LECTURE 3

Radio Propagation

Simplified model of a digital communication system

Components of the digital communication system

Source

- Produces a finite alphabet for transmission
- Examples: Quantized voice samples, ASCII alphabets
- Source coder
 - Removes the redundancies and efficiently encodes the alphabet
 - Example: In English, you may encode the alphabet "e" with fewer bits than you would "q"
- Channel encoder
 - Adds redundant bits to the source bits to recover from any error that the channel may introduce
- Modulator
 - Converts the encoded bits into a signal suitable for transmission over the channel
- Channel
 - Carries the signal, but will usually distort it

Classifications of Transmission Media (the channel)

- 4
- Transmission Medium
 - Physical path between transmitter and receiver
- Guided Media
 - Waves are guided along a solid medium
 - Example:
 - Copper twisted pair, copper coaxial cable, optical fiber
- Unguided Media
 - Provides means of transmission but does not guide electromagnetic signals
 - Usually referred to as wireless transmission
 - Example: Atmosphere, outer space (free space)

Unguided Media

- Transmission and reception are achieved usually by means of an antenna
- Antennas
 - Transducers that allow voltage and current waveforms flowing on a wire to be converted into electromagnetic waves that propagate in free space
 - Capture electromagnetic waves propagating in air and convert them into voltage or current waveforms in a wire
- Configurations for wireless transmission
 - Directional
 - Omnidirectional

Terminology - Sinusoid

- Period (T) amount of time it takes for one repetition of the signal
 - $\Box T = 1/f$
- Phase (ϕ) measure of the relative position in time within a single period of the signal
- Wavelength (λ) physical distance occupied by a single cycle of the signal
 - Or, the distance between two points of corresponding phase of two consecutive cycles
- □ For electromagnetic waves in air or free space, $\lambda = cT = c/f$ where c is the speed of light

The sinusoid – A cos($2\pi ft + \phi$)

The sinusoid continued

General sine wave

 $\square s(t) = A \cos(2\pi f t + \phi)$

- Previous slide shows the effect of varying each of the three parameters
 - **a** A = 1, f = 1 Hz, $\phi = 0 => T = 1$ s
 - Increased peak amplitude; A=2
 - Increased frequency; $f = 2 \implies T = 1/2$
 - **D** Phase shift; $\phi = \pi/4$ radians (45°)
- □ Note: 2π radians = $360^\circ = 1$ period

Modulation

- Process wherein, encoded bits are mapped onto a signal
- The values of the encoded bits translate into changes in amplitude, phase or frequency of the signal.
- AM, FM and PM are the most basic methods.
- A combination of changes are possible.

MSK

- One could have abrupt phase changes in phase shift keying or frequency shift keying.
- Minimum Shift Keying alleviates this.
- First, encoded bits are separated into even and odd bits.
- Two frequencies, a lower freq f1 and a higher f2 are used.

f2 = 2f1

Set of rules to determine which frequency to use when.

MSK Example

Constellations

Representation of a signal (amplitude, phase) combination in a two dimensional space.

Could be hierarchical – first decide the quadrant, and then the location within the quadrant.

Communication Issues

- Noise (unwanted interfering signals) is not necessarily additive, white or Gaussian
 - Examples: Inter-symbol interference (ISI), Adjacent channel interference (ACI), Co-channel interference (CCI)
 - In CDMA interference from users etc.
- Noise affects the Bit Error Rate (BER)
 - Fraction of bits that are inverted at the receiver
- Also, the radio channel has multiplicative components that degrade the performance
 - The behavior of the radio channel can increase ISI, reduce the signal strength, and increase the bit error rate

The Radio Channel

The radio channel is different

- Extremely harsh environment compared to "wired" or guided media
- Channel is time variant
 - Movement of people
 - Switching off and on of interference
 - Movement of mobile terminals
 - Sensitivity to a variety of other factors
 - "Fading" and "Multipath"

Need a framework that characterizes the radio channel

What is Radio Propagation?

- How is a radio signal transformed from the time it leaves a transmitter to the time it reaches the receiver
 - What is the "radio channel"?
- Important for the design, operation and analysis of wireless networks
 - Where should base stations be placed?
 - What transmit powers should be used?
 - What radio channels need be assigned to a cell?
 - How are handoff decision algorithms affected...?

Radio channel characterization

- Radio propagation is modeled as a random phenomenon
- Measurements followed by statistical modeling
 - Signal strength measurements
 - RMS delay spread measurements
- Measurements to fine tune simulations and simulations followed by statistical modeling
 - Ray tracing: Approximate the radio propagation by means of geometrical optics

Classified based on site/application specificity

- Propagation Conditions
 - Indoor
 - Commercial
 - Office
 - Residential
 - Tunnel
 - Outdoor to Indoor
 - Outdoor
 - Urban
 - Rural
 - Suburban
 - Forest/Jungle
 - Mountainous
 - Open areas/Free space
 - Over Water

- Frequency
 - dependence
 - 900 MHz : Cellular
 - □ 1.8 GHz : PCS
 - 2.4 GHz : WLANs, BT, Cordless
 - 5 GHz : WLANs, RF tags, MMDS
 - 10 GHz : MMDS
 - 30 GHz : LMDS

LMDS: Local multipoint distribution service MMDS: Multichannel multipoint distribution system

Transmission of Radio Signals

- Radio signals are effected by
 - Ground terrain
 - Atmosphere
 - Objects
 - Interference with other signals
 - Distance (path loss)

Types of Radio Propagation

- For a high frequency signal (> 500 MHz)
 - An electromagnetic wave can be modeled as a "ray"
- Basic mechanisms
 - Transmission (propagation through a medium)
 - Scattering (small objects less than wavelength)
 - Reflection (objects much larger than wavelength)
 - Waves may be reflected by stationary or moving objects
 - Diffraction at the edges

transmission

reflection

scattering

diffraction

Reflection and Transmission

- \square Electromagnetic "ray" impinges on object larger than the wavelength λ
 - It bounces off the object
 - Examples:
 - Walls, buildings, ground
- Signal is attenuated by a reflection factor
 - Attenuation depends on
 - Nature of material
 - Frequency of the carrier
 - Angle of incidence
 - Nature of the surface
- Usually transmission through an object leads to larger losses (absorption) than reflection
 - Multiple reflections can result in a weak signal

Oxygen absorption at 60 GHz

- 21
- Signals are attenuated (fade) over distance depending on frequency and weather conditions

Diffraction

- □ The radio signal is incident upon the edge of a sharp object
 - Example: Wall, roof edge, door
- Each such object becomes a secondary source
- Losses are much larger than with reflection or transmission
- Important in micro-cells for non-line of sight transmission
 - Propagation into shadowed regions
- Not significant in indoor areas because of large losses

Scattering

- Caused by irregular objects comparable in size to the wavelength
- These objects scatter rays in all directions
- Each scatterer acts as a source
 - Signal propagates in all directions
 - Large losses in signal strength
 - Insignificant except when the transceiver is in very cluttered environments
- Examples of scatterers
 - Foliage, furniture, lampposts, vehicles

Multipath Propagation

24

Multipath

- Receiver gets combined radio waves from different directions with different path delays
 - Received signal is very dependent on location different phase relationships can cause signal fading and delay spread
 - Causes inter-symbol interference (ISI) in digital systems, limits maximum symbol rate

Time Variation of Signals

- 25
- A moving receiver can experience a positive or negative Doppler shift in received signal, depending on direction of movement
 - Results in widening frequency spectrum
 - Rapid fluctuations of signal envelope

Comments

- Several paths from Tx to Rx
 - Different delays, phases and amplitudes
 - Add motion makes it very complicated
- Very difficult to look at all of the effects in a composite way
 - Use empirical models
 - Use statistical models
 - Breakdown phenomena into different categories

The Radio Channel

- Three main issues in radio propagation
 - Achievable signal coverage
 - What is area covered by signal
 - Governed by path loss
 - Achievable channel rates (bps)
 - Governed by multipath delay spread
 - Channel fluctuations effect data rate
 - Governed by Doppler spread and multipath

Communications Issues in Radio Propagation

Coverage

How far does the signal propagate over a given terrain at a particular frequency?

Power or received signal strength (RSS)

Performance

- Bit error rate
 - Statistics of fading amplitudes and durations
- Data rate (capacity)
 - Multipath structure

Some issues are predominant for certain applications

Coverage

- How far does the signal propagate over a given terrain at a given frequency?
- Determines
 - Transmit power required to provide service in a given area
 - Interference from other transmitters
 - Number of base stations or access points that are required
- Parameters of importance
 - Path loss
 - Shadow fading

Rate of Channel Fluctuations

- What are the changes in the channel? How fast are these changes? How do they influence performance?
- Determines
 - Performance of the communication system
 - Outage, probability of error
 - Receiver design
 - Coding, diversity etc.
 - Power requirements
- Parameters of importance
 - Fluctuation characteristics
 - Fade rate, fade duration and Doppler spectrum

Data Rate Support

What is the maximum data rate that can be supported by the channel? What limits it?

Determines

- Capacity of the system
- Complexity of the receiver
- Application support
- Parameters of importance
 - Multipath delay spread and coherence bandwidth
 - Fading characteristics of the multipath components

Radio Propagation Characterization

Large Scale Fading

- "Large" scale variation of signal strength with distance
 - Consider average signal strength values
 - The average is computed either over short periods of time or short lengths of distance
 - A straight line is fit to the average values
- The slope and the intercept give you the expression for the path loss
- The variation around the fit is the shadow fading component

Signal propagation ranges

- Transmission range
 - Communication possible
 - Low error rate
- Detection range
 - Detection of the signal possible
 - No reliable communication possible
- Interference range
 - Signal may not be detected
 - Signal adds to the background noise

dB vs absolute power

- Power (signal strength) is expressed in dB for ease of calculation (all relative quantities)
- □ dBm: reference to 1 mW
- □ dBW: reference to 1 W
- \square Example: 100 mW = 20 dBm = -10 dBW
 - \square 10 log₁₀ (100 mW / 1 mW) = 20 dBm
 - □ $10 \log_{10} (100 \text{ mW} / 1 \text{ W}) = -10 \text{ dBW}$
- \square In general dBm value = 30 + dBW value
- Other relative values are simply expressed in dB

Examples of using Decibels

36

- □ Example 1: Express 2 W in dBm and dBW
 - □ dBm: 10 $\log_{10} (2 \text{ W} / 1 \text{ mW}) = 10 \log_{10}(2000) = 33 \text{ dBm}$
 - $\square dBW: 10 \log_{10} (2 W / 1 W) = 10 \log_{10}(2) = 3 dBW$
- Example 2: The transmit power is 2 W, the RSS is 0.12 W. What is the loss in dB?
 - Loss = Transmit power RSS = 33 dBm 20.8 dBm = 12.2 dB
 - Or Loss = 3 dBW (-9.2 dBW) = 12.2 dB
- □ The loss in Example 2 is usually called the "path loss"

Path Loss Models

- Path Loss Models are commonly used to estimate link budgets, cell sizes and shapes, capacity, handoff criteria etc.
- "Macroscopic" or "large scale" variation of RSS
- Path loss = loss in signal strength as a function of distance
 - Terrain dependent (urban, rural, mountainous), ground reflection, diffraction, etc.
 - Site dependent (antenna heights for example)
 - Frequency dependent
 - Line of sight or not
- □ Simple characterization: $PL = L_0 + 10\alpha \log_{10}(d)$
 - \Box L₀ is termed the frequency dependent component
 - $f \square$ The parameter m lpha is called the "path loss gradient" or exponent
 - $f \square$ The value of m lpha determines how quickly the RSS falls with distance

The Free Space Loss

- □ Assumption
 - Transmitter and receiver are in free space
 - No obstructing objects in between
 - The earth is at an infinite distance!
- \Box The transmitted power is P_t
- \Box The received power is P_r
- $\Box \quad \text{The path loss is } L_p = P_t (dB) P_r (dB)$
- Isotropic antennas
 - Antennas radiate and receive equally in all directions with unit gain

The Free Space Model

39

 \Box The relationship between P_t and P_r is given by

 $P_r = P_t \, \lambda^2 / (4\pi d)^2$

The wavelength of the carrier is $\lambda = c/f$

In dB

$$P_r$$
 (dBm)= P_t (dBm) - 21.98 + 20 $\log_{10}(\lambda)$ - **20 $\log_{10}(d)$**

$$L_{p}(d) = P_{t} - P_{r} = 21.98 - 20 \log_{10}(\lambda) + 20 \log_{10}(d)$$
$$= L_{0} + 20 \log_{10}(d)$$

L₀ is called the path loss at the first meter (put d = 1)
We say there is a 20 dB per decade loss in signal strength

Summary: Free space loss

- Transmit power P_t
- \square Received power P_r
- Wavelength of the RF carrier $\lambda = c/f$
- Over a distance d the relationship between P_t and P_r is given by:

$$P_r = \frac{P_t \lambda^2}{\left(4\pi\right)^2 d^2}$$

- □ Where d is in meters
- \Box In dB, we have:
- $\square P_r (dBm) = P_t (dBm) 21.98 + 20 \log_{10} (\lambda) 20 \log_{10} (d)$
- □ Path Loss = $L_p = P_t P_r = 21.98 20\log_{10}(\lambda) + 20\log_{10}(d)$

Free Space Propagation

41

Notice that factor of 10 increase in distance
=> 20 dB increase in path loss (20 dB/decade)

Distance	Path Loss at 880 MHz
1 km	91.29 dB
10 km	111.29 dB

Note that higher the frequency the greater the path loss for a fixed distance

Distance	880 MHz	1960 MHz
1 km	91.29 dB	98.25 dB

7 dB greater path loss for PCS band compared to cellular band in the US

Example

- Consider Design of a Point-to-Point link connecting LANs in separate buildings across a freeway
 - Distance .25 mile
 - Line of Sight (LOS) communication
 - Spectrum Unlicensed using 802.11b at 2.4GHz
 - Maximum transmit power of 802.11 AP is Pt = 24dBm
 - The minimum received signal strength (RSS) for 11 Mbps operation is -80 dBm

- Will the signal strength be adequate for communication?
- Given LOS is available can approximate propagation with Free Space Model as follows

Example (Continued)

Example

- Distance .25 mile ~ 400m
- Receiver Sensitivity Threshold = 80dBm
- \Box The Received Power P_r is given by

$$P_{r} = P_{t} - P_{t} - P_{t} + 20 \log_{10} (\lambda) - 20 \log_{10} (d)$$

= 24 - 21.98 + 20log₁₀ (3x10⁸/2.4x10⁹) - 20 log₁₀ (400)
= 24 - 21.98 - 18.06 - 52.04
= 24 - 92.08 = -68.08 dBm

 P_r is well above the required -80 dBm for communication at the maximum data rate – so link should work fine

Cell/Radio Footprint

- The Cell is the area covered by a single transmitter
- Path loss model roughly determines the size of cell

General Formulation of Path Loss

- 45
- Depending on the environment, it is seen that the path loss (or the RSS) varies as some power of the distance from the transmitter d

$$P_r(d) \propto \left(\frac{P_t}{d^{\alpha}}\right) \text{ or } P_r(d) = \left(\frac{P_t}{L_0(d/d_0)^{\alpha}}\right)$$

- Here α is called the path-loss exponent or the path-loss gradient or the distance-power gradient
- □ The quantity L_0 is a constant that is computed at a reference distance d_0
 - This reference distance is 1m in indoor areas and 100m or 1 km in outdoor areas

More Comments

- Path loss is a function of a variety of parameters
 - Terrain
 - Frequency of operation
 - Antenna heights
- Extremely site specific
 - Varies depending on environment
 - Example: indoor Vs outdoor
 - Example: microcell Vs macrocell
 - Example: rural Vs dense urban
- Large number of measurement results are available for different scenarios, frequencies and sites
- Empirical models are popular

Environment Based Path Loss

- Basic characterization: $L_p = L_0 + 10\alpha \log_{10}(d)$
 - \Box L₀ is frequency dependent component (often path loss at 1m)
 - $\hfill\blacksquare$ The parameter α is called the "path loss gradient" or exponent
 - $f \square$ The value of lpha determines how quickly the RSS falls with d
- \square α determined by measurements in typical environment
 - For example
 - $\alpha = 2.5$ might be used for rural area
 - α = 4.8 might be used for dense urban area

Shadow Fading

- Shadowing occurs when line of site is blocked
- Modeled by a random signal component X_σ

 $\Box P_{r} = P_{t} - L_{p} + X_{\sigma}$

- □ Measurement studies show that X_{σ} can be modeled with a lognormal distribution → normal in dB with mean = zero and standard deviation σ dB
- Thus at the "designed cell edge" only 50% of the locations have adequate RSS
- Since X_{σ} can be modeled in dB as normally distributed with mean = zero and standard deviation σ dB, σ determines the behavior

How shadow fading affects system design

- Typical values for σare
 - rural 3 dB, Suburban 6 dB, urban 8 dB, dense urban 10 dB
- □ Since X is normal in dB Pr is normal

 $\bullet P_{\rm r} = P_{\rm t} - L_{\rm p} + X_{\rm \sigma}$

- □ Prob {P_r (d) > T } can be found from a normal distribution table with mean P_r and σ
- In order to make at least Y% of the locations have adequate RSS
 - Reduce cell size
 - Increase transmit power
 - Make the receiver more sensitive

Cell Coverage modeling

- 50
- Simple path loss model based on environment used as first cut for planning cell locations
- Refine with measurements to parameterize model
- Alternately use ray tracing: approximate the radio propagation by means of geometrical optics- consider line of sight path, reflection effects, diffraction etc.
- CAD deployment tools widely used to provide prediction of coverage and plan/tune the network

