
CS161 – Design and
Architecture of
Computer Systems
Multi-Cycle CPU Design

Single Cycle Implementation
! Calculate cycle time assuming negligible delays except:

! memory (2ns), ALU and adders (2ns), register file access (1ns)

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

Single Cycle – Steps of each instruction

Inst.
Type

Functional Units Used

R-type Instruction
fetch

Register
read

ALU Register
write

Load Instruction
fetch

Register
read

ALU Memory
access

Register write

Store Instruction
fetch

Register
read

ALU Memory
access

Branch Instruction
fetch

Register
read

ALU

Jump Instruction
fetch

Single Cycle – How long is the cycle?
Inst.
Type

Inst.
Mem.

Reg. File
(read)

ALU
(s)

Data
Mem.

Reg. File
(write)

Total

R-type 2 1 2 0 1 6 ns

Load 2 1 2 2 1 8 ns

Store 2 1 2 2 0 7 ns

Branch 2 1 2 0 0 5 ns

Jump 2 0 0 0 0 2 ns

The cycle time must accommodate the longest operation: lw.
Cycle time = 8 ns but the CPI = 1.

If we can accommodate variable number of cycles for each instruction and
a cycle time of 1ns.
CPI = 6*44% + 8*24% + 7*12% + 5*18% + 2*2% = 6.3

Inst. %

44

24

12

18

2

Where we are headed
! Single Cycle Problems:

! what if we had a more complicated instruction like floating point?
! waste of area

! One Solution:
! use a “smaller” cycle time
! have different instructions take different numbers of cycles
! a “multicycle” datapath:

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut

! We will be reusing functional units
! ALU used to compute address and to increment PC
! Memory used for instruction and data

! Our control signals will not be determined
solely by instruction
! e.g., what should the ALU do for a “subtract”

instruction?
! We’ll use a finite state machine for control

Multicycle Approach

! Finite state machines:
! a set of states and
! next state function (determined by current state and the input)
! output function (determined by current state and possibly input)

! We’ll use a Moore machine (output based only on current state)

Review: finite state machines

Next-state
functionCurrent state

Clock

Output
function

Next
state

Outputs

Inputs

! Break up the instructions into steps, each step takes a cycle
! balance the amount of work to be done
! restrict each cycle to use only one major functional unit

! At the end of a cycle
! store values for use in later cycles (easiest thing to do)
! introduce additional “internal” registers

Multicycle Approach

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

Muticyle Datapath

Shift
left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

M
u
x

ALU
result

ALU
Zero

Memory
data

register

Instruction
[15– 11]

A

B

ALUOut

0

1

Address

•  Instruction Fetch (F)

•  Instruction Decode and Register Fetch (D)

•  Execution, Memory Address Computation, or Branch
Completion (EX)

•  Memory Access or R-type instruction completion (M)

•  Write-back step (W)

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps

q  Use PC to get instruction and put it in the Instruction Register.
q  Increment the PC by 4 and put the result back in the PC.
q  Can be described concisely using RTL "Register-Transfer

Language"

 IR = Memory[PC];
 PC = PC + 4;

q  Can we figure out the values of the control signals?

Step 1: Instruction Fetch

Datapath of Multicycle Implementation

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite
Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory
MemData

Write
data

Address

! Read registers rs and rt in case we need them
! Compute the branch address in case the instruction

is a branch
! RTL:

 A = Reg[IR[25-21]];
 B = Reg[IR[20-16]];
 ALUOut = PC + (sign-extend(IR[15-0]) << 2);

! We aren't setting any control lines based on the

instruction type
 (we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and Register Fetch

Single Cycle Implementation

14

Datapath of Multicycle Implementation

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite
Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory
MemData

Write
data

Address

! ALU is performing one of three functions, based on instruction type

! Memory Reference:

 ALUOut = A + sign-extend(IR[15-0]);

! R-type:

 ALUOut = A op B;

! Branch:

 if (A==B) PC = ALUOut;

Step 3 (instruction dependent)

Datapath of Multicycle Implementation

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite
Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory
MemData

Write
data

Address

! Loads and stores access memory

 MDR = Memory[ALUOut];
 or
 Memory[ALUOut] = B;

! R-type instructions finish

 Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the
cycle on the edge

Step 4 (R-type or memory-access)

Datapath of Multicycle Implementation

Shift
left 2

PC
M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

ALU
control

ALU
result

ALU
Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite
Control

Outputs

Op
[5– 0]

Instruction
[31-26]

Instruction [5– 0]

M
u
x

0

2

Jump
address [31-0]Instruction [25– 0] 26 28

Shift
left 2

PC [31-28]

1

1 M
u
x

0

3
2

M
u
x

0

1
ALUOut

Memory
MemData

Write
data

Address

q Reg[IR[20-16]]= MDR;

What about all the other instructions?

Step 5 Write-back step

Summary:

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

q  How many cycles will it take to execute this code?

 lw $t2, 0($t3)
 lw $t3, 4($t3)
 beq $t2, $t3, Label #assume not
 add $t5, $t2, $t3
 sw $t5, 8($t3)

Label: ...

q  What is going on during the 8th cycle of execution?
q  In what cycle does the actual addition of $t2 and $t3 takes place?

Simple Questions

! Value of control signals is dependent upon:
! what instruction is being executed
! which step is being performed

! Use the information we’ve accumulated to specify a

finite state machine
! specify the finite state machine graphically, or
! use microprogramming

! Implementation can be derived from specification

Implementing the Control

! How many state bits will we need?

Graphical Specification of FSM

0
Instruction

Fetch

1
Instruction

Decode

2
Mem. Address

Compute

3
Mem. Access

Read

5
Mem. Access

Write

4
Write-Back

6
ALU

Execute

7
Complete

R-type

8
Complete

Branch

9
Complete

Jump

Start

Op = LW or SW

O
p = J

O
p

=
LW

Detailed FSM

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond

PCSource = 01

ALUSrcA =1
ALUSrcB = 00
ALUOp= 10

RegDst = 1
RegWrite

MemtoReg = 0
MemWrite
IorD = 1

MemRead
IorD = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

RegDst = 0
RegWrite

MemtoReg =1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

 (Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p =

 'B
EQ')

(O
p

=
'J'

)

 (Op = 'SW')

(O
p

=
'L

W
')

4

0
1

9862

753

Start

q  Implementation:

Finite State Machine for Control

PCWrite

PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst

NS3
NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S
3

S
2

S
1

S
0

State register

IRWrite

MemRead
MemWrite

Instruction register
opcode field

Outputs

Control logic

Inputs

R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5– 0)

ALUOp0

ALUOp

ALU control block

PLA Implementation
q Programmable

Logic
Array

q  If I picked a horizontal
or vertical line
could you explain it?

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

q  ROM = "Read Only Memory"
! values of memory locations are fixed ahead of time

q  A ROM can be used to implement a truth table
! if the address is m-bits, we can address 2m entries in the ROM.
! our outputs are the bits of data that the address points to.

m is the "heigth", and n is the "width"

ROM Implementation

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

! How many inputs are there?
 6 bits for opcode, 4 bits for state = 10 address lines
 (i.e., 210 = 1024 different addresses)

! How many outputs are there?
 16 datapath-control outputs, 4 state bits = 20 outputs

! ROM is 210 x 20 = 20K bits
! Rather wasteful, since for lots of the entries, the

outputs are the same
 — i.e., opcode is often ignored

ROM Implementation

! Break up the table into two parts
 — 4 state bits tell you the 16 outputs, 24 x 16 bits of ROM
 — 10 bits tell you the 4 next state bits, 210 x 4 bits of ROM
 — Total: 4.3K bits of ROM

! PLA is much smaller
 — can share product terms
 — only need entries that produce an active output
 — can take into account don't cares

! Size is (#inputs × #product-terms) + (#outputs × #product-terms)
 For this example = (10x17)+(20x17) = 460 PLA cells

! PLA cells usually about the size of a ROM cell (slightly bigger)

ROM vs PLA

q Complex instructions: the "next state" is
often current state + 1

Another Implementation Style

AddrCtl

Outputs

PLA or ROM

State

Address select logic

O
p[

5–
0]

Adder

Instruction register
opcode field

1

Control unit

Input

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst

IRWrite

MemRead
MemWrite

BWrite

Details
Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value
000000 R-format 0110 100011 lw 0011
000010 jmp 1001 101011 sw 0101
000100 beq 1000
100011 lw 0010
101011 sw 0010

State number Address-control action Value of AddrCtl
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

State

O
p

Adder

1

PLA or ROM

Mux
3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0

AddrCtl

Address select logic

Instruction register
opcode field

Microprogramming

! What are the “microinstructions” ?

PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

AddrCtl

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

RegDst

Control unit

Input

Microprogram counter

Address select logic

O
p[

5–
0]

Adder

1

Datapath

Instruction register
opcode field

BWrite

Microprogramming
! How all CISC ISAs were built.
! µ-store: RAM-memory with N bits/word

! N = number of control lines in CPU.
! Execution of each instruction starts IF and ID.
! Instruction Opcode points to a location in µ-store
! Output consecutive control words until DONE.

! µ-store is updatable
! µ-controller is = a mini-CPU running the main CPU
! Μ-programming worked when CPU = multiple boards

! µ-controller on one board: much faster

q  A specification methodology
! appropriate if hundreds of opcodes, modes, cycles, etc.
! signals specified symbolically using microinstructions

q  Will two implementations of the same architecture have the same microcode?
q  What would a microassembler do?

Microprogramming

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

Microinstruction format Field name Value Signals active Comment
Add ALUOp = 00 Cause the ALU to add.

ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for
branches.

Func code ALUOp = 10 Use the instruction's function code to determine ALU control.
SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.

A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

! No encoding:
! 1 bit for each datapath operation
! faster, requires more memory (logic)
! used for Vax 780 — an astonishing 400K of memory!

! Lots of encoding:
! send the microinstructions through logic to get control signals
! uses less memory, slower

! Historical context of CISC:
! Too much logic to put on a single chip with everything else
! Use a ROM (or even RAM) to hold the microcode
! It’s easy to add new instructions

Maximally vs. Minimally
Encoded

Microcode: Trade-offs
q  Distinction between specification and implementation is sometimes blurred

q  Specification Advantages:

! Easy to design and write

! Design architecture and microcode in parallel

q  Implementation (off-chip ROM) Advantages

! Easy to change since values are in memory

! Can emulate other architectures

! Can make use of internal registers

q  Implementation Disadvantages, SLOWER now that:

! Control is implemented on same chip as processor

! ROM is no longer faster than RAM

! No need to go back and make changes

The Big Picture

Initial
representation

Finite state
diagram Microprogram

Sequencing
control

Explicit next
state function

Microprogram counter
+ dispatch ROMS

Logic
representation

Logic
equations

Truth
tables

Implementation
technique

Programmable
logic array

Read only
memory

