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I A “thread” is a straightforward concept : a single sequential
flow of control.

I In traditional operating systems, each process has an address
space and a single thread of control.

I Threads run in the same address space.

I In a high-level language you normally program a thread using
procedures, where the procedure calls follow the traditional
stack discipline.

I Within a single thread, there is at any instant a single point of
execution.

I Having “multiple threads” in a program means that at any
instant the program has multiple points of execution, one in
each of its threads.
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Why concurrency?

I In many applications multiple activities are going on at once.
Some of these may block from time to time.

I By decomposing such an application into multiple sequential
threads that run quasi-parallel, the programming model
becomes simple.

I Threads are lighter weight than processes, they are easier (i.e.
faster) to create and destroy than processes.

I In many systems, creating a thread goes 10-100 times faster
than creating a process.
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cont...

I The programmer can mostly view the threads as executing
simultaneously.

I The programmer is required to decide when and where to
create multiple threads.

I Additionally, the programmer must occasionally be aware that
the computer might not in fact execute all his threads
simultaneously.

I Having the threads execute within a “single address space”
means that the computer’s addressing hardware is configured
so as to permit the threads to read and write the same
memory locations.
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Processes vs Threads
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cont...

I Each thread executes on a separate call stack with its own
separate local variables, but the off-stack (global) variables are
shared among all the threads of the program.

I The programmer is responsible for using the synchronization
mechanisms of the thread facility to ensure that the shared
memory is accessed in a manner that will give the correct
answer.

What about protection between threads ?
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POSIX Threads

I To make it possible to write portable threaded programs, IEEE
has defined a standard for threads in IEEE standard 1003.1c.

I The thread package it defines is called Pthreads.

I The standard defined 60 function calls.
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int pthread_create (
pthread_t * thread,
const pthread_attr_t * attr,
void * (*start_routine)(void *),
void *arg );

returns the thread id.
attr - Set to NULL if default thread attributes are used.
Thread attributes: scheduling parameter, stack address etc.
void * (*start_routine) -
pointer to the function to be threaded.
*arg - pointer to argument of function.
To pass multiple arguments, send a pointer to a structure.

void pthread_exit(void *retval);
retval - Return value of thread.
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program using pthreads
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I -lpthread

I When a thread is created, it prints a one-line message
announcing itself, then it exits.

I The order in which the various messages are interleaved is
nondeterminate, and may vary on consecutive runs of the
program.

I Study prog1.c and prog2.c
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mutex

I Why we need mutual exclusion ?

I A mutex, which stands for mutual exclusion is the most basic
form of synchronization.

I A mutex is used to protect a critical region, to make certain
that only one thread at a time executes the code within the
region.

I Since only one thread at a time can lock a given mutex, this
guarantees that only one thread at a time can be executing
the instructions within a critical region.
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cont...

lock the mutex(...) ;
critical region
unlock the mutex(...) ;
Study prog3.c and prog4.c
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