
CS161 – Design and
Architecture of
Computer Systems
Performance Evaluation

WHAT IS PERFORMANCE?

2

Understanding Performance
! Algorithm

! Determines number of operations executed

! Programming language, compiler, architecture
! Determine number of machine instructions executed

per operation
! Processor and memory system

! Determine how fast instructions are executed
! I/O system (including OS)

! Determines how fast I/O operations are executed

Response Time and Throughput
! Response time

! How long it takes to do a task

! Throughput
! Total work done per unit time

! e.g., tasks/transactions/… per hour

! How are response time and throughput affected
by
! Replacing the processor with a faster version?
! Adding more processors?

! We’ll focus on response time for now…

Relative Performance
! Define Performance = 1/Execution Time
! “X is n time faster than Y”

n== XY

YX

time Executiontime Execution
ePerformancePerformanc

n  Example: time taken to run a program
n  10s on A, 15s on B
n  Execution TimeB / Execution TimeA

= 15s / 10s = 1.5
n  So A is 1.5 times faster than B

Relative Performance
! Define Performance = 1/Execution Time
! “X is n time faster than Y”

n== XY

YX

time Executiontime Execution
ePerformancePerformanc

n  Example: time taken to run a program
n  60s on A, 30s on B
n  Execution TimeB / Execution TimeA= 30s / 60s

= 0.5 So A is 0.5 times faster than B
n  or B is 2 times faster than A

Measuring Execution Time
! Elapsed time

! Total response time, including all aspects
! Processing, I/O, OS overhead, idle time

! Determines system performance
! CPU time

! Time spent processing a given job
! Discounts I/O time, other jobs’ shares

! Comprises user CPU time and system CPU time
! Different programs are affected differently by CPU

and system performance

CPU Clocking
! Operation of digital hardware governed by a

constant-rate clock

Clock (cycles)

Data transfer
and computation

Update state

Clock period

n  Clock period: duration of a clock cycle
n  e.g., 250ps = 0.25ns = 250×10–12s

n  Clock frequency (rate): cycles per second
n  e.g., 4.0GHz = 4000MHz = 4.0×109Hz

CPU Time

! Performance improved by
! Reducing number of clock cycles
! Increasing clock rate
! Hardware designer must often trade off clock rate

against cycle count

Rate Clock
Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

×=

CPU Time Example
! Computer A: 2GHz clock, 10s CPU time
! Designing Computer B

! Aim for 6s CPU time
! Can do faster clock, but causes 1.2 × clock cycles

! How fast must Computer B clock be?

4GHz
6s

1024
6s

10201.2Rate Clock

10202GHz10s

Rate ClockTime CPUCycles Clock

6s
Cycles Clock1.2

Time CPU
Cycles ClockRate Clock

99

B

9

AAA

A

B

B
B

=
×

=
××

=

×=×=

×=

×
==

Instruction Count and CPI

! Instruction Count for a program
! Determined by program, ISA and compiler

! Average cycles per instruction
! Determined by CPU hardware
! If different instructions have different CPI

! Average CPI affected by instruction mix

Rate Clock
CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

×
=

××=

×=

1.2
500psI
600psI

ATime CPU
BTime CPU

600psI500ps1.2I
BTime CycleBCPICount nInstructioBTime CPU

500psI250ps2.0I
ATime CycleACPICount nInstructioATime CPU

=
×

×
=

×=××=

××=

×=××=

××=

CPI Example
! Computer A: Cycle Time = 250ps, CPI = 2.0
! Computer B: Cycle Time = 500ps, CPI = 1.2
! Same ISA
! Which is faster, and by how much?

A is faster…

…by this much

CPI in More Detail
! If different instruction types take different

numbers of cycles

∑
=

×=
n

1i
ii)Count nInstructio(CPICycles Clock

n  Weighted average CPI

∑
=

⎟
⎠

⎞
⎜
⎝

⎛ ×==
n

1i

i
i Count nInstructio

Count nInstructioCPI
Count nInstructio

Cycles ClockCPI

Relative frequency

CPI Example
! Alternative compiled code sequences using

instructions in type INT, FP, MEM

Type INT FP MEM
CPI for type 1 2 3
IC in Program 1 2 1 2
IC in Program 2 4 1 1

n  Program 1: IC = 5
n  Clock Cycles

= 2×1 + 1×2 + 2×3
= 10

n  Avg. CPI = 10/5 = 2.0

n  Program 2: IC = 6
n  Clock Cycles

= 4×1 + 1×2 + 1×3
= 9

n  Avg. CPI = 9/6 = 1.5

Performance Summary

! Performance depends on
! Algorithm: affects IC, possibly CPI
! Programming language: affects IC, CPI
! Compiler: affects IC, CPI
! Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock
Seconds

nInstructio
cycles Clock

Program
nsInstructioTime CPU ××=

Power Trends

! In CMOS IC technology

FrequencyVoltageload CapacitivePower 2 ××=

×1000 ×30 5V → 1V

Reducing Power
! Suppose a new CPU has

! 85% of capacitive load of old CPU
! 15% voltage and 15% frequency reduction

0.520.85
FVC

0.85F0.85)(V0.85C
P
P 4

old
2

oldold

old
2

oldold

old

new ==
××

×××××
=

n  The power wall
n  We can’t reduce voltage further
n  We can’t remove more heat

n  How else can we improve performance?

Multiprocessors
! Multicore microprocessors

! More than one processor per chip
! Requires explicitly parallel programming

! Compare with instruction level parallelism
! Hardware executes multiple instructions at once
! Hidden from the programmer

! Hard to do
! Programming for performance
! Load balancing
! Optimizing communication and synchronization

AMD Opteron X2 Wafer

! X2: 300mm wafer, 117 chips, 90nm technology
! X4: 45nm technology

Manufacturing ICs

! Yield: proportion of working dies per wafer

Integrated Circuit Cost

! Nonlinear relation to area and defect rate
! Wafer cost and area are fixed
! Defect rate determined by manufacturing process
! Die area determined by architecture and circuit design

2area/2)) Diearea per (Defects(1
1Yield

area Diearea Wafer waferper Dies

Yield waferper Dies
 waferper Costdie per Cost

×+
=

≈

×
=

SPEC CPU Benchmark
! Programs used to measure performance

! Supposedly typical of actual workload
! Standard Performance Evaluation Corp (SPEC)

! Develops benchmarks for CPU, I/O, Web, …

! SPEC CPU2006
! Elapsed time to execute a selection of programs

! Negligible I/O, so focuses on CPU performance
! Normalize relative to reference machine
! Summarize as geometric mean of performance ratios

! CINT2006 (integer) and CFP2006 (floating-point)

n
n

1i
iratio time Execution∏

=

CINT2006 for Opteron X4 2356
Name Description IC×109 CPI Tc (ns) Exec time Ref time SPECratio

perl Interpreted string processing 2,118 0.75 0.40 637 9,777 15.3

bzip2 Block-sorting compression 2,389 0.85 0.40 817 9,650 11.8

gcc GNU C Compiler 1,050 1.72 0.47 24 8,050 11.1

mcf Combinatorial optimization 336 10.00 0.40 1,345 9,120 6.8

go Go game (AI) 1,658 1.09 0.40 721 10,490 14.6

hmmer Search gene sequence 2,783 0.80 0.40 890 9,330 10.5

sjeng Chess game (AI) 2,176 0.96 0.48 37 12,100 14.5

libquantum Quantum computer simulation 1,623 1.61 0.40 1,047 20,720 19.8

h264avc Video compression 3,102 0.80 0.40 993 22,130 22.3

omnetpp Discrete event simulation 587 2.94 0.40 690 6,250 9.1

astar Games/path finding 1,082 1.79 0.40 773 7,020 9.1

xalancbmk XML parsing 1,058 2.70 0.40 1,143 6,900 6.0

Geometric mean 11.7

High cache miss rates

SPEC Power Benchmark
! Power consumption of server at different

workload levels
! Performance: ssj_ops/sec
! Power: Watts (Joules/sec)

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
= ∑∑

==

10

0i
i

10

0i
i powerssj_ops Wattper ssj_ops Overall

SPECpower_ssj2008 for X4
Target Load % Performance (ssj_ops/sec) Average Power (Watts)

100% 231,867 295
90% 211,282 286
80% 185,803 275
70% 163,427 265
60% 140,160 256
50% 118,324 246
40% 920,35 233
30% 70,500 222
20% 47,126 206
10% 23,066 180

0% 0 141
Overall sum 1,283,590 2,605
∑ssj_ops/ ∑power 493

Fallacy: Low Power at Idle
! Look back at X4 power benchmark

! At 100% load: 295W
! At 50% load: 246W (83%)
! At 10% load: 180W (61%)

! Google data center
! Mostly operates at 10% – 50% load
! At 100% load less than 1% of the time

! Consider designing processors to make
power proportional to load

Pitfall: Amdahl’s Law
! Improving an aspect of a computer and

expecting a proportional improvement in
overall performance

208020 +=
n

n  Can’t be done!

unaffected
affected

improved T
factor timprovemen

TT +=

n  Example: multiply accounts for 80s/100s
n  How much improvement in multiply performance to

get 5× overall?

n  Corollary: make the common case fast

Pitfall: MIPS as a Performance Metric
! MIPS: Millions of Instructions Per Second

! Doesn’t account for
! Differences in ISAs between computers
! Differences in complexity between instructions

6
6

6

10CPI
rate Clock

10
rate Clock

CPIcount nInstructio
count nInstructio
10time Execution

count nInstructioMIPS

×
=

×
×

=

×
=

n  CPI varies between programs on a given CPU

Concluding Remarks
! Cost/performance is improving

! Due to underlying technology development
! Hierarchical layers of abstraction

! In both hardware and software
! Instruction set architecture

! The hardware/software interface
! Execution time: the best performance

measure
! Power is a limiting factor

! Use parallelism to improve performance

