) To defeat Prime+Probe at-
tacks, they manage the cacheability of pages to limit the
number of ways in each set that each VM can occupy. These
techniques result in significant slowdown, up to 25% for some
workloads, although usually significantly lower.

Most related to our work is CATalyst: a recent defense
targeted towards protecting the LLC [10]. CATalyst uses
Intel’s recent Cache Allocation Technology (CAT) to par-
tition the cache into an unrestricted insecure partition and
a secure partition (similar to page coloring). In addition,
within the secure partition, the critical data may not be
evicted since it is pinned in the cache and therefore can-
not be replaced by the attacker. CATalyst requires limited
changes to the programming language and run-time, in ad-
dition to the architecture, to mark the sensitive data and to
differentiate allocation of secure and unrestricted memory
pages.

8. CONCLUDING REMARKS
Shared LLCs have become a target of recent software-

based side-channel attacks. We proposed the Non-Inclusive
Read-Only (RIC) cache as a mechanism to efficiently pro-
tect caches against side channel attacks. The key idea of RIC
is to relax the inclusion property where cache coherence is
not needed (e.g., read-only data). As a result, RIC retains
the security-critical data in the local core caches and makes
accesses to it invisible to the attacker through the LLC side-
channel, thus closing the vulnerability to side channel at-
tacks in principle. The key benefit of RIC is that security is
achieved with performance gain, snoop filtering capability,
low design complexity and no modifications to the software.
As a result, RIC represents an attractive design point in the
domain of secure and high performance caches.

9. ACKNOWLEDGEMENT
This material is based on research sponsored by the Na-

tional Science Foundation grant CNS-1422401.

10. REFERENCES
[1] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,

“Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds,” in 16th ACM
Conference on Computer and Communications
Security (CCS), pp. 199–212, 2009.

[2] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$a: A
shared cache attack that works across cores and defies
vm sandboxing and its application to AES,” in IEEE
Symposium on Security and Privacy (SP), 2015.

[3] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee,
“Last-level cache side-channel attacks are practical,” in
IEEE Symposium on Security and Privacy (SP), San
Jose, CA, US, 2015.

[4] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh,
“Jump over ASLR: Attacking branch predictors to
bypass ASLR,” in 49th International Symposium on
Micrarchitecture (MICRO), 2016.

[5] T. Kim, M. Peinado, and G. Mainar-Ruiz,
“Stealthmem: System-level protection against
cache-based side channel attacks in the cloud,” in
USENIX Security Symposium, Aug. 2012.

[6] Z. Wang and R. Lee, “A novel cache architecture with
enhanced performance and security,” in Proc.
International Symposium on Microarchitecture
(MICRO), Dec. 2008.

[7] F. Liu and R. Lee, “Random fill cache architecture,” in
International Symposium on Microarchitecture,
Cambridge, UK, 2014.

[8] D. Gullasch, E. Bangerter, and S. Krenn, “Cache
games – bringing access-based cache attacks on aes to
practice,” in Security and Privacy (SP), 2011 IEEE
Symposium on, pp. 490–505, 2011.

[9] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and
A. Jaleel, “A high-resolution side-channel attack on
last-level cache,” in Proc. of the ACM Design
Automation Conference (DAC), 2016.

[10] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas,
G. Heiser, and R. Lee, “Catalyst: Defeating last-level
cache side channel attacks in cloud computing,” in
Proc. 22nd IEEE Symposium on High Performance
Computer Architecture (HPCA), 2016.

[11] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh,
and D. Ponomarev, “Non-monopolizable caches:
Low-complexity mitigation of cache side-channel
attacks,” in ACM Transactions on Architecture and
Code Optimization, Special Issue on High Performance
and Embedded Architectures and Compilers, Jan. 2012.

[12] Z. Wang and R. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in Proc.
International Symposium on Computer Architecture
(ISCA), June 2007.

[13] P. H. et al., “Haswell: The fourth-generation intel core
processor,” in IEEE Micro Magazine, Apr. 2014.

[14] D. Bouvier, B. Cohen, W. Fry, S. Godey, and
M. Mantor, “Kabini: An amd accelerated processing
unit system on a chip,” in IEEE Micro Magazine, Apr.
2014.

[15] T. ElGamal, “A public key cryptosystem and a
signature scheme based on discrete logarithms,” in
Advances in cryptology, pp. 10–18, Springer, 1984.

[16] B. A. Cuesta, A. Ros, M. E. Gómez, A. Robles, and
J. F. Duato, “Increasing the effectiveness of directory
caches by deactivating coherence for private memory
blocks,” in International Symposium on Computer
Architecture, pp. 93–104, 2011.

[17] “M-sim version 3.0, code and documentation,” 2005.
Available at: http://www.cs.binghamton.edu/˜msim.

[18] A. Jaleel, E. Borch, M. Bhandaru, S. Steely, and
J. Emer, “Achieving non-inclusive cache performance
with inclusive caches - temporal locality aware (TLA)
cache management policies,” in Proc. International
Symposium on Microarchitecture (MICRO), 2010.

[19] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An
integrated cache timing, power, and area model,” tech.
rep., Technical Report 2001/2, Compaq Computer
Corporation, 2001.

[20] R. Martin, J. Demme, and S. Sethumadhavan,
“Timewarp: Rethinking timekeeping and performance
monitoring mechanisms to mitigate side-channel
attacks,” in International Symposium on Computer
Architecture (ISCA), June 2012.

[21] M. Alisafaee, “Spatiotemporal coherence tracking,” in
Proceedings of the 2012 45th International Symposium
on Microarchitecture (MICRO), MICRO-45,
pp. 341–350, 2012.

[22] L. Zhao, R. Iyer, S. Makineni, D. Newell, and
L. Cheng, “Ncid: A non-inclusive cache, inclusive
directory architecture for flexible and efficient cache
hierarchies,” in Proc. ACM International Conference
on Computing Frontiers, May 2010.

[23] D.Page, “Partitioned cache architecture as a
side-channel defense mechanism,” in Crypt. ePrint
Arch., 2005.

[24] J. Kong, O. Aclicmez, J. Seifert, and H. Zhou,
“Hardware-software integrated approaches to defend
against software cache-based side channel attacks,” in
Int. Symp. on High Performance Comp. Architecture
(HPCA), February 2009.

[25] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software
approach to defeating side channels in last-level
caches,” in Proc. ACM CCS, 2016.

http://www.cs.binghamton.edu/~msim

	Introduction
	LLC Side Channels: Threat Model
	RIC: Relaxed Inclusion Caches
	Performance Evaluation of RIC
	RIC Hardware Complexity
	Security Analysis of RIC
	Related Work
	Concluding Remarks
	Acknowledgement
	References

