
CS161 – Design and
Architecture of
Computer
Main Memory

Slides adapted from Onur Mutlu (CMU)

18-447
Computer Architecture

Lecture 21: Main Memory

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 3/23/2015

Why Is Memory So Important?
(Especially Today)

The Main Memory System

n  Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n  Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

4

Processor
and caches

Main Memory Storage (SSD/HDD)

Memory System: A Shared Resource View

5

Storage

State of the Main Memory System
n  Recent technology, architecture, and application trends

q  lead to new requirements
q  exacerbate old requirements

n  DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

n  Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

n  We need to rethink/reinvent the main memory system
q  to fix DRAM issues and enable emerging technologies
q  to satisfy all requirements

6

Major Trends Affecting Main Memory (I)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

7

Demand for Memory Capacity
n  More cores è More concurrency è Larger working set

n  Modern applications are (increasingly) data-intensive

n  Many applications/virtual machines (will) share main memory

q  Cloud computing/servers: Consolidation to improve efficiency
q  GP-GPUs: Many threads from multiple parallel applications
q  Mobile: Interactive + non-interactive consolidation
q  …

8

IBM Power7: 8 cores Intel SCC: 48 cores AMD Barcelona: 4 cores

Example: The Memory Capacity Gap

n  Memory capacity per core expected to drop by 30% every two years
n  Trends worse for memory bandwidth per core!

9

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

The image cannot be displayed. Your computer may not have
enough memory to open the image, or the image may have been

Major Trends Affecting Main Memory (II)
n  Need for main memory capacity, bandwidth, QoS increasing

q  Multi-core: increasing number of cores/agents
q  Data-intensive applications: increasing demand/hunger for data
q  Consolidation: Cloud computing, GPUs, mobile, heterogeneity

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

10

Major Trends Affecting Main Memory (III)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

q  IBM servers: ~50% energy spent in off-chip memory hierarchy
[Lefurgy, IEEE Computer 2003]

q  DRAM consumes power when idle and needs periodic refresh

n  DRAM technology scaling is ending

11

Major Trends Affecting Main Memory (IV)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

q  ITRS projects DRAM will not scale easily below X nm
q  Scaling has provided many benefits:

n  higher capacity, higher density, lower cost, lower energy

12

The DRAM Scaling Problem
n  DRAM stores charge in a capacitor (charge-based memory)

q  Capacitor must be large enough for reliable sensing
q  Access transistor should be large enough for low leakage and high

retention time
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n  DRAM capacity, cost, and energy/power hard to scale

13

 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

 VLOW VHIGH
 Vic2m Row

 Vic2m Row
 Aggressor Row

Repeatedly opening and closing a row enough 2mes within a
refresh interval induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

OpenedClosed

14

Evidence of the DRAM Scaling Problem

Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014.

DRAM Modulex86 CPU

Y

X

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

DRAM Modulex86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

DRAM Modulex86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

DRAM Modulex86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

•  A real reliability & security issue
•  In a more controlled environment, we can

induce as many as ten million disturbance errors

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K	 12.3M/sec	

Intel Ivy Bridge (2012) 20.7K	 11.7M/sec	

Intel Sandy Bridge (2011) 16.1K	 11.6M/sec	

AMD Piledriver (2012) 59	 6.1M/sec	

19Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014.

Observed Errors in Real Systems

Main Memory

Main Memory in the System

21

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Review: Memory Bank Organization
n  Read access sequence:

 1. Decode row address
& drive word-lines

 2. Selected bits drive
bit-lines
 • Entire row read

 3. Amplify row data

 4. Decode column

address & select subset
of row

 • Send to output

 5. Precharge bit-lines
 • For next access

22

Review: DRAM (Dynamic Random Access Memory)

23

row enable
_b

itl
in

e

bit-cell array

2n row x 2m-col

(n≈m to minimize
overall latency)

sense amp and mux
2m

2n n

m

1

RAS

CAS
A DRAM die comprises
of multiple such arrays

Bits stored as charges on node
capacitance (non-restorative)

-  bit cell loses charge when read
-  bit cell loses charge over time

Read Sequence
1. address decode
2. drive row select
3. selected bit-cells drive bitlines
 (entire row is read together)

4. a “flip-flopping” sense amp
amplifies and regenerates the
bitline, data bit is mux’ed out

5. precharge all bitlines
Refresh: A DRAM controller must
periodically read all rows within the
allowed refresh time (10s of ms)
such that charge is restored in cells

The DRAM Subsystem

DRAM Subsystem Organization

n  Channel
n  DIMM
n  Rank
n  Chip
n  Bank
n  Row/Column
n  Cell

25

Page Mode DRAM
n  A DRAM bank is a 2D array of cells: rows x columns
n  A “DRAM row” is also called a “DRAM page”
n  “Sense amplifiers” also called “row buffer”

n  Each address is a <row,column> pair
n  Access to a “closed row” (Closed Page Policy)

q  Activate command opens row (placed into row buffer)
q  Read/write command reads/writes column in the row buffer
q  Precharge command closes the row and prepares the bank for

next access

n  Access to an “open row” (Open Page Policy)
q  No need to Activate
q  Keep row open until conflict

26

DRAM Bank Operation

27

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0 Empty

 (Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HIT HIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

 Access Address:

The DRAM Chip
n  Consists of multiple banks (8 is a common number today)
n  Banks share command/address/data buses
n  The chip itself has a narrow interface (4-16 bits per read)

n  Changing the number of banks, size of the interface (pins),
whether or not command/address/data buses are shared
has significant impact on DRAM system cost

28

128M x 8-bit DRAM Chip

29

DRAM Rank and Module
n  Rank: Multiple chips operated together to form a wide

interface
n  All chips comprising a rank are controlled at the same time

q  Respond to a single command
q  Share address and command buses, but provide different data

n  A DRAM module consists of one or more ranks
q  E.g., DIMM (dual inline memory module)
q  This is what you plug into your motherboard

n  If we have chips with 8-bit interface, to read 8 bytes in a
single access, use 8 chips in a DIMM

30

A 64-bit Wide DIMM (One Rank)

31

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Command Data

A 64-bit Wide DIMM (One Rank)
n  Advantages:

q  Acts like a high-
capacity DRAM chip
with a wide
interface

q  Flexibility: memory
controller does not
need to deal with
individual chips

n  Disadvantages:
q  Granularity:

Accesses cannot be
smaller than the
interface width

32

Multiple DIMMs

33

n  Advantages:
q  Enables even

higher capacity

n  Disadvantages:
q  Interconnect

complexity and
energy
consumption
can be high

 à Scalability is
limited by this

DRAM Channels

n  2 Independent Channels: 2 Memory Controllers (Above)
n  2 Dependent/Lockstep Channels: 1 Memory Controller with

wide interface (Not Shown above)

34

Generalized Memory Structure

35

Generalized Memory Structure

36

The DRAM Subsystem
The Top Down View

DRAM Subsystem Organization

n  Channel
n  DIMM
n  Rank
n  Chip
n  Bank
n  Row/Column
n  Cell

38

The	DRAM	subsystem	

Memory	channel	 Memory	channel	

DIMM	(Dual	in-line	memory	module)	

Processor	

“Channel”	

Breaking	down	a	DIMM	

DIMM	(Dual	in-line	memory	module)	

Side	view	

Front	of	DIMM	 Back	of	DIMM	

Breaking	down	a	DIMM	

DIMM	(Dual	in-line	memory	module)	

Side	view	

Front	of	DIMM	 Back	of	DIMM	

Rank	0:	collecEon	of	8	chips	 Rank	1	

Rank	

Rank	0	(Front)	 Rank	1	(Back)	

Data	<0:63>	CS	<0:1>	Addr/Cmd	

<0:63>	<0:63>	

Memory	channel	

Breaking	down	a	Rank	

Rank	0	

<0:63>	

Ch
ip
	0
	

Ch
ip
	1
	

Ch
ip
	7
	.	.	.	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

Breaking	down	a	Chip	

Ch
ip
	0
	

<0
:7
>	

Bank	0	

<0:7>	

<0:7>	

<0:7>	

...	

<0
:7
>	

Breaking	down	a	Bank	

Bank	0	

<0
:7
>	

row	0	

row	16k-1	

...	
2kB	

1B	

1B	(column)	

1B	

Row-buffer	

1B	

...	
<0
:7
>	

DRAM Subsystem Organization

n  Channel
n  DIMM
n  Rank
n  Chip
n  Bank
n  Row/Column
n  Cell

46

Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Channel	0	

DIMM	0	

Rank	0	
Mappe

d	to	

Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

.	.	.	

Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

Row	0	
Col	0	

.	.	.	

Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

8B	

Row	0	
Col	0	

.	.	.	

8B	

Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

8B	

Row	0	
Col	1	

.	.	.	

Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

8B	

8B	

Row	0	
Col	1	

.	.	.	

8B	

Example:	Transferring	a	cache	block	

0xFFFF…F	

0x00	

0x40	

...
	

64B		
cache	block	

Physical	memory	space	

Rank	0	Chip	0	 Chip	1	 Chip	7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	<0:63>	

8B	

8B	

Row	0	
Col	1	

A	64B	cache	block	takes	8	I/O	cycles	to	transfer.	
	

During	the	process,	8	columns	are	read	sequenUally.	

.	.	.	

