LAB6: Guildance to Final Projects CS169: Mobile Wireless Networks - Winter 2017

### Kittipat Apicharttrisorn (Patrick)

Department of Computer Science and Engineering University of California, Riverside

Febuary 27-28, 2017



# Table of Contents

- 1 How to setup network topology?
- 2 How to saturate WiFi traffic?
- 3 How to count number of packet loss or packet loss rate?
- 4 How to measure throughput?
- 5 How to measure delay caused by backing off?
- 6 How to change the exponential backoff to linear backoff?
- Proposals how to mix MS and hpMS in the same simulation



- copy examples/wireless/simple-ht-hidden-stations.cc to scratch folder
- Try to understand what it is doing and to run it with different configurations
- Increase number of station nodes (MS) to 4
- Create MS and AP locations according to the project paper
- Install four UDP echo server applications on the AP node
- Install four UDP echo client applications on each MS node connecting to each corresponding server application

## Warnings

UDP echo client and server, not just UDP client and server

3/9

Febuary 27-28, 2017

- Set attributes MaxPackets and Interval
- Interval = 0.1 means 10 packets per second
- Keep MaxPackets to infinity and simulation will terminate when time is over
- Create a command line argument (string) to make it more convenient to change interval
- Decrease packet interval until packet loss rate is approximately 20% (see next slides)

C₩IVFR9

- Create two trace sink functions to get notified when clients have sent and servers have received.
- Copy echo server files, created by TA, from course website to replace ones in ns-3
- They provide trace sources for udp echo servers, which is not available ns-3
- Use similar call back signature and config path to udp echo client's tracesource
- Count the number of the two events to calculate packet loss rate
- Use *context*'s string to distinguish between each client's traffic

5/9

Febuary 27-28, 2017

- Count the number of packets received by each server application (*numPacketServerReceived*)
- throughput (Mbps) =  $\frac{(numPacketServerReceived \times payloadsize \times 8)}{simulationTime \times 1000000}$
- As packet interval decreases, measure the achieved throughput



## How to measure delay caused by backing off?

- Enable NS\_LOG for DcfManager component and run the script
- Take a look at dcf-manager.cc and find the line that prints out expected time for backing off
- You can use that estimation for calculating backing off delay
- You may want to format the output, save it into a file, and use excel to calculate
- Can you think of a way to distinguish outputs from different nodes? (trivail for us now for tracesources)

## Bonus!

You can do something in this file to count the number of collisions that cause nodes to back off.

- An answer lies in DCF manager.
- You may look at a line that takes one value of contention window (as seen in Pseudocode part of the project's paper) and double it every time a collision occurs
- Change that line to a linear increase (hpMS)
- Measure everything again and compare the two backing off policies

# Proposals how to mix MS and hpMS in the same simulation

- Add a new module named *dcf-manager-linear.cc* and *dcf-manager-linear.h* and force hpMSes to wire to this module
- Add a new type to WiFi mac called StaWifiMacLinear and set it to mac that is installed to hpMSes. mac.SetType ("ns3::StaWifiMacLinear",...
- Add an attribute to DCF manager, an interger BackoffMode and set it to zero for exponential backoff (default) or one for linear backoff, something similar to this Config::SetDefault ("ns3::RangePropagationLossModel::MaxRange", DoubleValue (5));

