
CS161 – Design and
Architecture of
Computer Systems
Cache
$$$$$

Memory Systems
! How can we supply the CPU with enough data to keep it busy?
! We will focus on memory issues,

! which are frequently bottlenecks that limit the performance of a system.

! Ideal memory: large, fast and cheap

Memory Processor

Input/Output

Storage Speed Cost Capacity Delay Cost/GB

Static RAM Fastest Expensive Smallest 0.5 – 2.5 ns $1,000’s

Dynamic RAM Slow Cheap Large 50 – 70 ns $10’s

Hard disks Slowest Cheapest Largest 5 – 20 ms $0.1’s

Performance Gap

The memory wall

Typical Memory Hierarchy

! Principle of locality:
! A program accesses a relatively small portion of the address space at a time
! Two different types of locality:

! Temporal locality: if an item is referenced, it will tend to be referenced again soon
! Spatial locality: if an item is referenced, items whose addresses are close tend to be

referenced soon

4

How to Create the Illusion of Big and Fast
! Memory hierarchy – put small and fast memories closer to CPU, large and

slow memories further away

CPU

Level n

Level 2

Level 1

Levels in the
memory hierarchy

Increasing distance
from the CPU in

access time

Size of the memory at each level

Introducing caches

! Introducing a cache – a small amount of fast,
expensive memory.
! The cache goes between the processor and the

slower, dynamic main memory.
! It keeps a copy of the most frequently used data

from the main memory.

! Memory access speed increases overall, because
we’ve made the common case faster.
! Reads and writes to the most frequently used

addresses will be serviced by the cache.
! We only need to access the slower main

memory for less frequently used data.

Lots of
dynamic RAM

A little static
RAM (cache)

CPU

The principle of locality
! Why does the hierarchy work?

! Because most programs exhibit locality,
which the cache can take advantage of.
! The principle of temporal locality says that if a

program accesses one memory address, there is
a good chance that it will access the same
address again.

! The principle of spatial locality says that if a
program accesses one memory address, there is
a good chance that it will also access other
nearby addresses.

How caches take advantage of locality
! First time the processor reads from an address in

main memory, a copy of that data is also stored in
the cache.
! The next time that same address is read, we can use

the copy of the data in the cache instead of
accessing the slower dynamic memory.

! So the first read is a little slower than before since it
goes through both main memory and the cache, but
subsequent reads are much faster.

! This takes advantage of temporal locality—
commonly accessed data is stored in the faster
cache memory.

! By storing a block (multiple words) we also take
advantage of spatial locality

Lots of
dynamic RAM

A little static
RAM (cache)

CPU

Temporal locality in instructions
! Loops are excellent examples of temporal locality in programs.

! The loop body will be executed many times.
! The computer will need to access those same few locations of the

instruction memory repeatedly.
! For example:

! Each instruction will be fetched over and over again, once on every loop
iteration.

Loop: lw $t0, 0($s1)
 add $t0, $t0, $s2
 sw $t0, 0($s1)
 addi $s1, $s1, -4
 bne $s1, $0, Loop

Temporal locality in data
! Programs often access the same variables over and

over, especially within loops. Below, sum and i are
repeatedly read and written.

! Commonly-accessed variables can sometimes be kept in
registers, but this is not always possible.
! There are a limited number of registers.
! There are situations where the data must be kept in memory, as

is the case with shared or dynamically-allocated memory.

sum = 0;
for (i = 0; i < MAX; i++)

 sum = sum + f(i);

Spatial locality in instructions

! Nearly every program exhibits spatial locality, because instructions
are usually executed in sequence — if we execute an instruction at
memory location i, then we will probably also execute the next
instruction, at memory location i+1.

! Code fragments such as loops exhibit both temporal and spatial
locality.

sub $sp, $sp, 16
sw $ra, 0($sp)
sw $s0, 4($sp)
sw $a0, 8($sp)
sw $a1, 12($sp)

Spatial locality in data
! Programs often access

data that is stored
contiguously.
! Arrays, like a in the code

on the top, are stored in
memory contiguously.

! The individual fields of a
record or object like
employee are also kept
contiguously in memory.

employee.name = “Homer Simpson”;
employee.boss = “Mr. Burns”;
employee.age = 45;

sum = 0;
for (i = 0; i < MAX; i++)

 sum = sum + a[i];

CACHE BASICS

13

Definitions: Hits and misses
! A cache hit

! occurs if the cache contains the data that we’re looking for. Hits are good,
because the cache can return the data much faster than main memory.

! A cache miss
! occurs if the cache does not contain the requested data. This is bad, since

the CPU must then wait for the slower main memory.

! There are two basic measurements of cache performance.
! The hit rate is the percentage of memory accesses that are handled by the

cache.
! The miss rate (1 - hit rate) is the percentage of accesses that must be

handled by the slower main RAM.
! Typical caches have a hit rate of 95% or higher, so in fact most memory

accesses will be handled by the cache and will be dramatically faster.

A simple cache design
! Caches are divided into blocks, which may be of various sizes.

! The number of blocks in a cache is usually a power of 2.

000
001
010
011
100
101
110
111

Block
index Block

Here is an example
cache with eight blocks,
each holding one byte.

0
1
2
3

Index

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Memory
Address

A direct-mapped cache is
the simplest approach:
each main memory
address maps to exactly
one cache block.

Four important questions
1. When we copy a block of data from main memory to the

cache, where exactly should we put it?

2. How can we tell if a word is already in the cache, or if it
has to be fetched from main memory first?

3. Eventually, the small cache memory might fill up. To load
a new block from main RAM, we’d have to replace one
of the existing blocks in the cache... which one?

4. How can write operations be handled by the memory
system?

§  Questions 1 and 2 are related—we have to know where the data is placed
if we ever hope to find it again later!

Adding tags
! We need to add tags to the cache, which supply the rest

of the address bits to let us distinguish between different
memory locations that map to the same cache block.

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Tag Data
00
??
01
01

Figuring out what’s in the cache
! Now we can tell exactly which addresses of

main memory are stored in the cache, by
concatenating the cache block tags with the
block indices.

00
01
10
11

Index Tag Data
00
11
01
01

00 + 00 = 0000
11 + 01 = 1101
01 + 10 = 0110
01 + 11 = 0111

Main memory
address in cache block

One more detail: the valid bit
! When started, the cache is empty and does not contain valid data.
! We should account for this by adding a valid bit for each cache block.

! When the system is initialized, all the valid bits are set to 0.
! When data is loaded into a particular cache block, the

corresponding valid bit is set to 1.

! So the cache contains more than just copies of the data in memory; it
also has bits to help us find data within the cache and verify its
validity.

00
01
10
11

Index Tag Data
00
11
01
01

00 + 00 = 0000
Invalid

???
???

Main memory
address in cache block

1
0
0
1

Valid
Bit

What happens on a cache hit
! When the CPU tries to read from memory, the address will be sent to a cache

controller.
! The lowest k bits of the block address will index a block in the cache.
! If the block is valid and the tag matches the upper (m - k) bits of the m-bit

address, then that data will be sent to the CPU.
! Here is a diagram of a 32-bit memory address and a 210-byte cache.

0
1
2
3
...
...

1022
1023

Index Tag Data Valid Address (32 bits)

=

To CPU

Hit

10 22

Index

Tag

What happens on a cache miss
! On cache hit, CPU proceeds normally
! On cache miss

! Stall the CPU pipeline
! Fetch block from next level of hierarchy
! Instruction cache miss

! Restart instruction fetch
! Data cache miss

! Complete data access

! The delays that we have been assuming for memories
(e.g., 2ns) are really assuming cache hits.

Loading a block into the cache
! After data is read from main memory, putting a copy of

that data into the cache is straightforward.
! The lowest k bits of the block address specify a cache block.
! The upper (m - k) address bits are stored in the block’s tag field.
! The data from main memory is stored in the block’s data field.
! The valid bit is set to 1.

0
1
2
3
...

...
...

Index Tag Data Valid Address (32 bits)

10 22

Index

Tag

Data

1

Memory Hierarchy Basics
! When a word is not found in the cache, a miss

occurs:
! Fetch word from lower level in hierarchy, requiring a

higher latency reference
! Lower level may be another cache or the main

memory
! Also fetch the other words contained within the block

! Takes advantage of spatial locality

! Place block into cache in any location within its set,
determined by address

23

Cache Sets and Ways

24

block/line Sets:
Block

mapped
by

addr

Ways: Block can go anywhere

n-way set associative

(4-way set associative)

Example: Cache size = 16 blocks

Direct-mapped Cache

25

block/line

16 Sets

1-way

Direct mapped cache
Each block maps to only one cache line

aka

1-way set associative

Set Associative Cache

26

block/line

4 Sets

4-way

n-way set associative
Each block can be mapped to a set of n-lines

Set number is based on block address

(4-way set associative)

Fully Associative Cache

27

block
/line 1 Sets

16-ways

Fully associative
Each block can be mapped to any cache line

aka

m-way set associative
where m = size of cache in blocks

Set Associative Cache Organization

Cache Addressing

29

block/line s-Sets:
Block

mapped
by

addr

n-Ways: Block can go anywhere

m = size of cache in blocks
n = number of ways

b = block size in bytes

Tag
(remainder)
bits = 32-s-b

Index
(sets)
bits = log2s

Offset
(block size)
bits = log2b

Address

Cache size = s * n * b
of Sets (s) = m / n

Ex. 64KB cache, direct mapped, 16 byte block

Cache Addressing

30

m = size of cache in blocks
n = number of ways

b = block size in bytes

Tag
(remainder)
bits = 32-s-b

Index
(sets)
bits = log2s

Offset
(block size)
bits = log2b

Address

Cache size = s * n * b
of Sets (s) = m / n

16 12 4

Ex. 64KB cache, 2-way assoc., 16 byte block

Cache Addressing

31

m = size of cache in blocks
n = number of ways

b = block size in bytes

Tag
(remainder)
bits = 32-s-b

Index
(sets)
bits = log2s

Offset
(block size)
bits = log2b

Address

Cache size = s * n * b
of Sets (s) = m / n

17 11 4

Ex. 64KB cache, fully assoc., 16 byte block

Cache Addressing

32

m = size of cache in blocks
n = number of ways

b = block size in bytes

Tag
(remainder)
bits = 32-s-b

Index
(sets)
bits = log2s

Offset
(block size)
bits = log2b

Address

Cache size = s * n * b
of Sets (s) = m / n

28 0 4

What if the cache fills up?
! Our third question was what to do if we run out of space

in our cache, or if we need to reuse a block for a different
memory address.

! A miss causes a new block to be loaded into the cache,
automatically overwriting any previously stored data.
! This is a least recently used replacement policy, which assumes

that older data is less likely to be requested than newer data.

! There are other policies.

Replacement Policy
! Direct mapped: no choice
! Set associative

! Prefer non-valid entry, if there is one
! Otherwise, choose among entries in the set

! Least-recently used (LRU)
! Choose the one unused for the longest time

! Simple for 2-way, manageable for 4-way, too hard
beyond that

! Random
! Gives approximately the same performance as

LRU for high associativity

Cache Replacement Policies
! Picks which block to replace within the set
! Ex. - Random, First In First Out (FIFO),

Least Recently Used (LRU), Psuedo-LRU
! Example: LRU

35

Line 0 01
Line 1 00
Line 2 11
Line 3 10

Line 0 10
Line 1 01
Line 2 11
Line 3 00

Hit on Line 3

Line 0 10
Line 1 01
Line 2 00
Line 3 11

Write-Through
! On data-write hit, could just update the block in cache

! But then cache and memory would be inconsistent
! Write through: also update memory
! But makes writes take longer

! e.g., if base CPI = 1, 10% of instructions are stores, write to
memory takes 100 cycles
! Effective CPI = 1 + 0.1×100 = 11

! Solution: write buffer
! Holds data waiting to be written to memory
! CPU continues immediately

! Only stalls on write if write buffer is already full
CPU

L1 L2

Write Buffer

All stores

L1 missesAll accesses

Write-Back
! Alternative: On data-write hit, just update the

block in cache
! Keep track of whether each block is dirty

! When a dirty block is replaced
! Write it back to memory
! Can use a write buffer to allow replacing block to

be read first

Write Allocation
! What should happen on a write miss?
! Alternatives for write-through

! Allocate on miss: fetch the block
! Write around: don’t fetch the block

! Since programs often write a whole block before
reading it (e.g., initialization)

! For write-back
! Usually fetch the block

! Components of CPU time
! Program execution cycles: Includes cache hit time
! Memory stall cycles: Mainly from cache misses

! With simplifying assumptions:

! Example:
! Given:

! I-cache miss rate = 2%, D-cache miss rate = 4%, Miss penalty = 100
cycles, Base CPI (ideal cache) = 2, Load & stores are 36% of
instructions

! Miss cycles per instruction
! I-cache: 0.02 × 100 = 2
! D-cache: 0.36 × 0.04 × 100 = 1.44

! Actual CPI = 2 + 2 + 1.44 = 5.44
! Ideal CPU is 5.44/2 =2.72 times faster

Memory stall cycles =
Memory accesses

Program
×Miss rate ×Miss penalty

=
Instructions

Program
×

Misses

Instruction
×Miss penalty

Measuring Cache Performance

Average Access Time
! Hit time is also important for performance
! Average memory access time (AMAT)

! AMAT = Hit time + Miss rate × Miss penalty
! Example

! CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

! AMAT = 1 + 0.05 × 20 = 2ns
! 2 cycles per instruction

Performance Summary
! When CPU performance increased

! Miss penalty becomes more significant
! Decreasing base CPI

! Greater proportion of time spent on memory stalls
! Increasing clock rate

! Memory stalls account for more CPU cycles
! Can’t neglect cache behavior when

evaluating system performance

Sources of Misses
! Compulsory misses (aka cold

start misses)
! First access to a block

! Capacity misses
! Due to finite cache size
! A replaced block is later

accessed again
! Conflict misses (aka collision

misses)
! In a non-fully associative

cache
! Due to competition for entries

in a set
! Would not occur in a fully

associative cache of the same
total size

Measuring/Classifying Misses
! How to find out?

! Cold misses: Simulate a fully associative infinite cache
size

! Capacity misses: Simulate fully associative cache,
then deduct cold misses

! Conflict misses: Simulate target cache configuration
then deduct cold and capacity misses

! Classification is useful to understand how to
eliminate misses

! High conflict misses à need higher associativity
! High capacity misses à need larger cache

43

Multilevel Caches
! Primary cache attached to CPU

! Small, but fast
! Level-2 cache services misses from primary

cache
! Larger, slower, but still faster than main memory

! Main memory services L-2 cache misses
! Some high-end systems include L-3 cache

Multilevel Cache Example
! Given

! CPU base CPI = 1, clock rate = 4GHz
! Miss rate/instruction = 2%
! Main memory access time = 100ns

! With just primary cache
! Miss penalty = 100ns/0.25ns = 400 cycles
! Effective CPI = 1 + 0.02 × 400 = 9

! Now add L-2 cache
! Access time = 5ns
! Global miss rate to main memory = 0.5%
! Primary miss with L2 hit

! Penalty = 5ns/0.25ns = 20 cycles
! Primary miss with L2 miss

! Extra penalty = 500 cycles

! CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4
! Performance ratio = 9/3.4 = 2.6

Multilevel Cache Considerations
! Primary cache

! Focus on minimal hit time
! L2 cache

! Focus on low miss rate to avoid main memory
access

! Hit time has less overall impact
! Results

! L-1 cache usually smaller than a single cache
! L-1 block size smaller than L-2 block size

