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Single Cycle Implementation

Calculate cycle time assuming negligible delays except:
memory (2ns), ALU and adders (2ns), register file access (1ns)

>

-=| PC

Add

4

Read
address

Instruction
[31-0]

Instruction
memory

AL
Add result
RegWrite >
|
Instruction [25— 21] Read
register 1 Read
Instruction [20-16] | Read data 1 ALUSI’C'
E register 2 Read Zero
1 ) ea
q M Write data 2 ALU re/é\llllltJ
. u register
Instruction [15-11] | x Write
0 data  Registers -
RegDst
Instruction [15— 0] 1\6 Sign | 32
| extend

Instruction [5—0]

ALUOp

PCSr
1
M
u
X
0
MemWrite
| MemtoReg
Address Read 1
data M
u
X
write Data 0
data Memory
|
1
MemRead




Single Cycle — Steps of each instruction

Inst. Functional Units Used
Type
R-type Instruction | Register | ALU | Register
fetch read write
Load Instruction | Register | ALU | Memory | Register write
fetch read access
Store Instruction | Register | ALU | Memory
fetch read access
Branch | Instruction | Register | ALU
fetch read
Jump Instruction
fetch




Single Cycle — How long is the cycle? /UK

I

Inst. Inst. Reg. File | ALU Data | Reg. File | Total Inst. %
Type Mem. | (read) (s) | Mem. | (write)

R-type 2 1 2 0 1 6 ns 44
Load 2 1 2 2 1 8 ns 24
Store 2 1 2 2 0 7 ns 12
Branch 2 1 2 0 0 5ns 18
Jump 2 0 0 0 0 2ns 2

The cycle time must accommodate the longest operation: /w.
Cycle time = 8 ns but the CPI = 1.

If we can accommodate variable number of cycles for each instruction and
a cycle time of 1ns.

CPl=6%44% + 8*24% + 7*12% + 5*18% + 2*2% = 6.3



Where we are headed K

> Single Cycle Problems:
what if we had a more complicated instruction like floating point?
waste of area
> One Solution:
use a “smaller” cycle time
have different instructions take different numbers of cycles
a “multicycle” datapath:

Instruction

d

N

register »| Data
PC Address -
Instructi > Register #
Memory " or gata 1 Registers ALU-| ALUOU
= data | R
I. Data register »| Register #

Memory > Register#

= o




Multicycle Approach K

> We will be reusing functional units
ALU used to compute address and to increment PC
Memory used for instruction and data

> Our control signals will not be determined
solely by instruction

e.g., what should the ALU do for a “subtract”
instruction?

> We’'ll use a finite state machine for control



Review: finite state machines R

> Finite state machines:
a set of states and
next state function (determined by current state and the input)
output function (determined by current state and possibly input)

Current state

Clock

Inputs

=> Outputs

We’ Il use a Moore machine (output based only on current state)



Multicycle Approach

> Break up the instructions into steps, each step takes a cycle
balance the amount of work to be done
restrict each cycle to use only one major functional unit

> At the end of a cycle
store values for use in later cycles (easiest thing to do)
introduce additional “internal” registers
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Muticyle Datapath UCR
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Five Execution Steps K

. Instruction Fetch (F)

- Instruction Decode and Register Fetch (D)

- Execution, Memory Address Computation, or Branch
Completion (EX)

- Memory Access or R-type instruction completion (M)

- Write-back step (W)

INSTRUCTIONS TAKE FROM 3 -5 CYCLES!



Step 1: Instruction Fetch K

0 Use PC to get instruction and put it in the Instruction Register.
0 Increment the PC by 4 and put the result back in the PC.

o Can be described concisely using RTL "Register-Transfer
Language”

IR = Memory[PC];
PC = PC + 4,

Q Can we figure out the values of the control signals?



Datapath of Multicycle Implementation
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Step 2: Instruction Decode and Register Fetck'l R

|

> Read registers rs and rt in case we need them

»  Compute the branch address in case the instruction
IS a branch

> RTL:

A = Reg]|l
B = Reg]|[I
ALUOut =

[25-2111;
[20-16]];

PC + (sign-extend (IR[15-0]) << 2);

VR

> We aren't setting any control lines based on the
iInstruction type
(we are busy "decoding" it in our control logic)



Single Cycle Implementation K
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Datapath of Multicycle Implementation
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Step 3 (instruction dependent) [CK

> ALU is performing one of three functions, based on instruction type

> Memory Reference:

ALUOut = A + sign-extend (IR[15-0]);
>  R-type:
ALUOut = A op Bj;

> Branch:

i1f (A==B) PC = ALUOut;



Datapath of Multicycle Implementation
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Step 4 (R-type or memory-access) K

» Loads and stores access memory
MDR = Memory [ALUOut];

or
Memory [ALUOut] = B;

> R-type instructions finish

Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the
cycle on the edge



Datapath of Multicycle Implementation
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Step 5 Write-back step K

Q0 Reg[IR[20-16]]= MDR;

What about all the other instructions?




Summary: R

Action for R-type | Action for memory-reference Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR = Memory[PC]
PC=PC+4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut=AopB ALUOuUt = A + sign-extend if (A ==B) then [PC =PC [31-28] Il
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B
Memory read completion Load: Reg[IR[20-16]] = MDR




Simple Questions K

o How many cycles will it take to execute this code?

lw $t2, 0(St3)
1w $t3, 4(St3)
beqg $t2, $t3, Label #fassume not
add $t5, $t2, S$t3
sw $St5, 8(S$t3)
Label:

o What is going on during the 8th cycle of execution?
o In what cycle does the actual addition of $t2 and $t3 takes place?

Uy utrdduddu gy uyy L



Implementing the Control K

> Value of control signals is dependent upon:
what instruction is being executed
which step is being performed

> Use the information we’'ve accumulated to specify a
finite state machine

specify the finite state machine graphically, or
use microprogramming

> Implementation can be derived from specification



Graphical Specification of FSM K
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Detailed FSM
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Finite State Machine for Control

2 Implementation:
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PLA Implementation
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ROM Implementation K

o ROM ="Read Only Memory"
values of memory locations are fixed ahead of time

0 A ROM can be used to implement a truth table
if the address is m-bits, we can address 2™ entries in the ROM.
our outputs are the bits of data that the address points to.

0 00f00T1T1

0 01|11 1060

m n 01011060
ﬁ;' 7%, 01 1{1 0 0 O
1 00[{00O0O0

1 0 1{0 001

1 10{0110

1 1 110 1 1 1

m is the "heigth", and n is the "width"



ROM Implementation K

> How many inputs are there?

6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 210 = 1024 different addresses)

> How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

> ROM is 29 x 20 = 20K bits

» Rather wasteful, since for lots of the entries, the
outputs are the same
— I.e., opcode is often ignored



ROM vs PLA R

> Break up the table into two parts
— 4 state bits tell you the 16 outputs, 2% x 16 bits of ROM
— 10 bits tell you the 4 next state bits, 219 x 4 bits of ROM
— Total: 4.3K bits of ROM

> PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares

> Size is (#inputs x #product-terms) + (#outputs x #product-terms)
For this example = (10x17)+(20x17) = 460 PLA cells

> PLA cells usually about the size of a ROM cell (slightly bigger)



Another Implementation Style K

0 Complex instructions: the "next state" is
often current state + 1

MemWrite
IRWrite
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Details

State number
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Microprogramming UC
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Microprogramming K

> How all CISC ISAs were built.
> M-store: RAM-memory with N bits/word

N = number of control lines in CPU.

Execution of each instruction starts IF and ID.
Instruction Opcode points to a location in y-store
Output consecutive control words until DONE.

> M-store is updatable
> M-controller is = a mini-CPU running the main CPU

> M-programming worked when CPU = multiple boards
W-controller on one board: much faster



Microprogramming UCR

o A specification methodology
appropriate if hundreds of opcodes, modes, cycles, etc.
signals specified symbolically using microinstructions

ALU Register PCWrite
Label control [SRC1| SRC2 | control Memory control Sequencing
Fetch Add PC 4 Read PC [ALU Seq
Add PC Extshft |Read Dispatch 1
Mem/1 Add A Extend Dispatch 2
LW2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 |Func code [A B Seq
Write ALU Fetch
BEQ1 Subt A B ALUOut-cond |Fetch
JUMP1 Jump address |Fetch

Q  Will two implementations of the same architecture have the same microcode?
Q  What would a microassembler do?



- _ RMinavainctvrmiintian favrnmat

Field name Value Signals active Comment
Add ALUODP =00 Cause the ALU to add.
ALU control Subt ALUOp =01 Cause the ALU to subtract; this implements the compare for
branches.
Func code ALUOp =10 Use the instruction's function code to determine ALU control.
SRCA1 PC ALUSIcA =0 Use the PC as the first ALU input.
A ALUSICcA =1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.
SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSIcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register
numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and
Register RegDst =1, the contents of the ALUOut as the data.
control MemtoReg =0
Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReqg = 1
Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD =0 the MDR).
Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD =1
Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD =1 data.
ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite
PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOuUt.
jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite
Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing AddrCtl = 00

Fetch

Go to the first microinstruction to begin a new instruction.




wvidXiimally vs. ivilnimalily
Encoded K

> No encoding:

1 bit for each datapath operation
faster, requires more memory (logic)
used for Vax 780 — an astonishing 400K of memory!
> Lots of encoding:
send the microinstructions through logic to get control signals
uses less memory, slower
> Historical context of CISC:
Too much logic to put on a single chip with everything else
Use a ROM (or even RAM) to hold the microcode
It’ s easy to add new instructions



Microcode: Trade-offs K

0 Distinction between specification and implementation is sometimes blurred

0 Specification Advantages:
Easy to design and write
Design architecture and microcode in parallel
0 Implementation (off-chip ROM) Advantages
Easy to change since values are in memory
Can emulate other architectures
Can make use of internal registers
0 Implementation Disadvantages, SLOWER now that:
Control is implemented on same chip as processor
ROM is no longer faster than RAM
No need to go back and make changes



The Big Picture K

Initial Finite state :
: : Microprogram
representation diagram
==
Sequencing Explicit next Microprogram counter
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=
Logic Logic Truth
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=
Implementation Programmable Read only
technique logic array memory




