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Why Is Memory So Important? 
(Especially Today) 

 
 
 
 



The Main Memory System 

 
 

n  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

n  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 
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Processor 
and caches 

Main Memory Storage (SSD/HDD) 



Memory System: A Shared Resource View 
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Storage 



State of the Main Memory System 
n  Recent technology, architecture, and application trends 

q  lead to new requirements 
q  exacerbate old requirements 

n  DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements 

n  Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging 

n  We need to rethink/reinvent the main memory system 
q  to fix DRAM issues and enable emerging technologies  
q  to satisfy all requirements 
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Major Trends Affecting Main Memory (I) 
n  Need for main memory capacity, bandwidth, QoS increasing  

n  Main memory energy/power is a key system design concern 

n  DRAM technology scaling is ending  
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Demand for Memory Capacity 
n  More cores è More concurrency è Larger working set 

 
n  Modern applications are (increasingly) data-intensive 

n  Many applications/virtual machines (will) share main memory 

q  Cloud computing/servers: Consolidation to improve efficiency 
q  GP-GPUs: Many threads from multiple parallel applications 
q  Mobile: Interactive + non-interactive consolidation 
q  … 
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IBM Power7: 8 cores Intel SCC: 48 cores  AMD Barcelona: 4 cores 



Example: The Memory Capacity Gap 

 

n  Memory capacity per core expected to drop by 30% every two years 
n  Trends worse for memory bandwidth per core! 
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Core count doubling ~ every 2 years  
DRAM DIMM capacity doubling ~ every 3 years 

The image cannot be displayed. Your computer may not have 
enough memory to open the image, or the image may have been 



Major Trends Affecting Main Memory (II) 
n  Need for main memory capacity, bandwidth, QoS increasing  

q  Multi-core: increasing number of cores/agents 
q  Data-intensive applications: increasing demand/hunger for data 
q  Consolidation: Cloud computing, GPUs, mobile, heterogeneity 

n  Main memory energy/power is a key system design concern 

 

 
n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (III) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
n  Main memory energy/power is a key system design concern 

q  IBM servers: ~50% energy spent in off-chip memory hierarchy 
[Lefurgy, IEEE Computer 2003] 

q  DRAM consumes power when idle and needs periodic refresh 

n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (IV) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
 
n  Main memory energy/power is a key system design concern 

 
n  DRAM technology scaling is ending  

q  ITRS projects DRAM will not scale easily below X nm 
q  Scaling has provided many benefits:  

n  higher capacity, higher density, lower cost, lower energy 
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The DRAM Scaling Problem 
n  DRAM stores charge in a capacitor (charge-based memory) 

q  Capacitor must be large enough for reliable sensing 
q  Access transistor should be large enough for low leakage and high 

retention time 
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

n  DRAM capacity, cost, and energy/power hard to scale 
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Repeatedly opening and closing a row enough 2mes within a 
refresh interval induces disturbance errors in adjacent rows in 
most real DRAM chips you can buy today

OpenedClosed
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Evidence of  the DRAM Scaling Problem 

Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014. 



DRAM Modulex86 CPU

Y 

X 

loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 
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•  A real reliability & security issue 
•  In a more controlled environment, we can 

induce as many as ten million disturbance errors

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K	 12.3M/sec	

Intel Ivy Bridge (2012) 20.7K	 11.7M/sec	

Intel Sandy Bridge (2011) 16.1K	 11.6M/sec	

AMD Piledriver (2012) 59	 6.1M/sec	

19Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014. 

Observed Errors in Real Systems 



Main Memory 

 
 
 
 



Main Memory in the System 
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Review: Memory Bank Organization 
n  Read access sequence: 

 1. Decode row address 
& drive word-lines 
  

      2. Selected bits drive 
bit-lines 
     • Entire row read 

       
      3. Amplify row data 
       
      4. Decode column 

address & select subset 
of row 

         • Send to output 
       
      5. Precharge bit-lines 
        • For next access 
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Review: DRAM (Dynamic Random Access Memory) 
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RAS 

CAS 
A DRAM die comprises  
of multiple such arrays 

Bits stored as charges on node 
capacitance (non-restorative) 

-  bit cell loses charge when read 
-  bit cell loses charge over time 

Read Sequence 
1. address decode 
2. drive row select 
3. selected bit-cells drive bitlines 
   (entire row is read together) 

4. a “flip-flopping” sense amp 
amplifies and regenerates the 
bitline, data bit is mux’ed out 

5. precharge all bitlines 
Refresh: A DRAM controller must 
periodically read all rows within the 
allowed refresh time (10s of ms) 
such that charge is restored in cells 
 
 



The DRAM Subsystem 

 
 
 
 



DRAM Subsystem Organization 

n  Channel 
n  DIMM 
n  Rank 
n  Chip 
n  Bank 
n  Row/Column 
n  Cell 
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Page Mode DRAM 
n  A DRAM bank is a 2D array of cells: rows x columns 
n  A “DRAM row” is also called a “DRAM page” 
n  “Sense amplifiers” also called “row buffer” 

n  Each address is a <row,column> pair 
n  Access to a “closed row” (Closed Page Policy) 

q  Activate command opens row (placed into row buffer) 
q  Read/write command reads/writes column in the row buffer 
q  Precharge command closes the row and prepares the bank for 

next access 

n  Access to an “open row” (Open Page Policy) 
q  No need to Activate 
q  Keep row open until conflict 
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DRAM Bank Operation 
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The DRAM Chip 
n  Consists of multiple banks (8 is a common number today) 
n  Banks share command/address/data buses 
n  The chip itself has a narrow interface (4-16 bits per read) 

n  Changing the number of banks, size of the interface (pins), 
whether or not command/address/data buses are shared 
has significant impact on DRAM system cost 
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128M x 8-bit DRAM Chip 
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DRAM Rank and Module 
n  Rank: Multiple chips operated together to form a wide 

interface 
n  All chips comprising a rank are controlled at the same time 

q  Respond to a single command 
q  Share address and command buses, but provide different data 

n  A DRAM module consists of one or more ranks 
q  E.g., DIMM (dual inline memory module) 
q  This is what you plug into your motherboard 

n  If we have chips with 8-bit interface, to read 8 bytes in a 
single access, use 8 chips in a DIMM 
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A 64-bit Wide DIMM (One Rank) 
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A 64-bit Wide DIMM (One Rank) 
n  Advantages: 

q  Acts like a high-
capacity DRAM chip 
with a wide 
interface 

q  Flexibility: memory 
controller does not 
need to deal with 
individual chips 

n  Disadvantages: 
q  Granularity: 

Accesses cannot be 
smaller than the 
interface width 
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Multiple DIMMs 
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n  Advantages: 
q  Enables even 

higher capacity 

n  Disadvantages: 
q  Interconnect 

complexity and 
energy 
consumption 
can be high 

   à Scalability is 
limited by this 



DRAM Channels 

 
n  2 Independent Channels: 2 Memory Controllers (Above) 
n  2 Dependent/Lockstep Channels: 1 Memory Controller with 

wide interface (Not Shown above) 

34 



Generalized Memory Structure 
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Generalized Memory Structure 
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The DRAM Subsystem 
The Top Down View 

 
 
 
 



DRAM Subsystem Organization 

n  Channel 
n  DIMM 
n  Rank 
n  Chip 
n  Bank 
n  Row/Column 
n  Cell 
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The	DRAM	subsystem	

Memory	channel	 Memory	channel	

DIMM	(Dual	in-line	memory	module)	

Processor	

“Channel”	



Breaking	down	a	DIMM	

DIMM	(Dual	in-line	memory	module)	

Side	view	

Front	of	DIMM	 Back	of	DIMM	



Breaking	down	a	DIMM	

DIMM	(Dual	in-line	memory	module)	

Side	view	

Front	of	DIMM	 Back	of	DIMM	

Rank	0:	collecEon	of	8	chips	 Rank	1	
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Breaking	down	a	Chip	
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Breaking	down	a	Bank	
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DRAM Subsystem Organization 

n  Channel 
n  DIMM 
n  Rank 
n  Chip 
n  Bank 
n  Row/Column 
n  Cell 
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Example:	Transferring	a	cache	block	
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A	64B	cache	block	takes	8	I/O	cycles	to	transfer.	
	

During	the	process,	8	columns	are	read	sequenUally.	

.	.	.	


