
CS161 – Design and 
Architecture of 
Computer Systems 
Multi-Cycle CPU Design 



Single Cycle Implementation 
! Calculate cycle time assuming negligible delays except: 

! memory (2ns), ALU and adders (2ns), register file access (1ns) 
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Single Cycle – Steps of each instruction 

Inst. 
Type 

Functional Units Used 

R-type Instruction 
fetch 

Register 
read 

ALU Register 
write 

Load Instruction 
fetch 

Register 
read 

ALU Memory 
access 

Register write 

Store Instruction 
fetch 

Register 
read 

ALU Memory 
access 

Branch Instruction 
fetch 

Register 
read 

ALU 

Jump Instruction 
fetch 



Single Cycle – How long is the cycle? 
Inst. 
Type 

Inst. 
Mem. 

Reg. File 
(read) 

ALU 
(s) 

Data 
Mem. 

Reg. File 
(write) 

Total 

R-type 2 1 2 0 1 6 ns 

Load 2 1 2 2 1 8 ns 

Store 2 1 2 2 0 7 ns 

Branch 2 1 2 0 0 5 ns 

Jump 2 0 0 0 0 2 ns 

The cycle time must accommodate the longest operation: lw.  
Cycle time = 8 ns but the CPI = 1. 
 
If we can accommodate variable number of cycles for each instruction and 
a cycle time of 1ns. 
CPI = 6*44% + 8*24% + 7*12% + 5*18% + 2*2% = 6.3  
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Where we are headed 
! Single Cycle Problems: 

! what if we had a more complicated instruction like floating point? 
! waste of area 

! One Solution: 
! use a “smaller” cycle time 
! have different instructions take different numbers of cycles 
! a “multicycle” datapath: 
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! We will be reusing functional units 
! ALU used to compute address and to increment PC 
! Memory used for instruction and data 

! Our control signals will not be determined 
solely by instruction 
! e.g., what should the ALU do for a “subtract” 

instruction? 
! We’ll use a finite state machine for control 

Multicycle Approach 



! Finite state machines: 
! a set of states and  
! next state function (determined by current state and the input) 
! output function (determined by current state and possibly input) 

 
 
 
 
 
 

 
 
 
! We’ll use a Moore machine (output based only on current state) 

Review:  finite state machines 
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! Break up the instructions into steps, each step takes a cycle 
! balance the amount of work to be done 
! restrict each cycle to use only one major functional unit 

! At the end of a cycle 
! store values for use in later cycles (easiest thing to do) 
! introduce additional “internal” registers 

 

Multicycle Approach 
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Muticyle Datapath 
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•  Instruction Fetch (F) 

•  Instruction Decode and Register Fetch (D) 

•  Execution, Memory Address Computation, or Branch 
Completion (EX) 

•  Memory Access or R-type instruction completion (M) 

•  Write-back step (W) 
 

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES! 

Five Execution Steps 



q  Use PC to get instruction and put it in the Instruction Register. 
q  Increment the PC by 4 and put the result back in the PC. 
q  Can be described concisely using RTL "Register-Transfer 

Language" 
 

 IR = Memory[PC]; 
 PC = PC + 4; 

 
 

q  Can we figure out the values of the control signals? 
 

Step 1:  Instruction Fetch 



Datapath of Multicycle Implementation 
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! Read registers rs and rt in case we need them 
! Compute the branch address in case the instruction 

is a branch 
! RTL: 

 
 A = Reg[IR[25-21]]; 
 B = Reg[IR[20-16]]; 
 ALUOut = PC + (sign-extend(IR[15-0]) << 2); 

 
! We aren't setting any control lines based on the 

instruction type  
 (we are busy "decoding" it in our control logic) 

 

Step 2:  Instruction Decode and Register Fetch 



Single Cycle Implementation 

14 



Datapath of Multicycle Implementation 
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! ALU is performing one of three functions, based on instruction type 
 

! Memory Reference: 
 

 ALUOut = A + sign-extend(IR[15-0]); 
 

! R-type: 
 

 ALUOut = A op B; 
 

! Branch: 
 

 if (A==B) PC = ALUOut; 

Step 3 (instruction dependent) 



Datapath of Multicycle Implementation 
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! Loads and stores access memory 
 
 MDR = Memory[ALUOut]; 
  or 
 Memory[ALUOut] = B; 

 
! R-type instructions finish 

 
 Reg[IR[15-11]] = ALUOut; 

 
 
The write actually takes place at the end of the 
cycle on the edge 
 

Step 4 (R-type or memory-access) 



Datapath of Multicycle Implementation 
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q Reg[IR[20-16]]= MDR; 
 

What about all the other instructions? 

Step 5 Write-back step 



Summary: 

Step name
Action for R-type 

instructions
Action for memory-reference 

instructions
Action for 
branches

Action for       
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR



q  How many cycles will it take to execute this code?  
 

  lw $t2, 0($t3) 
  lw $t3, 4($t3) 
  beq $t2, $t3, Label  #assume not 
  add $t5, $t2, $t3 
  sw $t5, 8($t3) 

Label:  ... 
 
 

q  What is going on during the 8th cycle of execution? 
q  In what cycle does the actual addition of $t2 and $t3 takes place? 

 
  
  

Simple Questions 



! Value of control signals is dependent upon: 
! what instruction is being executed 
! which step is being performed 

 
! Use the information we’ve accumulated to specify a 

finite state machine 
! specify the finite state machine graphically, or 
! use microprogramming 

 
! Implementation can be derived from specification 

 

Implementing the Control 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
! How many state bits will we need? 

Graphical Specification of FSM 
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Detailed FSM 

PCWrite 
PCSource = 10
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q  Implementation: 

Finite State Machine for Control 
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R-format Iw sw beq
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PLA Implementation 
q Programmable 

Logic 
Array 

q  If I picked a horizontal  
or vertical line  
could you explain it? 
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q  ROM = "Read Only Memory" 
! values of memory locations are fixed ahead of time 

q  A ROM can be used to implement a truth table 
! if the address is m-bits, we can address 2m entries in the ROM. 
! our outputs are the bits of data that the address points to. 

 
 
 
 
 
 
 
 
 
 
 
m is the "heigth", and n is the "width" 

ROM Implementation 

m n 

0 0 0 0 0 1 1 
0 0 1 1 1 0 0 
0 1 0 1 1 0 0 
0 1 1 1 0 0 0  
1 0 0 0 0 0 0  
1 0 1 0 0 0 1 
1 1 0 0 1 1 0 
1 1 1 0 1 1 1 



! How many inputs are there? 
 6 bits for opcode, 4 bits for state = 10 address lines 
 (i.e., 210  = 1024 different addresses) 

! How many outputs are there? 
 16 datapath-control outputs, 4 state bits = 20 outputs 

 
! ROM is 210 x 20 = 20K bits 
! Rather wasteful, since for lots of the entries, the 

outputs are the same 
 — i.e., opcode is often ignored 

ROM Implementation 



! Break up the table into two parts 
 — 4 state bits tell you the 16 outputs,    24 x 16 bits of ROM 
 — 10 bits tell you the 4 next state bits,  210 x 4 bits of ROM 
 — Total:  4.3K bits of ROM 

! PLA is much smaller 
 — can share product terms 
 — only need entries that produce an active output 
 — can take into account don't cares 

! Size is (#inputs × #product-terms) + (#outputs × #product-terms) 
 For this example  =  (10x17)+(20x17) = 460 PLA cells 
  

! PLA cells usually about the size of a ROM cell (slightly bigger) 

ROM vs PLA 



q Complex instructions:  the "next state" is 
often current state + 1 

Another Implementation Style 
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Details 
Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value
000000 R-format 0110 100011 lw 0011
000010 jmp 1001 101011 sw 0101
000100 beq 1000
100011 lw 0010
101011 sw 0010

State number Address-control action Value of AddrCtl
0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

State

O
p

Adder

1

PLA or ROM

Mux
3 2 1 0

Dispatch ROM 1Dispatch ROM 2

0
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Microprogramming 

 
 
 
 
 
 
 
 
 
 
 
 
 

! What are the “microinstructions” ? 
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Microprogramming 
! How all CISC ISAs were built. 
! µ-store: RAM-memory with N bits/word 

! N = number of control lines in CPU. 
! Execution of each instruction starts IF and ID.  
! Instruction Opcode points to a location in µ-store 
! Output consecutive control words until DONE. 

! µ-store is updatable 
! µ-controller is = a mini-CPU running the main CPU 
! Μ-programming worked when CPU = multiple boards 

! µ-controller on one board: much faster 



q  A specification methodology 
! appropriate if hundreds of opcodes, modes, cycles, etc. 
! signals specified symbolically using microinstructions 

 
 
 
 
 
 
 
 
 
 
 

 
 

q  Will two implementations of the same architecture have the same microcode? 
q  What would a microassembler do? 

Microprogramming 

Label
ALU 

control SRC1 SRC2
Register 
control Memory

PCWrite 
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch



Microinstruction format Field name Value Signals active Comment
Add ALUOp = 00 Cause the ALU to add.

ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for
branches.

Func code ALUOp = 10 Use the instruction's function code to determine ALU control.
SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.

A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

Write MDR RegWrite, Write a register using the rt field of the IR as the register number and
RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and 
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.



! No encoding: 
! 1 bit for each datapath operation 
! faster, requires more memory (logic) 
! used for Vax 780 — an astonishing 400K of memory! 

! Lots of encoding: 
! send the microinstructions through logic to get control signals 
! uses less memory, slower 

! Historical context of CISC: 
! Too much logic to put on a single chip with everything else 
! Use a ROM (or even RAM) to hold the microcode 
! It’s easy to add new instructions 

Maximally vs. Minimally 
Encoded 



Microcode:  Trade-offs 
q  Distinction between specification and implementation is sometimes blurred 

 
q  Specification Advantages: 

! Easy to design and write 

! Design architecture and microcode in parallel 

q  Implementation (off-chip ROM) Advantages 

! Easy to change since values are in memory 

! Can emulate other architectures 

! Can make use of internal registers 

q  Implementation Disadvantages,  SLOWER now  that: 

! Control is implemented on same chip as processor 

! ROM is no longer faster than RAM 

! No need to go back and make changes 
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