CS161 — Design and
Architecture of
Computer Systems

Multi-Cycle CPU Design

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Single Cycle Implementation

Calculate cycle time assuming negligible delays except:
memory (2ns), ALU and adders (2ns), register file access (1ns)

>

-=| PC

Add

4

Read
address

Instruction
[31-0]

Instruction
memory

AL
Add result
RegWrite >
|
Instruction [25— 21] Read
register 1 Read
Instruction [20-16] | Read data 1 ALUSI’C'
E register 2 Read Zero
1) ea
q M Write data 2 ALU re/é\llllltJ
. u register
Instruction [15-11] | x Write
0 data Registers -
RegDst
Instruction [15— 0] 1\6 Sign | 32
| extend

Instruction [5—0]

ALUOp

PCSr
1
M
u
X
0
MemWrite
| MemtoReg
Address Read 1
data M
u
X
write Data 0
data Memory
|
1
MemRead

Single Cycle — Steps of each instruction

Inst. Functional Units Used
Type
R-type Instruction | Register | ALU | Register
fetch read write
Load Instruction | Register | ALU | Memory | Register write
fetch read access
Store Instruction | Register | ALU | Memory
fetch read access
Branch | Instruction | Register | ALU
fetch read
Jump Instruction
fetch

Single Cycle — How long is the cycle? /UK

I

Inst. Inst. Reg. File | ALU Data | Reg. File | Total Inst. %
Type Mem. | (read) (s) | Mem. | (write)

R-type 2 1 2 0 1 6 ns 44
Load 2 1 2 2 1 8 ns 24
Store 2 1 2 2 0 7 ns 12
Branch 2 1 2 0 0 5ns 18
Jump 2 0 0 0 0 2ns 2

The cycle time must accommodate the longest operation: /w.
Cycle time = 8 ns but the CPI = 1.

If we can accommodate variable number of cycles for each instruction and
a cycle time of 1ns.

CPl=6%44% + 8*24% + 7*12% + 5*18% + 2*2% = 6.3

Where we are headed K

> Single Cycle Problems:
what if we had a more complicated instruction like floating point?
waste of area
> One Solution:
use a “smaller” cycle time
have different instructions take different numbers of cycles
a “multicycle” datapath:

Instruction

d

N

register »| Data
PC Address -
Instructi > Register #
Memory " or gata 1 Registers ALU-| ALUOU
= data | R
I. Data register »| Register #

Memory > Register#

= o

Multicycle Approach K

> We will be reusing functional units
ALU used to compute address and to increment PC
Memory used for instruction and data

> Our control signals will not be determined
solely by instruction

e.g., what should the ALU do for a “subtract”
instruction?

> We’'ll use a finite state machine for control

Review: finite state machines R

> Finite state machines:
a set of states and
next state function (determined by current state and the input)
output function (determined by current state and possibly input)

Current state

Clock

Inputs

=> Outputs

We’ Il use a Moore machine (output based only on current state)

Multicycle Approach

> Break up the instructions into steps, each step takes a cycle
balance the amount of work to be done
restrict each cycle to use only one major functional unit

> At the end of a cycle
store values for use in later cycles (easiest thing to do)
introduce additional “internal” registers

PC 0
M Instruction Read
u Address [25-21] " | register 1
X
Instruction Read Read
| 1 Memory [20— 16] I | register 2 data 1
MemData gyl) 0 _ Registers
Instruction | M Write Read
Wit [15=0If } instruction| u register gata 2
| VVrite Instruction UL B Write
data register 1 data
Instruction
1 —
=) Memory
data
register

ALUOu

Muticyle Datapath UCR

PC 0 L 0
M Instructionl Read M
u Address [25-21]] " | register 1 u
X

Instruction Read Read fmmmip| A X
! Memory [20-16] ' »| register 2 data 1 1
MemData =y 0 Registers ALUOu
Instruction M Write ead
Writ [15-0] I Instruction| U register gata 2 > B 0
rie i 15-11 X . M
data Instruction [1] Write 4 wp|1 v
register data [2
Instruction 3
[15-0]
=p| Memory >
data
register

Five Execution Steps K

. Instruction Fetch (F)

- Instruction Decode and Register Fetch (D)

- Execution, Memory Address Computation, or Branch
Completion (EX)

- Memory Access or R-type instruction completion (M)

- Write-back step (W)

INSTRUCTIONS TAKE FROM 3 -5 CYCLES!

Step 1: Instruction Fetch K

0 Use PC to get instruction and put it in the Instruction Register.
0 Increment the PC by 4 and put the result back in the PC.

o Can be described concisely using RTL "Register-Transfer
Language”

IR = Memory[PC];
PC = PC + 4,

Q Can we figure out the values of the control signals?

Datapath of Multicycle Implementation

/7_,_<_ . PCWriteCond/\ PCSource
— PCWiit
N\ fte / \ALUOp

lorD I Outputs
ALUSrcB
MemRead
MemWwrite| Control ALUSTEA
MemtoReg RegWrite
Rwite \ &y JReadst P
\. 0
p M
26 28 Jump Tu
Instruction [25—0] L [shift address [31-0]) X
M \left 2 v
Instruction
| PC 0) [31-26] I % PC [31-28]
M Instruction || Read M
u p=»|Address [25—21] " | register 1 U
X i Read X -
Instruction Read ea Eﬁ_.
| 1 Memory [20- 16] M ™ register 2 data 1 1

MembData - Instruction (0 Writ§ egisters ALUOU g
M h Read B
Writ [15-0] Instruction| u register yatg 2 :I-‘—‘ m
=3 dartlae Instruction [15-11] 1X Write 4 =y 1 'x'
register data »|2 »
Instruction 0 3
[15-0] M
u
X
» Memory 1
data N 16 sign
. t \
register > oxiond —
Instruction [5- 0]

Step 2: Instruction Decode and Register Fetck'l R

|

> Read registers rs and rt in case we need them

» Compute the branch address in case the instruction
IS a branch

> RTL:

A = Reg]|l
B = Reg]|[I
ALUOut =

[25-2111;
[20-16]];

PC + (sign-extend (IR[15-0]) << 2);

VR

> We aren't setting any control lines based on the
iInstruction type
(we are busy "decoding" it in our control logic)

Single Cycle Implementation K

<) | Jump Address = {NewPC[31:28], INST[25:0],00)
7 7
26 \ Left2 26 1/' 32 Next Instruc. Address o

Jump +
MemRead & Mem\\rite Branch Address

h 4
=2

L 4

4 ALUOPp[1:0]
MemtoReg
RegDst PC5rc
ALUSrc
- Branch
£ RegWrite
[25:21]£ | Read
Reg. 1#
5 g
[20:16] Read MemRead
Reg. 2 # ()
Read . » 0
—T—> Addr. : 0 Write data 1 " Zero v
o O i o Reg. #
a Instruc. 7> 1 ¢ |E Res Addr
5 . Read . c ’ '
Write 0
I-Cache *as data 2 . Read ol 1
— >
RegDpt 4 Data
- Register File)
: : e T
= 1 " | Data

16 Sign 3
—/—T— ALUSrc MemtoReg
= INST[50]) D-Cache

-
1- » ALU control Fy
ALUOP[1:0] ——————»'_ " e

Datapath of Multicycle Implementation

/7_,_<_ . PCWriteCond/\ PCSource
— PCWiit
N\ fte / \ALUOp

lorD I Outputs
ALUSrcB
MemRead
MemWwrite| Control ALUSTEA
MemtoReg RegWrite
Rwite \ &y JReadst P
\. 0
p M
26 28 Jump Tu
Instruction [25—0] L [shift address [31-0]) X
M \left 2 v
Instruction
| PC 0) [31-26] I % PC [31-28]
M Instruction || Read M
u p=»|Address [25—21] " | register 1 U
X i Read X -
Instruction Read ea Eﬁ_.
| 1 Memory [20- 16] M ™ register 2 data 1 1

MembData - Instruction (0 Writ§ egisters ALUOU g
M h Read B
Writ [15-0] Instruction| u register yatg 2 :I-‘—‘ m
=3 dartlae Instruction [15-11] 1X Write 4 =y 1 'x'
register data »|2 »
Instruction 0 3
[15-0] M
u
X
» Memory 1
data N 16 sign
. t \
register > oxiond —
Instruction [5- 0]

Step 3 (instruction dependent) [CK

> ALU is performing one of three functions, based on instruction type

> Memory Reference:

ALUOut = A + sign-extend (IR[15-0]);
> R-type:
ALUOut = A op Bj;

> Branch:

i1f (A==B) PC = ALUOut;

Datapath of Multicycle Implementation

/7_,_<_ . PCWriteCond/\ PCSource
— PCWiit
N\ fte / \ALUOp

lorD I Outputs
ALUSrcB
MemRead
MemWwrite| Control ALUSTEA
MemtoReg RegWrite
Rwite \ &y JReadst P
\. 0
p M
26 28 Jump Tu
Instruction [25—0] L [shift address [31-0]) X
M \left 2 v
Instruction
| PC 0) [31-26] I % PC [31-28]
M Instruction || Read M
u p=»|Address [25—21] " | register 1 U
X i Read X -
Instruction Read ea Eﬁ_.
| 1 Memory [20- 16] M ™ register 2 data 1 1

MembData - Instruction (0 Writ§ egisters ALUOU g
M h Read B
Writ [15-0] Instruction| u register yatg 2 :I-‘—‘ m
=3 dartlae Instruction [15-11] 1X Write 4 =y 1 'x'
register data »|2 »
Instruction 0 3
[15-0] M
u
X
» Memory 1
data N 16 sign
. t \
register > oxiond —
Instruction [5- 0]

Step 4 (R-type or memory-access) K

» Loads and stores access memory
MDR = Memory [ALUOut];

or
Memory [ALUOut] = B;

> R-type instructions finish

Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the
cycle on the edge

Datapath of Multicycle Implementation

/7_,_<_ . PCWriteCond/\ PCSource
— PCWiit
N\ fte / \ALUOp

lorD I Outputs
ALUSrcB
MemRead
MemWwrite| Control ALUSTEA
MemtoReg RegWrite
Rwite \ &y JReadst P
\. 0
p M
26 28 Jump Tu
Instruction [25—0] L [shift address [31-0]) X
M \left 2 v
Instruction
| PC 0) [31-26] I % PC [31-28]
M Instruction || Read M
u p=»|Address [25—21] " | register 1 U
X i Read X -
Instruction Read ea Eﬁ_.
| 1 Memory [20- 16] M ™ register 2 data 1 1

MembData - Instruction (0 Writ§ egisters ALUOU g
M h Read B
Writ [15-0] Instruction| u register yatg 2 :I-‘—‘ m
=3 dartlae Instruction [15-11] 1X Write 4 =y 1 'x'
register data »|2 »
Instruction 0 3
[15-0] M
u
X
» Memory 1
data N 16 sign
. t \
register > oxiond —
Instruction [5- 0]

Step 5 Write-back step K

Q0 Reg[IR[20-16]]= MDR;

What about all the other instructions?

Summary: R

Action for R-type | Action for memory-reference Action for Action for
Step name instructions instructions branches jumps
Instruction fetch IR = Memory[PC]
PC=PC+4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut=AopB ALUOuUt = A + sign-extend if (A ==B) then [PC =PC [31-28] Il
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B
Memory read completion Load: Reg[IR[20-16]] = MDR

Simple Questions K

o How many cycles will it take to execute this code?

lw $t2, 0(St3)
1w $t3, 4(St3)
beqg $t2, $t3, Label #fassume not
add $t5, $t2, S$t3
sw $St5, 8(S$t3)
Label:

o What is going on during the 8th cycle of execution?
o In what cycle does the actual addition of $t2 and $t3 takes place?

Uy utrdduddu gy uyy L

Implementing the Control K

> Value of control signals is dependent upon:
what instruction is being executed
which step is being performed

> Use the information we’'ve accumulated to specify a
finite state machine

specify the finite state machine graphically, or
use microprogramming

> Implementation can be derived from specification

Graphical Specification of FSM K

1

Instruction
Decode

0

Instruction
Fetch

Start

2 6
ALU Complete
Execute Branch

7
Complete
R-type

Write-Back

Detailed FSM

Memory address
computation

ALUSrcA =1
ALUSrcB = 10
ALUOp = 00
=
=
n
@ Memory

access

MemRead
lorD =1

/0.

N

Instruction fetch

MemRead

Instruction decode/
register fetch

ALUSrcA =0
lorD=0 ALUSrcA =0
Start ————— IRWrite ALUSrcB = 11
ALUSIrcB = 01 ALUOp = 00
ALUOp =00
PCWrite
PCSource = 0 <
e) S -
BN z
\N‘\ &OQ //?\ //\é/ T
- o
KOQ; S _ Branch QQ o | Jump
WY & Execution completion completion
o= 8
ALUSIrcA =1
ALUSIcA =1 ALUSrcB = 00)
PCWrite
ALUSIcB = 00 ALUOp = 01 PCSource = 10
ALUOp= 10 PCWriteCond
PCSource = 01
&
<
Memory
access R-type completion

. RegDst = 1
MemWrite RegWrite

lorD = 1

MemtoReg =0

Write-back step

RegDst=0
RegWrite
MemtoReg=1

Finite State Machine for Control

2 Implementation:

—1 PCWrite

PCWriteCond

lorD
MemRead

[Memwrite
IRWrite
MemtoReg
PCSource

< ALUOp

Outputs | [A UsrcB
ALUSrcA
RegWrite
RegDst

Control logic

NS3
NS2

NS1

Inputs
P L [Nso

N N A Y A A A A A A

| | N o
Q| o o

Oo| O O O

Op5
p
Op0
S3

S
S
S

Instruction register State register

opcode field 7y Y T T

Op2 » ? * |

I 000 lg

O
j Outputs

R-format Iw SW beq RegDst

I) ALUSrc

* MemtoRec

1) RegWrite
i MemRead

¢ MemWrite

[Branch
¢ ALUOp1

‘ ALUOpPO

ALUOp

l ALU control block
ALUOpO
ALUOp1

Operation2

2 D
Operatior
F2 ¢ Operation1 g

F (5-0) | :))

F1
T\ Operation0
J

FO

PLA Implementation

2 Programmable
Logic
Array
0 If | picked a horizontal

or vertical line
could you explain it?

Op5

Op4

Op3 D

op2 D>

>
s
T

2
Op1
Op0

S3
s D
S1
S0

T
T
T
T

PCWrite
PCWriteConc
lorD
MemRead
MemWrite
IRWrite
MemtoReg
PCSource1
PCSource0
ALUOp1
ALUOPO
ALUSrcB1
ALUSrcBO
ALUSrcA
RegWrite
RegDst
NS3

NS2

NS1

NSO

ROM Implementation K

o ROM ="Read Only Memory"
values of memory locations are fixed ahead of time

0 A ROM can be used to implement a truth table
if the address is m-bits, we can address 2™ entries in the ROM.
our outputs are the bits of data that the address points to.

0 00f00T1T1

0 01|11 1060

m n 01011060
ﬁ;' 7%, 01 1{1 0 0 O
1 00[{00O0O0

1 0 1{0 001

1 10{0110

1 1 110 1 1 1

m is the "heigth", and n is the "width"

ROM Implementation K

> How many inputs are there?

6 bits for opcode, 4 bits for state = 10 address lines
(i.e., 210 = 1024 different addresses)

> How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

> ROM is 29 x 20 = 20K bits

» Rather wasteful, since for lots of the entries, the
outputs are the same
— I.e., opcode is often ignored

ROM vs PLA R

> Break up the table into two parts
— 4 state bits tell you the 16 outputs, 2% x 16 bits of ROM
— 10 bits tell you the 4 next state bits, 219 x 4 bits of ROM
— Total: 4.3K bits of ROM

> PLA is much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares

> Size is (#inputs x #product-terms) + (#outputs x #product-terms)
For this example = (10x17)+(20x17) = 460 PLA cells

> PLA cells usually about the size of a ROM cell (slightly bigger)

Another Implementation Style K

0 Complex instructions: the "next state" is
often current state + 1

MemWrite
IRWrite

AAAAA

ddddddd

Details

State number

Address-control action

Value of AddrCtl

Instruction register
opcode field

o

Use incremented state

[6V)

Use dispatch ROM 1

Use dispatch ROM 2

Use incremented state

Replace state number by 0

Replace state number by 0

Use incremented state

Replace state number by 0

O NG OB WIN |-

Replace state number by 0

©

Replace state number by 0

Ol IOIWI[OIO|WIN |-~

LY [~eplacesialenumberbyV | U |

Dispatch ROM 1 Dispatch ROM 2
Op Opcode name Value Op Opcode name Value
000000 R-format 0110 100011 1w 0011
000010 jmp 1001 101011 SwW 0101
000100 beq 1000 PLA or ROM
100011 1w 0010
101011 Sw 0010 1
l V% State
\dder |
Mux AddrCt|
3 2 1.0 J
f 1
0
Dispatch ROM 2 Dispatch ROM 1
I t Address select logic
S

Microprogramming UC

Control unit S
PCWriteCond
lorD
MemRead Datapath
MemWrite
IRWrite
BWrite
Outputs < | MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst
AddrCtl

Microcode memory

Input

Microprogram counter
A4 prog

Adder

Address select logic

Op[5-0]

Instruction register
opcode field

Microprogramming K

> How all CISC ISAs were built.
> M-store: RAM-memory with N bits/word

N = number of control lines in CPU.

Execution of each instruction starts IF and ID.
Instruction Opcode points to a location in y-store
Output consecutive control words until DONE.

> M-store is updatable
> M-controller is = a mini-CPU running the main CPU

> M-programming worked when CPU = multiple boards
W-controller on one board: much faster

Microprogramming UCR

o A specification methodology
appropriate if hundreds of opcodes, modes, cycles, etc.
signals specified symbolically using microinstructions

ALU Register PCWrite
Label control [SRC1| SRC2 | control Memory control Sequencing
Fetch Add PC 4 Read PC [ALU Seq
Add PC Extshft |Read Dispatch 1
Mem/1 Add A Extend Dispatch 2
LW2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 |Func code [A B Seq
Write ALU Fetch
BEQ1 Subt A B ALUOut-cond |Fetch
JUMP1 Jump address |Fetch

Q Will two implementations of the same architecture have the same microcode?
Q What would a microassembler do?

- _ RMinavainctvrmiintian favrnmat

Field name Value Signals active Comment
Add ALUODP =00 Cause the ALU to add.
ALU control Subt ALUOp =01 Cause the ALU to subtract; this implements the compare for
branches.
Func code ALUOp =10 Use the instruction's function code to determine ALU control.
SRCA1 PC ALUSIcA =0 Use the PC as the first ALU input.
A ALUSICcA =1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.
SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSIcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register
numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and
Register RegDst =1, the contents of the ALUOut as the data.
control MemtoReg =0
Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReqg = 1
Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD =0 the MDR).
Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD =1
Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD =1 data.
ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite
PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOuUt.
jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite
Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing AddrCtl = 00

Fetch

Go to the first microinstruction to begin a new instruction.

wvidXiimally vs. ivilnimalily
Encoded K

> No encoding:

1 bit for each datapath operation
faster, requires more memory (logic)
used for Vax 780 — an astonishing 400K of memory!
> Lots of encoding:
send the microinstructions through logic to get control signals
uses less memory, slower
> Historical context of CISC:
Too much logic to put on a single chip with everything else
Use a ROM (or even RAM) to hold the microcode
It’ s easy to add new instructions

Microcode: Trade-offs K

0 Distinction between specification and implementation is sometimes blurred

0 Specification Advantages:
Easy to design and write
Design architecture and microcode in parallel
0 Implementation (off-chip ROM) Advantages
Easy to change since values are in memory
Can emulate other architectures
Can make use of internal registers
0 Implementation Disadvantages, SLOWER now that:
Control is implemented on same chip as processor
ROM is no longer faster than RAM
No need to go back and make changes

The Big Picture K

Initial Finite state :
: : Microprogram
representation diagram
==
Sequencing Explicit next Microprogram counter
control state function + dispatch ROMS
=
Logic Logic Truth
representation equations tables
=
Implementation Programmable Read only
technique logic array memory

