
CS161 – Design and
Architecture of
Computer Systems
Single Cycle CPU Design

CPU Organization
! We will build a CPU to implement our subset of

the MIPS ISA
! Memory Reference Instructions:

! Load Word (LW)
! Store Word (SW)

! Arithmetic and Logic Instructions:
! ADD, SUB, AND, OR, SLT

! Branch and Jump Instructions:
! Branch if equal (BEQ)
! Jump unconditional (J)

! These basic instructions exercise a majority of
the necessary datapath and control logic for a
more complete implementation

2

Generic Implementation
! Use program counter (PC) to supply

instruction address
! Get instruction from memory
! Read registers
! Use instruction to decide exactly what to do

3

CPU Implementations
! Single-cycle CPU (CPI = 1)

! All instructions execute in a single, long clock
cycle

! Multi-cycle CPU (CPI = n)
! Instructions can take a different number of short

clock cycles to execute

4

Single-Cycle Datapath
Fetch: Use PC
address to fetch

instruction

Decode & Register/
Operand Fetch:

Determine instruction
type and fetch any
register operands

needed

ALU instructions:
Perform Add, Sub, etc.
and write result back to

register

LW/SW: Calculate
address and perform

memory access

BEQ/J: Update PC
(possibly based on

comparison)

5

Abstract/Simplified View

! Two types of functional units:
! Elements that operate on data values

(combinational)
! Elements that contain state (sequential)

6

Registers
Register #

Data

Register #

Data
memory

Address

Data

Register #

PC Instruction ALU

Instruction
memory

Address

State Elements
! Unclocked vs clocked
! Clocks used in synchronous logic

7

cycle time
rising edge

falling edge

Unclocked State Element
! Set-reset latch

! Output depends on present inputs and also on
past inputs

8

Latches and Flip-flops
! Output is equal to the stored value inside the element

(don't need to ask for permission to look at the value)
! Change of state (value) is based on the clock

! Latches: whenever the inputs change, and the clock is
asserted

! Flip-flop: state changes only on a clock edge
 (edge-triggered methodology)

9

D-latch
! Two inputs:

! the data value to be stored (D)
! the clock signal (C) indicating when to read & store D

! Two outputs:
! the value of the internal state (Q) and it's complement

10

Q

C

D

_
Q

D

C

Q

D flip-flop (Register)
! Output changes only on the clock edge

11

QQ

_
Q

Q

_
Q

D
latch

D

C

D
latch

DD

C

C

D

C

Q

Our Implementation
! An edge triggered methodology
! Typical execution:

! Read contents of some state elements,
! Send values through some combinational logic
! Write results to one or more state elements

12

Clock cycle

State
element

1
Combinational logic

State
element

2

Register File
! Built using D flip-flips

13

M
u
x

Register 0
Register 1

Register n – 1
Register n

M
u
x

Read data 1

Read data 2

Read register
number 1

Read register
number 2

Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

Register File
! Note: We still use the real clock to determine

when to write

14

n-to-1
decoder

Register 0

Register 1

Register n – 1
C

C

D

D
Register n

C

C

D

D

Register number

Write

Register data

0
1

n – 1
n

Read register
number 1 Read

data 1

Read
data 2

Read register
number 2

Register file
Write
register

Write
data Write

Simple Implementation
! Include the functional units we need for each instruction
! Think of this as a puzzle! J

15

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

Instruction Ordering
! Identify which components each instruction type would

use and in what order: ALU-Type, LW, SW, BEQ

16

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

ALU-Type
(ADD R3, R2, R1)
1.  PC
2.  I-Mem
3.  Registers
4.  ALU
5.  WB to Reg.

LW
(LW R2, 4(R1))
1.  PC
2.  I-Mem
3.  Base. Reg.
4.  ALU
5.  Read Mem
6.  WB to Reg.

SW
(SW R2, 8(R1))
1.  PC
2.  I-Mem
3.  Base. Reg
4.  ALU
5.  Write Mem

BEQ
(BEQ R3, R1, displace)
1.  PC
2.  I-Mem
3.  Register Access
4.  Compare
5.  If Zero,

Update PC = PC+disp

Fetch Components
! Required operations

! Taking address from PC and reading instruction from memory
! Incrementing PC to point at next instruction

! Components
! PC register
! Instruction Memory / Cache
! Adder to increment PC value

17

Fetch Datapath
! PC value serves as address to instruction memory while

also being incremented by 4 using the adder
! Instruction word is returned by memory after some delay
! New PC value is clocked into PC register at end of clock

cycle

18

Fetch Datapath Example
! The PC and adder operation is shown

! The PC doesn’t update until the end of the current cycle

! The instruction being read out from the instruction
memory
! We have shown “assembly” syntax and the field by field machine

code breakdown

19

Modified Fetch Datapath
! Support for branch instruction added

20

Modified Fetch Example
! Mux provides a path for branch target

address

21

Decode
! Opcode and func. field are decoded to produce other control signals
! Execution of an ALU instruction (ADD $3,$1,$2) requires reading 2

register values and writing the result to a third
! REGWrite is an enable signal indicating the write data should be

written to the specified register

22

ALU Datapath
! ALU takes inputs from register file and

performs the add, sub, and, or, slt operations
! Result is written back to dest. register

23

Memory Access Datapath
! Operands are read from register file while offset is sign extended
! ALU calculates effective address
! Memory access is performed
! If LW, read data is written back to register

24

Branch Datapath
! BEQ requires…

! ALU for comparison (examine ‘zero’ output)
! Sign extension unit for branch offset
! Adder to add PC and offset

! Need a separate adder since ALU is used to perform comparison

25

Memory Access
! LW and SW require:

! Sign extension unit for address offset
! ALU to compute (add) base address + offset
! Data memory

26

Combining Datapaths
! Combine all datapaths into one

! We can have multiple options for certain inputs

! Use muxes to select appropriate input for a
given instruction

! Generate control bits to control mux

27

ALUSrc Mux
! Mux controlling second input to ALU

! ALU instruction provides Read Register 2 data to the 2nd input of ALU
! LW/SW uses 2nd input of ALU as an offset to form effective address

28

MemtoReg Mux
! Mux controlling writeback value to register file

! ALU instructions use the result of the ALU
! LW uses the read data from data memory

29

PCSrc Mux
! Next instruction can either be PC+4, or the

branch target address, PC+Offset

30

RegDst Mux
! Different destination register ID fields for ALU and LW instructions

31

Single Cycle CPU Datapath

32

Control
! We now have data path in place, but how do

we control which path an instruction will take?
! Single-Cycle Design:

! Instruction takes exactly one clock cycle
! Datapath units used only once per cycle
! Writable state updated at end of cycle

! What must be “controlled”?
! Muxes
! Writeable state elements: RF, Mem
! ALU

33

Control
! Single-Cycle Design: everything happens

in one clock cycle
! until next falling edge of clock,

processor just one big combinational circuit!!!
! control is just a combinational circuit

(output, just function of inputs)
! outputs? control points in datapath
! inputs? the current instruction! (opcode,
funct control everything)

34

Datapath + Control

35

Defining Control
! Most control signals are a function of the

opcode (i.e. LW/SW, R-Type, Branch, Jump)

36

Defining Control
! Funct field only present in R-type instruction

! Funct controls ALU only
! To simplify control, define Main and ALU

control separately

37

ALU Control
! ALU Control needs to know what instruction type it is:

! R-Type (op. depends on func. code)
! LW/SW (op. = ADD)
! BEQ (op. = SUB)

! Let main control unit produce ALUOp[1:0] to indicate instruction
type, then use function bits if necessary to tell the ALU what to do

38

ALU Control

ALUCon ALU function Instruction supported
0000 AND R-format (AND)
0001 OR R-format (OR)
0010 Add R-format (Add), lw, sw
0110 Subtract R-format (Sub), beq
0111 Set on less than R-format (Slt)
1100 NOR R-format (Nor)

39

ALUcon

A
L
U

Zero

Result

A

B Note: We don’t use NOR.

Ignore MSB in ALUCon.

ALU Control Truth Table
! ALUControl[2:0] is a function of ALUOp[1:0] and Func[5:0]

40

Instruc. Instruction
Operation

Desired
ALU Action

ALUOp[1:0] Func[5:0] ALUControl

LW Load Word Add 00 X 010
SW Store Word Add 00 X 010
Branch BEQ Subtract 01 X 110
R-Type AND And 10 100100 000
R-Type OR Or 10 100101 001
R-Type Add Add 10 100000 010
R-Type Sub Subtract 10 100010 110
R-Type SLT Set on less

than
10 101010 111

Simplified ALUControl Truth Table
! We can simplify using don’t cares
! Can turn into gates

! ALUControl2 = ALUOp0 OR (ALUOp1 AND F1)
! ALUControl1 = ALUOp1 NOR F2
! ALUControl0 = ALUOp1 AND (F3 OR F0)

41

ALUOp Funct Field ALUCont.

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010

X 1 X X X X X X 110

1 X X X 0 0 0 0 010

1 X X X 0 0 1 0 110

1 X X X 0 1 0 0 000

1 X X X 0 1 0 1 001

1 X X X 1 0 1 0 111

Fully Minimized ALU Control

42

O p e r a t i o n 2

O p e r a t i o n 1

O p e r a t i o n 0

A L U O p 1

F 3

F 2

F 1

F 0

A L U O p 0

A L U O p

ALUcon
4th bit=0

funct

Datapath + Control

43

Main Control Signals
! Main control signals are function of opcode

44

Could generate each control signal
by writing full truth table of the 6-bit opcode

Simpler for humans to design if we decode
the opcode and then use instruction signals

to generate desired control signals

Main Control Signal Logic

45

Main Control Signal Truth Table

46

Review – R-type Instructions

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

Review – Lw Instruction

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

Review – Branch Instructions

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

Jump Instruction
! JAL (Jump and Link) for function calls
! How do we add JAL to datapath?

! 1. Place PC+4 (return address) into $ra
! 2. Extend RegDst mux to include 31 ($ra)
! 3. Extend MemtoReg mux at write data input to

have PC+4 as input

50

Jump Instruction Implementation

51

What changes are
needed to support
JAL?

Acknowledgements
! Slide sources from:

! UCR CS161
! Walid Najjar
! Laxmi Bhuyan

! USC EE457
! Mark Redekopp
! Gandhi Puvvada

52

