
CS161 – Design and
Architecture of
Computer
Virtual Memory

Why Virtual memory?
! Allows applications to be bigger than main memory size
! Helps with multiple process management

! Each process gets its own chunk of memory
! Protection of processes against each other
! Mapping of multiple processes to memory
! Relocation
! Application and CPU run in virtual space
! Mapping of virtual to physical space is invisible to the application

! Management between main memory and disk
! Miss in main memory is a page fault or address fault
! Block is a page

2

Mapping Virtual to Physical Memory
! Divide memory into equal sized

“chunks” or pages (typically 4KB each)
! Any chunk of Virtual Memory can be

assigned to any chunk of Physical
Memory

3

0

Physical Memory

∞!Virtual Memory

64 MB

0

Single!
Process!

Stack!

Heap!

Static!

Code!

Paged Virtual Memory

! Virtual address space divided into pages
! Physical address space divided into pageframes
! Page missing in Main Memory = page fault

! Pages not in Main Memory are on disk: swap-in/swap-out
! Or have never been allocated
! New page may be placed anywhere in MM (fully associative map)

! Dynamic address translation
! Effective address is virtual
! Must be translated to physical for every access
! Virtual to physical translation through page table in Main Memory

4

Cache vs VM
! Cache Virtual Memory
! Block or Line Page
! Miss Page Fault
! Block Size: 32-64B Page Size: 4K-16KB
! Placement:

Direct Mapped, Fully Associative
N-way Set Associative

! Replacement:
LRU or Random LRU approximation

! Write Thru or Back Write Back
! How Managed:

Hardware Hardware + Software
 (Operating System)

5

Handling Page Faults
! A page fault is like a cache miss

! Must find page in lower level of hierarchy

! If valid bit is zero, the Physical Page Number
points to a page on disk

! When OS starts new process, it creates space
on disk for all the pages of the process, sets all
valid bits in page table to zero, and all Physical
Page Numbers to point to disk
! called Demand Paging - pages of the process are

loaded from disk only as needed
! Create “swap” space for all virtual pages on disk

6

Performing Address Translation
! VM divides memory into equal sized pages
! Address translation relocates entire pages

! offsets within the pages do not change
! if page size is a power of two, the virtual address

separates into two fields:
(like cache index, offset fields)

7

Virtual Page Number! Page Offset!

virtual address!

Mapping Virtual to Physical Address

8

Address Translation
! Want fully associative page placement
! How to locate the physical page?

! Search impractical (too many pages)

! A page table is a data structure which contains the
mapping of virtual pages to physical pages
! There are several different ways, all up to the

operating system, to keep this data around
! Each process running in the system has its own page

table

9

Page Table and Address Translation

10

 Page table

 Main memory

 Valid
bits

 Page table
register

 Virtual
page

number

 Other
f lags

! Page table translates address

Page Table

11

Mapping Pages to Storage

12

Replacement and Writes
! To reduce page fault rate, prefer least-

recently used (LRU) replacement
! Reference bit (aka use bit) in PTE set to 1 on

access to page
! Periodically cleared to 0 by OS
! A page with reference bit = 0 has not been used

recently
! Disk writes take millions of cycles

! Block at once, not individual locations
! Write through is impractical
! Use write-back
! Dirty bit in PTE set when page is written

13

Optimizing VM
! Page Table too big!

! 4GB Virtual address space / 4 KB page
! 220 page table entries. Assume 4B per entry.
! 4MB just for Page Table of single process

! With 100 process, 400MB of memory is required!

! Virtual Memory too slow!
! Requires two memory accesses.

! One to access page table to get the memory address
! Another to get the real data

14

Fast Address Translation
! Problem: Virtual Memory requires two memory accesses!

! one to translate Virtual Address into Physical Address (page table lookup)
! one to transfer the actual data (hit)
! But Page Table is in physical memory! => 2 main memory accesses!

! Observation: since there is locality in pages of data, must be locality
in virtual addresses of those pages!

! Why not create a cache of virtual to physical address translations to

make translation fast? (smaller is faster)

! For historical reasons, such a “page table cache” is called a
Translation Lookaside Buffer, or TLB

15

Fast Translation Using a TLB

16

TLB Translation

17

Virtual-to-physical address translation by a TLB and how the
resulting physical address is used to access the cache memory.

Virtual
page number

 Byte
 offset

Byte offset
in word

Physical
address tag

Cache index

Valid
bits

TLB tags

Tags match
and entry
is valid

Physical
page number Physical

address

Virtual
address

Tr
an

sl
at

io
n

Other
flags

TLB Misses
! If page is in memory

! Load the PTE from memory and retry
! Could be handled in hardware

! Can get complex for more complicated page table
structures

! Or in software
! Raise a special exception, with optimized handler

! If page is not in memory (page fault)
! OS handles fetching the page and updating the

page table
! Then restart the faulting instruction

18

TLB Miss Handler
! TLB miss indicates

! Page present, but PTE not in TLB
! Page not preset

! Must recognize TLB miss before destination
register overwritten
! Raise exception

! Handler copies PTE from memory to TLB
! Then restarts instruction
! If page not present, page fault will occur

19

Page Fault Handler
! Use faulting virtual address to find PTE
! Locate page on disk
! Choose page to replace

! If dirty, write to disk first
! Read page into memory and update page

table
! Make process runnable again

! Restart from faulting instruction

20

TLB and Cache Interaction
! If cache tag uses

physical address
! Need to translate

before cache lookup

! Physically Indexed,
Physically Tagged

TLB and Cache Addressing
! Cache review

! Set or block field indexes are used to get tags
! 2 steps to determine hit:

! Index (lookup) to find tags (using block or set bits)
! Compare tags to determine hit
! Sequential connection between indexing and tag

comparison
! Rather than waiting for address translation

and then performing this two step hit process,
can we overlap the translation and portions of
the hit sequence?
! Yes!

22

Cache Index/Tag Options
! Physically indexed, physically tagged

(PIPT)
! Wait for full address translation
! Then use physical address for both

indexing and tag comparison

! Virtually indexed, physically tagged (VIPT)
! Use portion of the virtual address for

indexing then wait for address
translation and use physical address
for tag comparisons

! Virtually indexed, virtually tagged (VIVT)

! Use virtual address for both indexing
and tagging…No TLB access unless
cache miss

! Requires invalidation of cache lines on
context switch or use of process ID as
part of tags

23

Virtually Index Physically Tagged

24

Cache & Virtual memory

25

Summary
! Virtual Memory overcomes main memory

size limitations

! VM supported through Page Tables

! TLB enables fast address translation

26

