

CS161 – Design and Architecture of Computer

Main Memory

Slides adapted from Onur Mutlu (CMU)

UNIVERSITY OF CALIFORNIA, RIVERSIDE

18-447

Computer Architecture Lecture 21: Main Memory

> Prof. Onur Mutlu Carnegie Mellon University Spring 2015, 3/23/2015

Why Is Memory So Important? (Especially Today)

The Main Memory System

- Main memory is a critical component of all computing systems: server, mobile, embedded, desktop, sensor
- Main memory system must scale (in size, technology, efficiency, cost, and management algorithms) to maintain performance growth and technology scaling benefits

Memory System: A Shared Resource View

SAFARI

State of the Main Memory System

- Recent technology, architecture, and application trends
 - lead to new requirements
 - exacerbate old requirements
- DRAM and memory controllers, as we know them today, are (will be) unlikely to satisfy all requirements
- Some emerging non-volatile memory technologies (e.g., PCM) enable new opportunities: memory+storage merging
- We need to rethink/reinvent the main memory system
 to fix DRAM issues and enable emerging technologies
 to satisfy all requirements

SAFARI

Major Trends Affecting Main Memory (I)

Need for main memory capacity, bandwidth, QoS increasing

Main memory energy/power is a key system design concern

DRAM technology scaling is ending

Demand for Memory Capacity

■ More cores → More concurrency → Larger working set

AMD Barcelona: 4 cores

IBM Power7: 8 cores

Intel SCC: 48 cores

Modern applications are (increasingly) data-intensive

Many applications/virtual machines (will) share main memory

- Cloud computing/servers: Consolidation to improve efficiency
- GP-GPUs: Many threads from multiple parallel applications
- Mobile: Interactive + non-interactive consolidation

Example: The Memory Capacity Gap

Core count doubling ~ every 2 years DRAM DIMM capacity doubling ~ every 3 years

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been

Memory capacity per core expected to drop by 30% every two years
Trends worse for *memory bandwidth per core*!

Major Trends Affecting Main Memory (II)

- Need for main memory capacity, bandwidth, QoS increasing
 - Multi-core: increasing number of cores/agents
 - Data-intensive applications: increasing demand/hunger for data
 - Consolidation: Cloud computing, GPUs, mobile, heterogeneity

• Main memory energy/power is a key system design concern

DRAM technology scaling is ending

Major Trends Affecting Main Memory (III)

Need for main memory capacity, bandwidth, QoS increasing

- Main memory energy/power is a key system design concern
 - IBM servers: ~50% energy spent in off-chip memory hierarchy [Lefurgy, IEEE Computer 2003]
 - DRAM consumes power when idle and needs periodic refresh
- DRAM technology scaling is ending

Major Trends Affecting Main Memory (IV)

Need for main memory capacity, bandwidth, QoS increasing

Main memory energy/power is a key system design concern

DRAM technology scaling is ending

- ITRS projects DRAM will not scale easily below X nm
- Scaling has provided many benefits:
 - higher capacity, higher density, lower cost, lower energy

The DRAM Scaling Problem

- DRAM stores charge in a capacitor (charge-based memory)
 - Capacitor must be large enough for reliable sensing
 - Access transistor should be large enough for low leakage and high retention time
 - □ Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

DRAM capacity, cost, and energy/power hard to scale

Evidence of the DRAM Scaling Problem

Repeatedly opening and closing a row enough times within a refresh interval induces **disturbance errors** in adjacent rows in **most real DRAM chips you can buy today**

Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of 14 DRAM Disturbance Errors," ISCA 2014.

Observed Errors in Real Systems

CPU Architecture	Errors	Access-Rate
Intel Haswell (2013)	22.9K	12.3M/sec
Intel Ivy Bridge (2012)	20.7K	11.7M/sec
Intel Sandy Bridge (2011)	16.1K	11.6M/sec
AMD Piledriver (2012)	59	6.1M/sec

- A real reliability & security issue
- In a more controlled environment, we can induce as many as ten million disturbance errors

Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

Main Memory

Main Memory in the System

Review: Memory Bank Organization

• Read access sequence:

1. Decode row address & drive word-lines

2. Selected bits drive bit-lines

• Entire row read

3. Amplify row data

4. Decode column address & select subset of row

- Send to output
- 5. Precharge bit-lines
 - For next access

Review: DRAM (Dynamic Random Access Memory)

The DRAM Subsystem

DRAM Subsystem Organization

- Channel
- DIMM
- Rank
- Chip
- Bank
- Row/Column
- Cell

Page Mode DRAM

- A DRAM bank is a 2D array of cells: rows x columns
- A "DRAM row" is also called a "DRAM page"
- "Sense amplifiers" also called "row buffer"
- Each address is a <row,column> pair
- Access to a "closed row" (Closed Page Policy)
 - Activate command opens row (placed into row buffer)
 - Read/write command reads/writes column in the row buffer
 - Precharge command closes the row and prepares the bank for next access
- Access to an "open row" (Open Page Policy)
 - No need to Activate
 - Keep row open until conflict

DRAM Bank Operation

The DRAM Chip

- Consists of multiple banks (8 is a common number today)
- Banks share command/address/data buses
- The chip itself has a narrow interface (4-16 bits per read)
- Changing the number of banks, size of the interface (pins), whether or not command/address/data buses are shared has significant impact on DRAM system cost

128M x 8-bit DRAM Chip

DRAM Rank and Module

- Rank: Multiple chips operated together to form a wide interface
- All chips comprising a rank are controlled at the same time
 - Respond to a single command
 - □ Share address and command buses, but provide different data
- A DRAM module consists of one or more ranks
 - E.g., DIMM (dual inline memory module)
 - This is what you plug into your motherboard
- If we have chips with 8-bit interface, to read 8 bytes in a single access, use 8 chips in a DIMM

A 64-bit Wide DIMM (One Rank)

A 64-bit Wide DIMM (One Rank)

Advantages:

- Acts like a highcapacity DRAM chip with a wide interface
- Flexibility: memory controller does not need to deal with individual chips

Disadvantages:

• Granularity:

Accesses cannot be smaller than the interface width

Multiple DIMMs

- Advantages:
 - Enables even higher capacity
- Disadvantages:
- Interconnect complexity and energy consumption can be high
 → Scalability is

DRAM Channels

- 2 Independent Channels: 2 Memory Controllers (Above)
- 2 Dependent/Lockstep Channels: 1 Memory Controller with wide interface (Not Shown above)

Generalized Memory Structure

Generalized Memory Structure

The DRAM Subsystem The Top Down View

DRAM Subsystem Organization

- Channel
- DIMM
- Rank
- Chip
- Bank
- Row/Column
- Cell

The DRAM subsystem

Breaking down a DIMM

Breaking down a DIMM

Rank

Breaking down a Rank

Breaking down a Chip

Breaking down a Bank

DRAM Subsystem Organization

- Channel
- DIMM
- Rank
- Chip
- Bank
- Row/Column
- Cell

Physical memory space

A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.