LECTURE 8

Mobile IP

What is Mobile IP?

- The Internet protocol as it exists does not support mobility
- Mobile IP tries to address this issue by creating an "anchor" for a mobile host that takes care of packet forwarding
- Does not discuss handoff initiation or decision process
- Does not discuss flushing or redirecting packets from an old visited network

The Problem!

The IP address is used for dual purposes

- For routing packets through the Internet
- As an end-point identifier for applications in end-hosts
 - A socket consists of the following tuple <source IP address, source port, destination IP address, destination port>
 - A TCP connection cannot survive any address change
 - A domain name is converted to an IP address
- □ If the IP address is stable, packets get routed to the same place always
- □ If the IP address is changed, the connection breaks!
- How does a sender know the changed IP address?

Mobile IP Requirements

Compatibility

- Must not require changes to existing network protocols
- Must not require a new LLC/MAC

Transparency

- Invisibility to higher layers (TCP through Application)
- Invisibility to user

Scalability and Efficiency

- Not a great deal of additional traffic
- No great increase in additional network elements

Security

Security concerns due to changing locations of a mobile node

Mobile IP Architecture and Terminology

Terminology I

Mobile Node (MN)

- Host that can change its point of attachment
- Correspondent Node (CN)
 - The partner for communication (it can be a fixed or mobile node)
- Home Network
 - IP Network where the MN usually resides
- Foreign Network
 - IP network where the MN is visiting

Terminology II

Home Address

- A long term IP address assigned to the MN that is part of the home IP network.
 - It remains unchanged regardless of where the MN is
 - It is used for DNS determination of the MN's IP address

Care-of Address (COA)

- IP address in the Foreign Network that is the reference pointer to the MN when it is visiting the Foreign Network
 - This is usually the IP address of the Foreign Agent
 - Sometimes the MN can act as its own Foreign Agent in which case, it is called a co-located COA

Terminology III

Home Agent (HA)

- It is the anchor point for the MN
- Regardless of where the MN is (except if it is in its home network) packets addressed to it reach the HA

Foreign Agent (FA)

It is the reference IP host for the MN in the Foreign Network

Protocol Overview

- What does the protocol do?
 - Enables datagrams addressed to the MN at the home address to be delivered wherever the MN is
- □ Three phases:
 - Delivery to the home network
 - Forwarding to the foreign network
 - Delivery to the mobile node

Triangle Routing in Mobile IP

- CN transmits a datagram that is routed to MN's home network as usual (1)
- □ HA intercepts the packet, encapsulates and tunnels it to FA (2)
- FA decapsulates and forwards the packet to MN
- Packets from MN to CN are sent as usual (4)

Packet Interception by the Home Agent

- HA performs a proxy ARP on behalf of the MN when it is away
 - If an ARP request is made to obtain the MAC address of the MN on the home network, the HA responds with its own MAC address
- The MN performs a gratuitous ARP when it returns to the home network
 - Unsolicited ARP reply that is broadcast to each node on the Home Network
 - Some networks do not trigger ARP cache updates based on gratuitous ARP => Mobile IP cannot be implemented correctly

Packet Encapsulation by HA

- Forwarding packets is achieved by encapsulation (tunneling)
 - Virtual pipe between tunnel entry point (HA) and tunnel termination point (FA)
- The datagram from the CN is made the payload of another IP packet
- Three types of encapsulation are provided
 - IP in IP encapsulation
 - Minimal encapsulation
 - Generic routing encapsulation
 - For protocols other than IP

IP-in-IP Encapsulation

- Mandatory implementation
- The outer header uses IP-in-IP as the protocol type
- The whole tunnel is equivalent to one hop from the original packet's point of view
- Overhead can be reduced since several fields are redundant

Minimal Encapsulation

- The header in the original packet is stripped of unnecessary information like length, version number, flags, etc.
- The Home Address of the MN and the original source address (of the CN) are retained
- Since the fragment offset field is also removed, it does not work with fragmented IP packets

Agent Advertisement and Discovery

- How does a Mobile Node know that it has moved to another network?
 - In CDPD, the control messages broadcast on the forward channel provide this information
- How does a Mobile Node determine the address of a Home Agent or a Foreign Agent?
- Foreign agents and home agents periodically "advertise" their presence using agent advertisement messages
- This is similar to router advertisement using ICMP

Agent Advertisement II

- A "mobility extension" to ICMP contains the relevant information
 - Is it a Home Agent or a Foreign Agent?
 - COA associated with the FA
 - Busy or not
 - Whether minimal encapsulation is permitted
 - Whether reverse tunneling is permitted (later)
 - Whether registration is mandatory
- The Agent Advertisement packet must be a broadcast message on the link
- The same agent may act as both a HA and a FA
- If the MN gets an advertisement from its HA, it must deregister its COA's and enable a gratuitous ARP
- If a MN does not "hear" any advertisement, it must solicit an agent advertisement using ICMP

Connection Search Flow Chart

Registration

Purpose:

- Inform the HA about the COA
- FA can obtain approval from the HA to provide service to the MN
- Authenticated to prevent malicious attacks

Registration in Mobile IP II

Registration III

- UDP packets are used for registration (port 454 in the HA)
- A nonce called an identification field is used in the request and another in the reply to prevent replay attacks
- If the COA is the FA
 - MN sends registration request to FA
 - FA forwards it to the HA
 - Else
 - MN directly sends the request to the HA
- HA creates a binding between the MN's home address and the current COA
 - This binding has a fixed lifetime
 - MN should re-register before the expiration of the binding

Registration IV

The Home Agent may maintain multiple COA for a mobile node upon request

Most implementations do not support this

- Broadcast datagrams are NOT tunneled unless explicitly requested by the MN
- Deregistration involves "registering" the home address with the HA
- Deregistering one of the multiple COAs is done by registering it with zero lifetime
- If multiple COAs are not explicitly requested, each new registration request wipes out the previous binding.

Registration V

- Registration reply indicates whether the registration is successful or not
- Rejection is possible by either HA or FA
 - Insufficient resources
 - Header compression not supported
 - HA unreachable
 - Too many simultaneous bindings
 - Failed authentication
- Directed broadcast
 - If a MN cannot reach its HA, it will send a broadcast registration request to its home network
 - This is rejected by every (other) valid HA on its home network
 - The MN uses one of the HA addresses in the reject message to make a valid registration request (with proper authentication credentials)

Mobility Binding List at the HA (CF: Location Directory)

- Upon a valid registration, the HA should create an entry for a mobile node that has:
 - Mobile node's care of address
 - Identification field
 - Remaining lifetime of registration

Visitor List at FA: CF Registration Directory

- Each Foreign Agent maintains a visitor list containing the following information:
 - Link layer address of the mobile node
 - Mobile node's home IP address
 - UDP registration request source port
 - HA IP address
 - Identification field
 - Registration lifetime
 - Remaining lifetime of pending or current registration

MN moves from Home Network to Foreign Network

MN moves from Foreign Network to Home Network

Route Optimization

- Triangle routing is inefficient
 - German and Japanese in Boston
 - Vulnerability
 - Congestion
 - Bottleneck in the home agent
- In the future, intermediate routers and CNs can be expected to cache COA bindings and tunnel packets
 - Authentication?
 - Changes to the existing Internet entities?

Smooth Handoffs

- Suppose a MN changes its foreign network
- While a new registration request is in progress, data is being tunneled to the old FA
 - This data has to be resent by the CN!
 - The retransmitted data has to be tunneled again!
- If the old FA can tunnel packets it receives to the new FA, this can reduce delay and congestion
- If the old FA re-tunnels the packet back to the HA, it is called a "special tunnel"
 - Enables HA to detect a "loop" if a new registration request has not been enabled

Reverse Tunneling

- Sometimes packets will have to be tunneled through the HA
 - Firewalls drop outgoing packets that have an IP address that corresponds to another network
 - TTL considerations
 - Packets addressed to hosts on the home network with small TTL need to sense the internet as one hop

Mobility Support in IPv6

- Addresses "macro"-mobility (movement from one subnetwork to another). "Micro"-mobility to be handled by link-level mobility management (like WLANs)
- Every IPv6 node implements functions for mobility support (including corresponding hosts => no FA is needed)
- Mobile hosts have one home address and one or more care-of addresses
- There exists what is called "binding" between the home address and the primary care-of address

Mobility Support in IPv6 (Continued)

- Secure binding updates, binding acknowledgements and binding requests
 - enable packets to reach the MH through the HA
 - Extremely small role for the HA
 - enable the CH find out the current care-of address of the MH
 - enable intermediate routers find out the current care-of address of the MH
- □ The following advantages are perceived:
 - Congestion at the home agent will be reduced
 - Optimal routing of packets will be enabled

Optimized Mobile IP?

