
CS161 – Design and
Architecture of
Computer Systems
ISA Overview

ISA vs. Microarchitecture
! ISA

! Agreed upon interface between software
and hardware
! SW/compiler assumes, HW promises

! What the software writer needs to know
to write and debug system/user programs

! Microarchitecture
! Specific implementation of an ISA
! Not visible to the software

! Microprocessor
! ISA, uarch, circuits
! “Architecture” = ISA + microarchitecture

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

ISA

! Instructions
! Opcodes, Addressing Modes, Data Types
! Instruction Types and Formats
! Registers, Condition Codes

! Memory
! Address space, Addressability, Alignment
! Virtual memory management

! I/O: memory-mapped vs. instr.

Microarchitecture
! Implementation of the ISA under specific

design constraints and goals
! Anything done in hardware without exposure to

software
! Pipelining
! In-order versus out-of-order instruction execution
! Memory access scheduling policy
! Superscalar processing (multiple instruction issue?)
! Caching? Levels, size, associativity, replacement

policy
! Prefetching?

Property of ISA vs. Uarch?
! ADD instruction’s opcode
! Number of general purpose registers
! Number of ports to the register file
! Number of cycles to execute the MUL instruction

! Remember
! Microarchitecture: Implementation of the ISA under

specific design constraints and goals

Design Point
! A set of design considerations and their importance

! leads to tradeoffs in both ISA and uarch

! Considerations
! Cost
! Performance
! Maximum power consumption
! Energy consumption (battery life)
! Reliability and Correctness

! Design point determined by the “Problem” space
(application space), the intended users/market

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

MIPS ISA

7

MIPS arithmetic

! All instructions have 3 operands
! Operand order is fixed (destination first)

Example:

 C code: a = b + c

 MIPS ‘code’: add a, b, c

“The natural number of operands for an operation like addition is
three…requiring every instruction to have exactly three operands, no
more and no less, conforms to the philosophy of keeping the hardware
simple”

MIPS arithmetic

! Design Principle: simplicity favors regularity.
! Of course this complicates some things...

 C code: a = b + c + d;

 MIPS code: add a, b, c
 add a, a, d

! Operands must be registers, only 32 registers provided
! Each register contains 32 bits

! Design Principle: smaller is faster. Why?

MIPS Instructions Format

opcode	
6-bit	

rs	
5-bit	

rt	
5-bit	

immediate	
16-bit	

I-type	

R-type	0	
6-bit	

rs	
5-bit	

rt	
5-bit	

rd	
5-bit	

shamt	
5-bit	

funct	
6-bit	

opcode	
6-bit	

immediate	
26-bit	

J-type	

