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Memory Systems 
! How can we supply the CPU with enough data to keep it busy? 
! We will focus on memory issues,  

! which are frequently bottlenecks that limit the performance of a system. 

! Ideal memory: large, fast and cheap 
 

Memory Processor 

Input/Output 

Storage Speed Cost Capacity Delay Cost/GB 

Static RAM Fastest Expensive Smallest 0.5 – 2.5 ns $1,000’s 

Dynamic RAM Slow Cheap Large 50 – 70 ns $10’s 

Hard disks Slowest Cheapest Largest 5 – 20 ms $0.1’s 



Performance Gap 

The memory wall 



Typical Memory Hierarchy 

! Principle of locality: 
! A program accesses a relatively small portion of the address space at a time 
! Two different types of locality: 

! Temporal locality: if an item is referenced, it will tend to be referenced again soon 
! Spatial locality: if an item is referenced, items whose addresses are close tend to be 

referenced soon 
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How to Create the Illusion of Big and Fast 
! Memory hierarchy – put small and fast memories closer to CPU, large and 

slow memories further away 

CPU

Level n

Level 2

Level 1

Levels in the
memory hierarchy

Increasing distance 
from the CPU in 

access time 

Size of the memory at each level



Introducing caches 

! Introducing a cache – a small amount of fast, 
expensive memory. 
! The cache goes between the processor and the 

slower, dynamic main memory. 
! It keeps a copy of the most frequently used data 

from the main memory. 

! Memory access speed increases overall, because 
we’ve made the common case faster. 
! Reads and writes to the most frequently used 

addresses will be serviced by the cache. 
! We only need to access the slower main 

memory for less frequently used data.  

Lots of 
dynamic RAM 

A little static 
RAM (cache) 

CPU 



The principle of locality 
! Why does the hierarchy work? 

! Because most programs exhibit locality, 
which the cache can take advantage of. 
! The principle of temporal locality says that if a 

program accesses one memory address, there is 
a good chance that it will access the same 
address again. 

! The principle of spatial locality says that if a 
program accesses one memory address, there is 
a good chance that it will also access other 
nearby addresses. 



How caches take advantage of locality 
! First time the processor reads from an address in 

main memory, a copy of that data is also stored in 
the cache. 
! The next time that same address is read, we can use 

the copy of the data in the cache instead of 
accessing the slower dynamic memory. 

! So the first read is a little slower than before since it 
goes through both main memory and the cache, but 
subsequent reads are much faster. 

! This takes advantage of temporal locality—
commonly accessed data is stored in the faster 
cache memory. 

! By storing a block (multiple words) we also take 
advantage of spatial locality 

Lots of 
dynamic RAM 

A little static 
RAM (cache) 

CPU 



Temporal locality in instructions 
! Loops are excellent examples of temporal locality in programs. 

! The loop body will be executed many times. 
! The computer will need to access those same few locations of the 

instruction memory repeatedly. 
! For example:  

! Each instruction will be fetched over and over again, once on every loop 
iteration. 

Loop:  lw  $t0, 0($s1) 
 add  $t0, $t0, $s2 
 sw  $t0, 0($s1) 
 addi  $s1, $s1, -4 
 bne  $s1, $0, Loop 



Temporal locality in data 
! Programs often access the same variables over and 

over, especially within loops. Below, sum and i are 
repeatedly read and written. 

! Commonly-accessed variables can sometimes be kept in 
registers, but this is not always possible. 
! There are a limited number of registers. 
! There are situations where the data must be kept in memory, as 

is the case with shared or dynamically-allocated memory. 

sum = 0; 
for (i = 0; i < MAX; i++) 

 sum = sum + f(i); 



Spatial locality in instructions 

! Nearly every program exhibits spatial locality, because instructions 
are usually executed in sequence — if we execute an instruction at 
memory location i, then we will probably also execute the next 
instruction, at memory location i+1. 

! Code fragments such as loops exhibit both temporal and spatial 
locality. 

sub  $sp, $sp, 16 
sw  $ra, 0($sp) 
sw  $s0, 4($sp) 
sw  $a0, 8($sp) 
sw  $a1, 12($sp) 



Spatial locality in data 
! Programs often access 

data that is stored 
contiguously. 
! Arrays, like a in the code 

on the top, are stored in 
memory contiguously. 

! The individual fields of a 
record or object like 
employee are also kept 
contiguously in memory. 

 

employee.name = “Homer Simpson”; 
employee.boss = “Mr. Burns”; 
employee.age = 45; 

sum = 0; 
for (i = 0; i < MAX; i++) 

 sum = sum + a[i]; 



CACHE BASICS 
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Definitions: Hits and misses 
! A cache hit  

! occurs if the cache contains the data that we’re looking for. Hits are good, 
because the cache can return the data much faster than main memory. 

! A cache miss  
! occurs if the cache does not contain the requested data. This is bad, since 

the CPU must then wait for the slower main memory. 

! There are two basic measurements of cache performance. 
! The hit rate is the percentage of memory accesses that are handled by the 

cache. 
! The miss rate (1 - hit rate) is the percentage of accesses that must be 

handled by the slower main RAM. 
! Typical caches have a hit rate of 95% or higher, so in fact most memory 

accesses will be handled by the cache and will be dramatically faster. 



A simple cache design 
! Caches are divided into blocks, which may be of various sizes. 

! The number of blocks in a cache is usually a power of 2. 

000 
001 
010 
011 
100 
101 
110 
111 

Block 
index Block 

Here is an example 
cache with eight blocks, 
each holding one byte. 

0 
1 
2 
3 

Index 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Memory 
Address 

A direct-mapped cache is 
the simplest approach: 
each main memory 
address maps to exactly 
one cache block. 



Four important questions 
1.  When we copy a block of data from main memory to the 

cache, where exactly should we put it? 

2.  How can we tell if a word is already in the cache, or if it 
has to be fetched from main memory first? 

3.  Eventually, the small cache memory might fill up. To load 
a new block from main RAM, we’d have to replace one 
of the existing blocks in the cache... which one? 

4.  How can write operations be handled by the memory 
system? 

§  Questions 1 and 2 are related—we have to know where the data is placed 
if we ever hope to find it again later! 



Adding tags 
! We need to add tags to the cache, which supply the rest 

of the address bits to let us distinguish between different 
memory locations that map to the same cache block. 

00 
01 
10 
11 

Index 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Tag Data 
00 
?? 
01 
01 



Figuring out what’s in the cache 
! Now we can tell exactly which addresses of 

main memory are stored in the cache, by 
concatenating the cache block tags with the 
block indices. 

00 
01 
10 
11 

Index Tag Data 
00 
11 
01 
01 

00 + 00 = 0000 
11 + 01 = 1101 
01 + 10 = 0110 
01 + 11 = 0111 

Main memory 
address in cache block 



One more detail: the valid bit 
! When started, the cache is empty and does not contain valid data. 
! We should account for this by adding a valid bit for each cache block. 

! When the system is initialized, all the valid bits are set to 0. 
! When data is loaded into a particular cache block, the 

corresponding valid bit is set to 1. 

! So the cache contains more than just copies of the data in memory; it 
also has bits to help us find data within the cache and verify its 
validity. 

00 
01 
10 
11 

Index Tag Data 
00 
11 
01 
01 

00 + 00 = 0000 
Invalid 

??? 
??? 

Main memory 
address in cache block 

1 
0 
0 
1 

Valid 
Bit 



What happens on a cache hit 
! When the CPU tries to read from memory, the address will be sent to a cache 

controller. 
! The lowest k bits of the block address will index a block in the cache. 
! If the block is valid and the tag matches the upper (m - k) bits of the m-bit 

address, then that data will be sent to the CPU. 
! Here is a diagram of a 32-bit memory address and a 210-byte cache. 

0 
1 
2 
3 
... 
... 

1022 
1023 

Index Tag Data Valid Address (32 bits) 

= 

To CPU 

Hit 

10 22 

Index 

Tag 



What happens on a cache miss 
! On cache hit, CPU proceeds normally 
! On cache miss 

! Stall the CPU pipeline 
! Fetch block from next level of hierarchy 
! Instruction cache miss 

! Restart instruction fetch 
! Data cache miss 

! Complete data access 

! The delays that we have been assuming for memories 
(e.g., 2ns) are really assuming cache hits. 



Loading a block into the cache 
! After data is read from main memory, putting a copy of 

that data into the cache is straightforward. 
! The lowest k bits of the block address specify a cache block. 
! The upper (m - k) address bits are stored in the block’s tag field. 
! The data from main memory is stored in the block’s data field. 
! The valid bit is set to 1. 

0 
1 
2 
3 
... 
  
... 
... 

Index Tag Data Valid Address (32 bits) 

10 22 

Index 

Tag 

Data 

1 



Memory Hierarchy Basics 
! When a word is not found in the cache, a miss 

occurs: 
! Fetch word from lower level in hierarchy, requiring a 

higher latency reference 
! Lower level may be another cache or the main 

memory 
! Also fetch the other words contained within the block 

! Takes advantage of spatial locality 

! Place block into cache in any location within its set, 
determined by address 
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Cache Sets and Ways 
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block/line Sets: 
Block  

mapped 
by 

addr 

Ways: Block can go anywhere  

n-way set associative 
 

(4-way set associative) 
 

Example: Cache size = 16 blocks 



Direct-mapped Cache 
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block/line 

16 Sets 

1-way 

Direct mapped cache 
Each block maps to only one cache line 

 
aka 
 

1-way set associative 
 



Set Associative Cache 
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block/line 

4 Sets 

4-way 

n-way set associative 
Each block can be mapped to a set of n-lines 

Set number is based on block address 
 

(4-way set associative) 



Fully Associative Cache 
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block 
/line 1 Sets 

16-ways 

Fully associative 
Each block can be mapped to any cache line 

 
aka 
 

m-way set associative 
where m = size of cache in blocks 

 



Set Associative Cache Organization 



Cache Addressing 
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block/line s-Sets: 
Block  

mapped 
by 

addr 

n-Ways: Block can go anywhere  

m = size of cache in blocks 
n = number of ways 

b = block size in bytes 

Tag 
(remainder) 
bits = 32-s-b 

Index 
(sets) 
bits = log2s 

Offset  
(block size) 
bits = log2b 

Address 

Cache size = s * n * b 
# of Sets (s) = m / n 



Ex. 64KB cache, direct mapped, 16 byte block 

Cache Addressing 
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m = size of cache in blocks 
n = number of ways 

b = block size in bytes 

Tag 
(remainder) 
bits = 32-s-b 

Index 
(sets) 
bits = log2s 

Offset  
(block size) 
bits = log2b 

Address 

Cache size = s * n * b 
# of Sets (s) = m / n 

16 12 4 



Ex. 64KB cache, 2-way assoc., 16 byte block 

Cache Addressing 
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m = size of cache in blocks 
n = number of ways 

b = block size in bytes 

Tag 
(remainder) 
bits = 32-s-b 

Index 
(sets) 
bits = log2s 

Offset  
(block size) 
bits = log2b 

Address 

Cache size = s * n * b 
# of Sets (s) = m / n 

17 11 4 



Ex. 64KB cache, fully assoc., 16 byte block 

Cache Addressing 
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m = size of cache in blocks 
n = number of ways 

b = block size in bytes 

Tag 
(remainder) 
bits = 32-s-b 

Index 
(sets) 
bits = log2s 

Offset  
(block size) 
bits = log2b 

Address 

Cache size = s * n * b 
# of Sets (s) = m / n 

28 0 4 



What if the cache fills up? 
! Our third question was what to do if we run out of space 

in our cache, or if we need to reuse a block for a different 
memory address. 

! A miss causes a new block to be loaded into the cache, 
automatically overwriting any previously stored data. 
! This is a least recently used replacement policy, which assumes 

that older data is less likely to be requested than newer data. 

! There are other policies. 



Replacement Policy 
! Direct mapped: no choice 
! Set associative 

! Prefer non-valid entry, if there is one 
! Otherwise, choose among entries in the set 

! Least-recently used (LRU) 
! Choose the one unused for the longest time 

! Simple for 2-way, manageable for 4-way, too hard 
beyond that 

! Random 
! Gives approximately the same performance as 

LRU for high associativity 



Cache Replacement Policies 
! Picks which block to replace within the set 
! Ex. - Random, First In First Out (FIFO),  

Least Recently Used (LRU), Psuedo-LRU 
! Example: LRU 
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Line 0 01 
Line 1 00 
Line 2 11 
Line 3 10 

Line 0 10 
Line 1 01 
Line 2 11 
Line 3 00 

Hit on Line 3 

Line 0 10 
Line 1 01 
Line 2 00 
Line 3 11 



Write-Through 
! On data-write hit, could just update the block in cache 

! But then cache and memory would be inconsistent 
! Write through: also update memory 
! But makes writes take longer 

! e.g., if base CPI = 1, 10% of instructions are stores, write to 
memory takes 100 cycles 
!  Effective CPI = 1 + 0.1×100 = 11 

! Solution: write buffer 
! Holds data waiting to be written to memory 
! CPU continues immediately 

! Only stalls on write if write buffer is already full 
CPU

L1 L2

Write Buffer

All stores

L1 missesAll accesses



Write-Back 
! Alternative: On data-write hit, just update the 

block in cache 
! Keep track of whether each block is dirty 

! When a dirty block is replaced 
! Write it back to memory 
! Can use a write buffer to allow replacing block to 

be read first 



Write Allocation 
! What should happen on a write miss? 
! Alternatives for write-through 

! Allocate on miss: fetch the block 
! Write around: don’t fetch the block 

! Since programs often write a whole block before 
reading it (e.g., initialization) 

! For write-back 
! Usually fetch the block 



! Components of CPU time 
! Program execution cycles: Includes cache hit time 
! Memory stall cycles: Mainly from cache misses 

! With simplifying assumptions: 

! Example: 
! Given:  

! I-cache miss rate = 2%, D-cache miss rate = 4%, Miss penalty = 100 
cycles, Base CPI (ideal cache) = 2, Load & stores are 36% of 
instructions 

! Miss cycles per instruction 
! I-cache: 0.02 × 100 = 2   
! D-cache: 0.36 × 0.04 × 100 = 1.44 

! Actual CPI = 2 + 2 + 1.44 = 5.44 
! Ideal CPU is 5.44/2 =2.72 times faster 

Memory stall cycles =
Memory accesses

Program
×Miss rate ×Miss penalty

=
Instructions

Program
×

Misses

Instruction
×Miss penalty

Measuring Cache Performance 



Average Access Time 
! Hit time is also important for performance 
! Average memory access time (AMAT) 

! AMAT = Hit time + Miss rate × Miss penalty 
! Example 

! CPU with 1ns clock, hit time = 1 cycle, miss 
penalty = 20 cycles, I-cache miss rate = 5% 

! AMAT = 1 + 0.05 × 20 = 2ns 
! 2 cycles per instruction 



Performance Summary 
! When CPU performance increased 

! Miss penalty becomes more significant 
! Decreasing base CPI 

! Greater proportion of time spent on memory stalls 
! Increasing clock rate 

! Memory stalls account for more CPU cycles 
! Can’t neglect cache behavior when 

evaluating system performance 



Sources of Misses 
! Compulsory misses (aka cold 

start misses) 
! First access to a block 

! Capacity misses 
! Due to finite cache size 
! A replaced block is later 

accessed again 
! Conflict misses (aka collision 

misses) 
! In a non-fully associative 

cache 
! Due to competition for entries 

in a set 
! Would not occur in a fully 

associative cache of the same 
total size 



Measuring/Classifying Misses 
! How to find out? 

! Cold misses: Simulate a fully associative infinite cache 
size 

! Capacity misses: Simulate fully associative cache, 
then deduct cold misses 

! Conflict misses: Simulate target cache configuration 
then deduct cold and capacity misses 

! Classification is useful to understand how to 
eliminate misses 

! High conflict misses à need higher associativity 
! High capacity misses à need larger cache 
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Multilevel Caches 
! Primary cache attached to CPU 

! Small, but fast 
! Level-2 cache services misses from primary 

cache 
! Larger, slower, but still faster than main memory 

! Main memory services L-2 cache misses 
! Some high-end systems include L-3 cache 



Multilevel Cache Example 
! Given 

! CPU base CPI = 1, clock rate = 4GHz 
! Miss rate/instruction = 2% 
! Main memory access time = 100ns 

! With just primary cache 
! Miss penalty = 100ns/0.25ns = 400 cycles 
! Effective CPI = 1 + 0.02 × 400 = 9 

! Now add L-2 cache 
! Access time = 5ns 
! Global miss rate to main memory = 0.5% 
! Primary miss with L2 hit 

! Penalty = 5ns/0.25ns = 20 cycles 
! Primary miss with L2 miss 

! Extra penalty = 500 cycles 

! CPI = 1 + 0.02 × 20 + 0.005 × 400 = 3.4 
! Performance ratio = 9/3.4 = 2.6 



Multilevel Cache Considerations 
! Primary cache 

! Focus on minimal hit time 
! L2 cache 

! Focus on low miss rate to avoid main memory 
access 

! Hit time has less overall impact 
! Results 

! L-1 cache usually smaller than a single cache 
! L-1 block size smaller than L-2 block size 


