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CPU Organization 
! We will build a CPU to implement our subset of 

the MIPS ISA 
! Memory Reference Instructions: 

! Load Word (LW) 
! Store Word (SW) 

! Arithmetic and Logic Instructions: 
! ADD, SUB, AND, OR, SLT 

! Branch and Jump Instructions: 
! Branch if equal (BEQ) 
! Jump unconditional (J) 

! These basic instructions exercise a majority of 
the necessary datapath and control logic for a 
more complete implementation  
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Generic Implementation 
! Use program counter (PC) to supply 

instruction address 
! Get instruction from memory 
! Read registers 
! Use instruction to decide exactly what to do 
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CPU Implementations 
! Single-cycle CPU (CPI = 1) 

! All instructions execute in a single, long clock 
cycle 

! Multi-cycle CPU (CPI = n) 
! Instructions can take a different number of short 

clock cycles to execute 
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Single-Cycle Datapath 
Fetch: Use PC 
address to fetch 

instruction 

Decode & Register/
Operand Fetch: 

Determine instruction 
type and fetch any 
register operands 

needed 

ALU instructions: 
Perform Add, Sub, etc. 
and write result back to 

register 

LW/SW: Calculate 
address and perform 

memory access 

BEQ/J: Update PC 
(possibly based on 

comparison) 
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Abstract/Simplified View 

! Two types of functional units: 
! Elements that operate on data values 

(combinational) 
! Elements that contain state (sequential) 
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State Elements 
! Unclocked vs clocked 
! Clocks used in synchronous logic 
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Unclocked State Element 
! Set-reset latch 

! Output depends on present inputs and also on 
past inputs 
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Latches and Flip-flops 
! Output is equal to the stored value inside the element 

(don't need to ask for permission to look at the value) 
! Change of state (value) is based on the clock 

! Latches:  whenever the inputs change, and the clock is 
asserted 

! Flip-flop:  state changes only on a clock edge 
 (edge-triggered methodology) 
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D-latch  
! Two inputs: 

! the data value to be stored (D) 
! the clock signal (C) indicating when to read & store D 

! Two outputs: 
! the value of the internal state (Q) and it's complement 
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D flip-flop (Register) 
! Output changes only on the clock edge 
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Our Implementation 
! An edge triggered methodology 
! Typical execution: 

! Read contents of some state elements, 
! Send values through some combinational logic 
! Write results to one or more state elements 
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Register File 
! Built using D flip-flips 
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Register File 
! Note: We still use the real clock to determine 

when to write 
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Simple Implementation 
! Include the functional units we need for each instruction 
! Think of this as a puzzle! J 
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Instruction Ordering 
! Identify which components each instruction type would 

use and in what order: ALU-Type, LW, SW, BEQ 
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ALU-Type 
(ADD R3, R2, R1) 
1.  PC 
2.  I-Mem 
3.  Registers 
4.  ALU 
5.  WB to Reg. 

LW 
(LW R2, 4(R1)) 
1.  PC 
2.  I-Mem 
3.  Base. Reg. 
4.  ALU 
5.  Read Mem 
6.  WB to Reg. 

SW 
(SW R2, 8(R1)) 
1.  PC 
2.  I-Mem 
3.  Base. Reg 
4.  ALU 
5.  Write Mem 

BEQ 
(BEQ R3, R1, displace) 
1.  PC 
2.  I-Mem 
3.  Register Access 
4.  Compare 
5.  If Zero, 

Update PC = PC+disp 



Fetch Components 
! Required operations 

! Taking address from PC and reading instruction from memory 
! Incrementing PC to point at next instruction 

! Components 
! PC register 
! Instruction Memory / Cache 
! Adder to increment PC value 
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Fetch Datapath 
! PC value serves as address to instruction memory while 

also being incremented by 4 using the adder 
! Instruction word is returned by memory after some delay 
! New PC value is clocked into PC register at end of clock 

cycle 
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Fetch Datapath Example 
! The PC and adder operation is shown 

! The PC doesn’t update until the end of the current cycle 

! The instruction being read out from the instruction 
memory 
! We have shown “assembly” syntax and the field by field machine 

code breakdown 
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Modified Fetch Datapath 
! Support for branch instruction added 
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Modified Fetch Example 
! Mux provides a path for branch target 

address 
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Decode 
! Opcode and func. field are decoded to produce other control signals 
! Execution of an ALU instruction (ADD $3,$1,$2) requires reading 2 

register values and writing the result to a third 
! REGWrite is an enable signal indicating the write data should be 

written to the specified register 
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ALU Datapath 
! ALU takes inputs from register file and 

performs the add, sub, and, or, slt operations 
! Result is written back to dest. register 
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Memory Access Datapath 
! Operands are read from register file while offset is sign extended 
! ALU calculates effective address 
! Memory access is performed 
! If LW, read data is written back to register 
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Branch Datapath 
! BEQ requires… 

! ALU for comparison (examine ‘zero’ output) 
! Sign extension unit for branch offset 
! Adder to add PC and offset 

! Need a separate adder since ALU is used to perform comparison 
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Memory Access   
! LW and SW require: 

! Sign extension unit for address offset 
! ALU to compute (add) base address + offset 
! Data memory 
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Combining Datapaths 
! Combine all datapaths into one 

! We can have multiple options for certain inputs 

! Use muxes to select appropriate input for a 
given instruction 

! Generate control bits to control mux 
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ALUSrc Mux 
! Mux controlling second input to ALU 

! ALU instruction provides Read Register 2 data to the 2nd input of ALU 
! LW/SW uses 2nd input of ALU as an offset to form effective address 
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MemtoReg Mux 
! Mux controlling writeback value to register file 

! ALU instructions use the result of the ALU 
! LW uses the read data from data memory 
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PCSrc Mux 
! Next instruction can either be PC+4, or the 

branch target address, PC+Offset 
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RegDst Mux 
! Different destination register ID fields for ALU and LW instructions 
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Single Cycle CPU Datapath 
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Control 
! We now have data path in place, but how do 

we control which path an instruction will take? 
! Single-Cycle Design: 

! Instruction takes exactly one clock cycle 
! Datapath units used only once per cycle 
! Writable state updated at end of cycle 

! What must be “controlled”? 
! Muxes 
! Writeable state elements: RF, Mem 
! ALU 
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Control 
! Single-Cycle Design: everything happens 

in one clock cycle  
! until next falling edge of clock,  

processor just one big combinational circuit!!! 
! control is just a combinational circuit 

(output, just function of inputs) 
! outputs? control points in datapath 
! inputs?  the current instruction! (opcode, 
funct control everything) 
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Datapath + Control 
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Defining Control 
! Most control signals are a function of the 

opcode (i.e. LW/SW, R-Type, Branch, Jump) 
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Defining Control 
! Funct field only present in R-type instruction 

! Funct controls ALU only 
! To simplify control, define Main and ALU 

control separately 
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ALU Control 
! ALU Control needs to know what instruction type it is: 

! R-Type (op. depends on func. code) 
! LW/SW (op. = ADD) 
! BEQ (op. = SUB) 

! Let main control unit produce ALUOp[1:0] to indicate instruction 
type, then use function bits if necessary to tell the ALU what to do 
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ALU Control 

ALUCon ALU function Instruction supported 
0000 AND R-format (AND) 
0001 OR R-format (OR) 
0010 Add R-format (Add), lw, sw 
0110 Subtract R-format (Sub), beq 
0111 Set on less than R-format (Slt) 
1100 NOR R-format (Nor) 
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ALU Control Truth Table 
! ALUControl[2:0] is a function of ALUOp[1:0] and Func[5:0] 
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Instruc. Instruction 
Operation 

Desired 
ALU Action 

ALUOp[1:0] Func[5:0] ALUControl 

LW Load Word Add 00 X 010 
SW Store Word Add 00 X 010 
Branch BEQ Subtract 01 X 110 
R-Type AND And 10 100100 000 
R-Type OR Or 10 100101 001 
R-Type Add Add 10 100000 010 
R-Type Sub Subtract 10 100010 110 
R-Type SLT Set on less 

than 
10 101010 111 



Simplified ALUControl Truth Table 
! We can simplify using don’t cares 
! Can turn into gates 
 

! ALUControl2 = ALUOp0 OR (ALUOp1 AND F1) 
! ALUControl1 = ALUOp1 NOR F2 
! ALUControl0 = ALUOp1 AND (F3 OR F0) 

41 

ALUOp Funct Field ALUCont. 

ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0 

0 0 X X X X X X 010 

X 1 X X X X X X 110 

1 X X X 0 0 0 0 010 

1 X X X 0 0 1 0 110 

1 X X X 0 1 0 0 000 

1 X X X 0 1 0 1 001 

1 X X X 1 0 1 0 111 



Fully Minimized ALU Control 
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Datapath + Control 
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Main Control Signals 
! Main control signals are function of opcode 
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Could generate each control signal 
by writing full truth table of the 6-bit opcode 

Simpler for humans to design if we decode 
the opcode and then use instruction signals 

to generate desired control signals 



Main Control Signal Logic 
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Main Control Signal Truth Table 
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Review – R-type Instructions 
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Review – Lw Instruction 
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Review – Branch Instructions 
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Jump Instruction 
! JAL (Jump and Link)  for function calls 
! How do we add JAL to datapath? 

! 1. Place PC+4 (return address) into $ra 
! 2. Extend RegDst mux to include 31 ($ra) 
! 3. Extend MemtoReg mux at write data input to 

have PC+4 as input 
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Jump Instruction Implementation 
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What changes are 
needed to support 
JAL? 
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