
CS 153 Lab4 and 5

Kishore Kumar Pusukuri

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Outline

Introduction
Why threads?
POSIX Threads
Synchronization

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

I A “thread” is a straightforward concept : a single sequential
flow of control.

I In traditional operating systems, each process has an address
space and a single thread of control.

I Threads run in the same address space.

I In a high-level language you normally program a thread using
procedures, where the procedure calls follow the traditional
stack discipline.

I Within a single thread, there is at any instant a single point of
execution.

I Having “multiple threads” in a program means that at any
instant the program has multiple points of execution, one in
each of its threads.

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

Why concurrency?

I In many applications multiple activities are going on at once.
Some of these may block from time to time.

I By decomposing such an application into multiple sequential
threads that run quasi-parallel, the programming model
becomes simple.

I Threads are lighter weight than processes, they are easier (i.e.
faster) to create and destroy than processes.

I In many systems, creating a thread goes 10-100 times faster
than creating a process.

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

word processor

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

cont...

I The programmer can mostly view the threads as executing
simultaneously.

I The programmer is required to decide when and where to
create multiple threads.

I Additionally, the programmer must occasionally be aware that
the computer might not in fact execute all his threads
simultaneously.

I Having the threads execute within a “single address space”
means that the computer’s addressing hardware is configured
so as to permit the threads to read and write the same
memory locations.

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

Processes vs Threads

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

cont...

I Each thread executes on a separate call stack with its own
separate local variables, but the off-stack (global) variables are
shared among all the threads of the program.

I The programmer is responsible for using the synchronization
mechanisms of the thread facility to ensure that the shared
memory is accessed in a manner that will give the correct
answer.

What about protection between threads ?

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

POSIX Threads

I To make it possible to write portable threaded programs, IEEE
has defined a standard for threads in IEEE standard 1003.1c.

I The thread package it defines is called Pthreads.

I The standard defined 60 function calls.

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

int pthread_create (
pthread_t * thread,
const pthread_attr_t * attr,
void * (*start_routine)(void *),
void *arg );

returns the thread id.
attr - Set to NULL if default thread attributes are used.
Thread attributes: scheduling parameter, stack address etc.
void * (*start_routine) -
pointer to the function to be threaded.
*arg - pointer to argument of function.
To pass multiple arguments, send a pointer to a structure.

void pthread_exit(void *retval);
retval - Return value of thread.

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

program using pthreads

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

I -lpthread

I When a thread is created, it prints a one-line message
announcing itself, then it exits.

I The order in which the various messages are interleaved is
nondeterminate, and may vary on consecutive runs of the
program.

I Study prog1.c and prog2.c

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

mutex

I Why we need mutual exclusion ?

I A mutex, which stands for mutual exclusion is the most basic
form of synchronization.

I A mutex is used to protect a critical region, to make certain
that only one thread at a time executes the code within the
region.

I Since only one thread at a time can lock a given mutex, this
guarantees that only one thread at a time can be executing
the instructions within a critical region.

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

cont...

lock the mutex(...) ;
critical region
unlock the mutex(...) ;
Study prog3.c and prog4.c

Kishore Kumar Pusukuri CS 153 Lab4 and 5



Introduction
Why threads?
POSIX Threads
Synchronization

Kishore Kumar Pusukuri CS 153 Lab4 and 5


	
	
	Introduction
	Why threads?
	POSIX Threads
	Synchronization
	


