
 
CS161 – Fall 2016 

Homework Assignment 3 
 

Due: Friday, November 18th  @ 11:59pm  
This assignment may be completed in pairs. Please Indicate both names when submitting 

the assignment and upload in PDF format to iLearn 

1. Consider the following loop.  

𝑙𝑜𝑜𝑝:  𝑆𝑈𝐵𝐼  𝑅1, 𝑅1, #1  
𝐿W 𝑅3,0(𝑅2)  
𝐿W 𝑅4,4(𝑅2)  
𝑀𝑈𝐿  𝑅5, 𝑅3, 𝑅4  
𝐴𝐷𝐷  𝑅3, 𝑅5, 𝑅6  
𝐴𝐷𝐷𝐼  𝑅2, 𝑅2, #8  
𝐵𝑁𝐸  𝑅1, R0,𝑙𝑜𝑜𝑝  
𝐴𝐷𝐷  𝑅10, 𝑅11, 𝑅12  

a) Identify all data dependencies (potential data hazards) in the given code snippet. Assume 
the loop takes exactly one iteration to complete. Specify if the data dependence is RAW, 
WAW or WAR.  

b) Assume a 5-stage pipeline (IF ID EX MEM WB) without any forwarding or bypassing 
hardware, but with support for a register read and write in the same cycle. Also assume 
that branches are resolved in the ID stage and handled by stalling the pipeline. All stages 
take 1 cycle. Again, the loop takes one iteration to complete. Which dependencies from 
part (a) cause stalls? How many cycles does the loop take to execute?  

2. Consider the following loop. 
 

loop: LW     R1,0(R1) 
AND   R1,R1,R2 
LW     R1,0(R1) 
LW     R1,0(R1) 
BEQ   R1,R0,loop 

 
Assume that perfect branch prediction is used (no stalls due to control hazards), that there are no 
delay slots, and that the pipeline has full forwarding support. Also assume that many iterations of 
this loop are executed before the loop exits. 
 

a) Show a pipeline execution diagram for the third iteration of this loop, from the cycle in 
which we fetch the first instruction of that iteration up to (but not including) the cycle in 
which we can fetch the first instruction of the next iteration. Show all instructions that are 
in the pipeline during these cycles (not just those from the third iteration). 

 
b) How often (as a percentage of all cycles) do we have a cycle in which all five-pipeline 

stages are doing useful work? 



3. This exercise is intended to help you understand the relationship between delay slots, control 
hazards, and branch execution in a pipelined processor. In this exercise, we assume that the 
following MIPS code is executed on a pipelined processor with a 5-stage pipeline, full 
forwarding, and a predict-taken branch predictor: 

 
LW  R2,0(R1) 

label1:  BEQ  R2,R0,label2  # not taken once, then taken 
LW  R3,0(R2) 
BEQ  R3,R0,label1  # taken 
ADD  R1,R3,R1 

label2: SW  R1,0(R2) 
 

a) Draw the pipeline execution diagram for this code, assuming there are no delay slots and 
that branches execute in the EX stage. 

 
b) Repeat (a), but assume that delay slots are used. In the given code, the instruction that 

follows the branch is now the delay slot instruction for that branch. 
 

c) One way to move the branch resolution one stage earlier (ID stage) is to not need an ALU 
operation in conditional branches. The branch instructions would be “bez rd,label” and          
“bnez rd,label”, and it would branch if the register has and does not have a zero value, 
respectively. Change this code to use these branch instructions instead of beq. You can 
assume that register R8 is available for you to use as a temporary register, and that an seq 
(set if equal) R-type instruction can be used.  
 
Section 4.8 describes how the severity of control hazards can be reduced by moving 
branch execution into the ID stage. This approach involves a dedicated comparator in the 
ID stage, as shown in Figure 4.62 (final page). However, this approach potentially adds to 
the latency of the ID stage, and requires additional forwarding logic and hazard detection. 

 
d) Using the first branch instruction in the given code as an example, describe the hazard 

detection logic needed to support branch execution in the ID stage as in Figure 4.62 (final 
page). Which type of hazard is this new logic supposed to detect? 

 
e) For the given code, what is the speedup achieved by moving branch execution into the ID 

stage? Explain your answer. In your speedup calculation, assume that the additional 
comparison in the ID stage does not affect clock cycle time and that delay slots are not 
used. 

 
f) Using the first branch instruction in the given code as an example, describe the 

forwarding support that must be added to support branch execution in the ID stage. 
Compare the complexity of this new forwarding unit to the complexity of the existing 
forwarding unit in Figure 4.62 (final page). 

 
 
 
 
 
 
 



4. The importance of having a good branch predictor depends on how often conditional branches 
are executed. Together with branch predictor accuracy, this will determine how much time is 
spent stalling due to mispredicted branches. In this exercise, assume that the breakdown of 
dynamic instructions into various instruction categories is as follows: 

 
R-Type BEQ J LW SW 

40% 25% 5% 25% 5% 
 
 Also, assume the following branch predictor accuracies: 
 

Always-Taken Always-Not-Taken 2-Bit 
45% 55% 85% 

 
a) Stall cycles due to mispredicted branches increase the CPI. What is the extra CPI due to 

mispredicted branches with the always-taken predictor? Assume that branch outcomes 
are determined in the EX stage, that there are no data hazards, and that no delay slots are 
used. 

 
b) Repeat (a) for the “always-not-taken” predictor. 

 
c) Repeat (a) for for the 2-bit predictor. 

 
d) With the 2-bit predictor, what speedup would be achieved if we could convert half of the 

branch instructions in a way that replaces a branch instruction with an ALU instruction? 
Assume that correctly and incorrectly predicted instructions have the same chance of 
being replaced. 

 
e) With the 2-bit predictor, what speedup would be achieved if we could convert half of the 

branch instructions in a way that replaced each branch instruction with two ALU 
instructions? Assume that correctly and incorrectly predicted instructions have the same 
chance of being replaced. 

 
f) Some branch instructions are much more predictable than others. If we know that 80% of 

all executed branch instructions are easy-to-predict loop-back branches that are always 
predicted correctly, what is the accuracy of the 2-bit predictor on the remaining 20% of 
the branch instructions?   

 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. This exercise examines the accuracy of various branch predictors for the following repeating 
pattern (e.g., in a loop) of branch outcomes: T, NT, T, T, NT 

 
a) What is the accuracy of always-taken and always-not-taken predictors for this 

sequence of branch outcomes? 
 

b) What is the accuracy of the two-bit predictor for the first 4 branches in this pattern, 
assuming that the predictor starts off in the bottom left state from the figure below 
(predict not taken)? 

 
c) What is the accuracy of the two-bit predictor if this pattern is repeated forever? 

 
d) Design a predictor that would achieve a perfect accuracy if this pattern is repeated 

forever. You predictor should be a sequential circuit with one output that provides a 
prediction (1 for taken, 0 for not taken) and no inputs other than the clock and the 
control signal that indicates that the instruction is a conditional branch. 

 
e) What is the accuracy of your predictor from (d) if it is given a repeating pattern that 

is the exact opposite of this one? 
 

f) Repeat (d), but now your predictor should be able to eventually (after a warm-up 
period during which it can make wrong predictions) start perfectly predicting both 
this pattern and its opposite. Your predictor should have an input that tells it what the 
real outcome was. Hint: this input lets your predictor determine which of the two 
repeating patterns it is given. 

 

 
 
 

 



Figure 4.62 
 

 

 
 

 


