
A Just-in-Time Customizable Processor

Liang Chen∗, Joseph Tarango†, Tulika Mitra∗, Philip Brisk†
∗School of Computing, National University of Singapore

†Department of Computer Science and Engineering, University of California, Riverside

Email: {chenliang,tulika}@comp.nus.edu.sg, {jtarango,philip}@cs.ucr.edu

Abstract—A traditional extensible processor with customized circuits
achieves high performance at the cost of flexibility, while a dynam-
ically extensible processor with reconfigurable fabric offers flexibility
for instruction-set extensions (ISEs) but suffers from computational
inefficiency. We introduce a novel architecture called Just-in-Time Cus-
tomizable (JiTC) processor that reconciles the conflicting demands of
performance and flexibility in extensible processors. Our key innovation
is a multi-stage accelerator, called Specialized Functional Unit (SFU), that
is tightly integrated in the processor pipeline. The SFU design is derived
through a systematic study of a large range of representative embedded
applications. The SFU can be reconfigured on per-cycle basis to support
different application-specific instructions at near-ideal performance of
an extensible processor. We also provide an automated compilation tool
chain for JiTC processor. The experimental results confirm the efficiency
and applicability of our approach.

I. INTRODUCTION

An Application-Specific Instruction-Set Processors (ASIP) with

highly optimized Instruction-Set Architecture (ISA) can offer high-

performance for the specific application domain. However, designing

an ASIP requires long turn-around time. Extensible processors have

emerged to be promising alternatives to ASIPs. An extensible pro-

cessor typically consists of a base processor and a set of instruction
set extension (ISE) (also referred as custom instruction in literature)

components. These ISE components help to extend the base ISA

through customization or reconfiguration according to the specific

applications. In traditional extensible processors, designers statically

customize the processor by adding application-specific ISEs, using

customized circuits tightly integrated with the processor pipeline.

These traditional extensible processors provide high performance and

energy efficiency; however, they lack flexibility as they are highly

specialized cores restricted to accelerating specific applications. To

increase flexibility, ISEs can be synthesized on a reconfigurable

fabric that has been integrated into the processor forming a dynam-
ically extensible processor. With the provided reconfigurability, the

application-specific instruction set customization can be done in the

post-fabrication phase. On the other hand, the cost of reconfiguration

can be quite high, and the ideal choice of the fabric, whether fine-

grained or coarse-grained remains an open question.

The objective of this paper is to design an extensible processor
that combines customized circuit-like efficiency and reconfigurable
logic-like flexibility in the implementation of application-specific
instruction-set extensions. To achieve this goal, we first derive a

near-ideal reconfigurable accelerator based on an empirical analysis

of a set of representative embedded applications, and then develop

architectural mechanisms to reduce the reconfiguration overhead

through integration with the processor’s pipeline. The application

analysis classifies the commonly occurring sequences of arithmetic

and logical operations, which are essentially candidates for selection

as ISEs. To support these sequences, we identify several smaller

functional units that can be combined to form a reconfigurable multi-

stage ALU (arithmetic logic unit). This accelerator, which we call a

Base Core

+ ++ +
-

I
&

+ +
&

++
&

-

~

++ + I

Base Core

+ ++ +
-

+ +
&

++
&

-

~

Base Core

SFU

ISE executions on
customized circuits ISEs synthesized on

reconfigurable fabric

I
&

+ ++ +
-

+ +
&

++
&

-

~

Just-in-Time Customizable core

Reconfigurable
Fabric

Fig. 1: Different customizable processor design approaches

Specialized Functional Unit (SFU), can execute ISEs from a variety

of applications. The SFU is integrated into the processor pipeline

in parallel with the ALU, and is accessed using a non-traditional

instruction fetch and decode mechanism, which we call a Just-in-Time
Customizable (JiTC) core. When an opcode matching an accelerator

function is read from the instruction cache, the traditional fetch-and-

decode mechanism is suppressed, enabling execution of an ISE on

the SFU.

Figure 1 illustrates the difference between the JiTC core and prior

approaches to provide application-specific ISE functionality. On the

left, a traditional extensible processor is formed by augmenting a

base processor core with ISEs executed in customized circuits; this

approach is inflexible and cannot accelerate other applications or

adapt to post-fabrication software evolution. In the center, reconfig-

urability is added by accommodating ISEs on a reconfigurable fabric.

This creates a dynamically extensible processor, which provides high

flexibility, but suffers from many inefficiencies, especially when the

cost of programmable interconnect is taken into account. The JiTC

core is shown on the right, where ISEs execute on the SFU, as

opposed to a reconfigurable fabric. The SFU is essentially a small

collection of parallel multi-stage ALUs with different functionalities

and operation sequences; thus, it is smaller and more efficient than a

reconfigurable fabric. More importantly, it also provides reconfigura-

bility and requires far less reconfiguration overhead. Comparing to

traditional extensible processors, the JiTC core is more area-efficient.

In JiTC core, the SFU is time-multiplexed to execute multiple ISEs,

while all ISE circuits are customized individually and independently

in a traditional extensible processor.

In the following, we present the design of the SFU and the JiTC

core that allows tight integration of the SFU in the pipeline datapath.

Our synthesis results at 45nm technology show that the SFU can

operate at 606 MHz frequency and requires only 0.08mm2 area. We

also develop an automated compilation tool chain that can generate

executables to exploit the SFU and a cycle-accurate simulator that

accurately models the JiTC core. The experimental results confirm

that the JiTC core can effectively provide acceleration through ISEs

across a wide range of applications.

II. RELATED WORK

This work is most closely related to projects that integrate ac-

celerators into processor pipelines. The best performance can be

achieved through traditional extensible processors where the acceler-978-1-4799-1071-7/13/$31.00 c© 2013 IEEE

ator containing ISEs is implemented in customzied circuits as shown

in [2], [3], [27], [18], [37], [38]. But these traditional extensible

processors suffer from limited flexibility and accelerating multiple

applications on the same architecture calls for reconfigurability.

Dynamically extensible processors, on the other hand, can have

reconfigurable accelerators to accommodate the ISEs with tradeoffs

between flexibility and performance. One historic debate involves

the granularity of the accelerator: should it be fine-grained, similar

to an FPGA [10], [17], [33], [36], should it be coarse-grained, i.e.,

an array of ALUs with a programmable interconnect [11], [12], [14],

or should the granularity be even coarser at the level of expressions

[1]. This work creates what is essentially an expression-grained ALU

similar to the Expression Grained Reconfigurable Array (EGRA) [7]

but much smaller and supporting multi-stage execution.

Stojilovic et al. [32] created an application-specific CGRA sharing

some similarities in operation fusion with ours; they identified

commonly occurring operation sequences in ISEs that were identified

using established algorithms [27]; they then merge the sequences to

create a common super-sequence, which is treated as a sequential

1D array; they then replicate the column to create a 2D array and

add a bus-based FPGA-style interconnect [35] to provide routing

between the rows. Our approach extracts operation sequences and

applies merging optimizations in form of regular expressions. Rather

than the duplications, we take advantage of reconfigurations with

support from control memory. In terms of functional unit fusion,

our approach also shares similarities with CGRA express [26], but

our ALU is smaller and we sidestep the overhead of programmable

interconnect.

Interlock collapsing ALU [34] was proposed to parallelize the ex-

ecution of up to two interlocked consecutive instructions. In contrast,

we realize fusion using bypass line. [36] can collapse multiple instruc-

tions with up to 10 inputs and multiple outputs dynamically using

special functional units, which are based on FPGA-like elements

requiring large number of control bits and longer latencies. [12]

also uses dynamic approaches with coarse-grained programmable

accelerators. Dynamic Strands [29] collapses sequential instructions

using close-loop ALUs where the output of an ALU is forwarded

to its inputs using self-bypass lines. We identify the ISE statically,

thereby avoiding potentially expensive identification hardware, but

require extra control memory to hold the control signals.

Dataflow mini-graphs [8], [9] and static strands [28] are static

approaches requiring compiler support. However, our compiler can

identify additional patterns apart from mini-graphs and strands,

potentially leading to higher speedup. We systematically design the

SFU to execute the patterns rather than simply adding self-bypass

lines in ALUs [28] or using ALU pipeline [8], [9]. Our approach

bears some similarity to DySER [14], which controls a coarse-grained

accelerator using a long instruction word. We benefit from storing the

configuration in a control memory and reserving only few opcode in

the instruction set.

Additional works have focused on dynamic reconfiguration of

programmable accelerators, including: MorphoSys [30], an array

designed specifically to facilitate dynamic reconfiguration, RISPP [6],

which dynamically reconfigures selected columns of an FPGA that

implement custom accelerator functions; Warp processor [23], which

transparently converts software binaries to placed-and-routed FPGA

bitstreams; and KAHRISMA [19], a hybrid fine-grained/coarse-

grained accelerator. Rather than explicitly reconfiguring our SFU, we

store control signals for multi-cycle operations in on-chip memory

and execute a set of statically determined ISEs.

III. ANALYSIS OF INSTRUCTION-SET EXTENSIONS

The SFU is designed to accelerate commonly occurring expres-

sions, which are encapsulated as ISEs. We first analyze the ISEs found

across a range of applications to identify the characteristics that lead

to performance acceleration. Section VII describes the experimental

setup used for this analysis.

Figure 2 shows the dataflow graph (DFG) representing an ISE

with four inputs, two outputs, and six arithmetic and logical oper-

ations. The ISE obtains speedup by either exploiting instruction-
level parallelism (ILP), or chaining consecutive operations in a

single-cycle. The out-of-order processors with dynamic instruction

scheduling can extract ILP automatically, but with high area overhead

and energy consumption; alternatively, a compiler can extract ILP and

schedule operations statically as in a VLIW (Very Long Instruction

Word) architecture. Operation chaining, in contrast, depends on the

frequency of the processor; for the DFG in Figure 2, a multiply-

accumulator could execute the multiply-add portion of the ISE in

one cycle, while a chain of arithmetic and logic operators could

execute the shift and logical-AND operations in a second cycle.

The fundamental question that we ask and answer in this section is

whether parallelism or operation chaining has a stronger correlation

with the speedup obtained by an ISE.

*

Input: R1

+ >>

&

>>

Output: r4

Output: r5

Input: Imm 3 Input: R2 Input: R4

>>

Cycle 1

Cycle 2

Fig. 2: Dataflow Graph (DFG) of an ISE

A. Exploring Inter-Operation Parallelism

ILP extraction and exploitation are fundamental to computer ar-

chitecture research. In terms of ISE identification, increasing the

I/O bandwidth to/from an ISE leads to wider dataflow graphs with

higher ILP [2], [3], [4], [37]; however, prior work [11], [12], [37]
has reported that up to four inputs and two outputs are sufficient to
achieve near-optimal speedup for ISEs in most cases. Therefore, we

study ISEs with at most four input and two output operands in this

work. The average parallelism of an ISE is defined as

avarage parallelism =
of total operations

critical path length

where the critical path length is the number of operations along

the longest path in the DFG. For example, in Figure 2, the critical

path length is 5 and the average parallelism is 6/5 = 1.2. The

average parallelism captures the ILP available within ISEs, i.e.,

the average number of operations that can execute in parallel per

cycle. The maximal parallelism is the maximum number of DFG

operations executing concurrently using the As Late As Possible
(ALAP) scheduling policy. For example, in Figure 2, with an ALAP

scheduling, the ADD operation executes in parallel with the first shift,

so the maximal parallelism for the ISE is 2.

We analyzed the average and maximal parallelism of ISEs found in

21 Mibench and Mediabench applications. The average parallelism is

close to 1, and the maximum parallelism never exceeds 2, across all

of the applications as shown in Figure 3. This confirms that ISEs with

up to 4 inputs and 2 outputs have limited ILP, and at most two parallel

functional units should suffice to exploit the limited parallelism.

0
0.2
0.4
0.6
0.8

1
1.2

C
jp

eg

D
jp

eg

G
sm

de
c

G
sm

en
c

M
p3

de
c

M
p3

en
c

Pe
gw

itd
ec

Pe

gw
ite

nc

M
pe

g2
de

c
H

26
3d

ec

B
itc

ou
nt

B

lo
w

fis
h

C
rc

32

D
ijk

st
ra

_l
.

D
ijk

st
ra

_s
.

R
ijn

da
el

Sh

a
Su

sa
n

Ti
ff

2b
w

Ti

ff
2r

gb
a

Ti
ff

m
ed

ia
n Av

er
ag

e
pa

ra
lle

lis
m

 Mediabench Mibench Mediabench Mibench

(a) Average parallelism (b) Maximal parallelism

0
0.5

1
1.5

2
2.5

C
jp

eg

D
jp

eg

G
sm

de
c

G
sm

en
c

M
p3

de
c

M
p3

en
c

Pe
gw

itd
ec

Pe

gw
ite

nc

M
pe

g2
de

c
H

26
3d

ec

B
itc

ou
nt

B

lo
w

fis
h

C
rc

32

D
ijk

st
ra

_l
.

D
ijk

st
ra

_s
.

R
ijn

da
el

Sh

a
Su

sa
n

Ti
ff

2b
w

Ti

ff
2r

gb
a

Ti
ff

m
ed

ia
n M

ax
im

al
 p

ar
al

le
lis

m

Fig. 3: Parallelism explorations for Mediabench and Mibench
benchmark suites

B. Exploring Critical Path Length

0.0

0.4

0.8

1.2

1.6

2.0

2 2.2 2.4 2.6 2.8 3 Sp
ee

du
p

pe
r

cu
st

om
 in

st
ru

ct
io

n

Average critical path length (No. of operators)

Fig. 4: Correlation between critical path length & speedup

Impact of operation chaining on speedup: To investigate the

impact of operation chaining on the speedup of ISE, we measure and

report the ISE’s average critical path length. This metric is closely

related to the number of dependent operators that could be chained

and executed in one cycle. Figure 4 shows the correlation between the

average critical path length and the average speedup per ISE. Each

point in the graph corresponds to one particular application from the

set of 21 Mibench and Mediabench applications. The linear trend line

establishes a linear correlation between the two variables. Thus, ISEs
with a longer critical path tend to achieve the highest speedups.

Hot sequences in operation chaining: Our objective is to

design an SFU that exploits operation chaining; however, the SFU

cannot possibly support every possible operation sequence. Thus

the first step is to identify “hot” sequences, i.e., those that appear

frequently in ISEs across a wide variety of applications. The primary

objective of the SFU is to execute the hot sequences efficiently.

First, we classify the operations into five groups: arithmetic op-

erations (A type), logical operations (L type), shift (S type), wire

(W type), and multiplication operations (M type). W type operations

are essentially move instructions that are converted to wiring when

synthesized as part of an ISE. All operations belonging to the same

class have approximately equal latencies, and can be implemented

using a single physical execution block. A sequence is hot if it

occurs above a certain threshold; we use a threshold value of 5%,

which captures the most frequent sequences. We restrict the number

of operators per sequence to 3, as the average critical path length

does not exceed 3 (see Figure 4).

Figure 5 shows the hot sequences from an analysis of the 21

Mibench and Mediabench applications. While not all possible opera-

tor chain combinations are possible, only a handful of operator chains

(colored in red) appear frequently: there are five hot two-operator

sequences and six hot three-operator sequences. The frequency of

occurrence of each sequence is averaged across the benchmarks;

certain sequences may occur frequently in some, but not all, of the

applications. For example, the sequence MWA has a frequency of

66% in the Tiff2bw application; however it only has 5% frequency

averaged across all benchmarks.

In this section, we confirm that under the specified I/O constraint,
there is limited parallelism available in ISEs and only few sequences
are hot across various applications. The analysis results will be used

as design guidelines in Section IV.

IV. SFU DESIGN

The SFU is designed to support the 11 hot sequences that appear

frequently in ISEs across the 21 MiBench and MediaBench applica-

tions that we analyzed in the preceding section. The hot sequences

are: AA, AS, LL, SA, SL, ASA, LLS, LSA, SAS, MWA, WMW. The SFU

is designed to execute each of these hot sequences in one clock cycle.

We build up the SFU incrementally, starting from a basic functional

unit, described next.

Basic functional unit (BFU): Figure 6(a) illustrates a basic

functional unit, which is an ALU followed by a shifter. The BFU

supports five operation sequences: A, L, S, AS, and LS. To support se-

quences A and L, the shift length is set to zero; to support sequence S,

the ALU performs an identity operation (e.g., OR identical inputs) on

the input operand. A regular expression that enumerates all possible

sequences supported by the basic functional unit is (A | L | ε)(S | ε)
where ε is the empty string.

Fused basic functional units: The basic functional unit can

only support one (AS) out of eleven hot sequences. The fused basic

functional unit chains two basic functional units sequentially along

with a bypass line, as shown in Figure 6(b). Using regular expres-

sion notation, the fused basic functional unit supports sequences

((A | L | ε)(S | ε))2, which encompasses all hot sequences that do

not include a multiplier.

Complex functional unit: The two remaining sequences are

MWA, WMW, where W selects the upper- or lower 32-bit portions

of the 64-bit output of a 32 × 32-bit multiplier; this is done using

multiplexers and control signals. The remaining subsequence, M(A |
ε), is a fused multiply-addition operation that can be implemented

using a MAC unit. We refer to this operator as a complex functional

unit, as shown in Figure 6(c). The rationale for including the ALU

and the shifter in the complex functional unit is to provide additional

parallelism in the SFU as explained next.

Component Area(μm2) delay(ns)

Basic Functional Unit 9856.7078 0.7231

Fused Basic Functional Unit 27913.4943 1.5424

Complex Functional Unit 49780.5275 1.6379

SFU 80502.7823 1.6499

TABLE I: Area and delay for the SFU components

Specialized functional unit (SFU): We synthesized the dif-

ferent components of the SFU in Synopsys Design Compiler with

PDK 45nm standard cell library. Table I provides the area and delay

values for the components. We observe that the fused basic functional

unit in Figure 6(b) has a latency of 0.7231ns while the complex

functional unit supporting multiplication in Figure 6(c) has a latency

of 1.6379ns. Therefore, we form the SFU by placing a complex

functional unit in parallel with a fused basic functional unit, without

extending the critical path. This dual-path architecture supports the

maximum parallelism of 2 that is present in the ISEs. Functional units

within the SFU are fully connected, and each internal functional unit

has access to four input and two output registers. Fig. 6(d) shows the

SFU architecture, which supports single-cycle execution of all eleven

hot sequences at 606MHz clock frequency and 0.08mm2 area.

0%

5%

10%

15%

20%

25%

30%

Pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

(a) Two -operator chain (b) Three -operator chain

Hot sequence

Cold sequence

0%

10%

20%

30%

40%

50%

Pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

Fig. 5: Hot sequences in operation chaining

(a) Basic Functional Unit

Register

Shift

ALU
Fused

Multiply
Add

(c) Complex functional unit
with fused multiplication-addition

BFU
with

Bypass

(d) Complete specialized functional unit
(SFU)

Complex
FU

BFU

Inputs from Register File

Outputs to Register File

Dout

I3I1 I2 I4

O1 O2

RcontrolInputs Inputs Inputs

Shift

ALU

Register

Shift

ALU

Register

RcontrolInputs Inputs Inputs

Basic Functional Unit
with

Bypass

Basic Functional Unit

Routing through
for sequences, which

start with 'S'

Routing through
with

0 shift

Routing through
for '(A|L)(A|L)', 'S(A|L)'

and '(A|L)S(A|L)'

Exit 1 for '(A|L)S'

Exit 2 for others

(b) Fused basic functional units
with enriched routes

Bypass line for
functional unit fusion

Shift

Register

Dout

ALU

R
controlInputs Inputs Inputs

Routing through
with

identity operation

Routing through
for '(A|L)(A|L)',

and '(A|L)(A|L)S'

Sequencer

Control
register #1

C
o

n
tr

o
l
S

ig
n

a
ls

Control
register #2

Control
register #M

...

Configuration

Configuration

Configuration

Fig. 6: Design of the Specialized Functional Unit (SFU)

The SFU requires 62 bits for control signals. The fused basic func-

tional unit has six 8-input multiplexers, and the complex functional

unit has three 8-input multiplexers; as each 8-bit multiplexer requiers

3 control bits, the SFU requires 27 bits to select the inputs to the

various internal functional units. With two 4-input multiplexers at

the output, 4 additional bits are required for output register selection.

The SFU has three shifters, each of which has a 2-input multiplexer

driving one of its inputs, so 3 additional bits are required to control

these multiplexers. 15 bits are required for register storage (5 bits

per functional unit), 12 bits for operation control (each ALU and

MAC supports up to 16 operations, so 4 control bits for each are

required), and 1 bit is required for bypass selection within the fused

basic functional unit. This adds up to 62 control bits in total.

V. JITC ARCHITECURE

This section describes how to integrate one or more SFUs into a

processor pipeline to achieve Just-in-Time Customization. To simplify

discussion, we assume a simple 5-stage, single-issue in-order RISC

pipeline. Figure 7 shows the modified pipeline structure.

ISE Encoding and Decoding: We assume 32-bit ISA with 4-

bits per register encoding corresponding to a 16-entry register file.

As shown in Figure 8(a), 12 bits are required to encode two source

and one destination registers and 8-bit opcode supports 256 ISEs.

0
RS3/Imm3 RS4 RS2/Imm2 RS1/Imm1

31 23 15 7
First 32-bit encoding format Second 32-bit encoding format

(a) Regular instruction format

(b) ISE format

0 3 15 23 31 7
RD RS2 RS1 Opcode Imm

11

IID Opcode

0 31 23 7 3

RD2 RD1
17

Fig. 8: ISE encoding format

With a 32-bit instruction format, it is necessary to encode ISEs

using two consecutive 32-bit words, as shown in Figure 8(b). The

first 32-bit is used to encode 8-bit Opcode and two 4-bit destination

registers. We can support at most one ISE if one of the opcodes (out

of 256) is reserved for ISEs. To extend the number of ISEs, we use 10

unused bits to encode the IID or ISE ID. When the opcode signifies an

ISE, the IID field indicates which ISE it is. This allows us to encode

at most 1024 ISEs. The second 32-bit encodes the source registers

and/or immediate values. Note that we support ISEs with different

addressing modes. For example, an input operand can be a register

index or an immediate value. As at least one input operand should

be a register, we assume the first input operand is always a register

index; the other three are either registers or immediate. So we have

four addressing modes: RRRR (all registers), RRRI (one immediate),

RRII (two immediates), and RIII (three immediates), which can be

Instruction Decode Execute Memory
Write
Back

Instruction
Cache

ISE #1 configuration cycle 1
ISE #2 configuration cycle 1

...
ISE #N configuration cycle 1

.

.

.

Control Memory

Sequencer

Input
Register
Values

Write
Back

Values

Data Forwarding Path

ISE #1 configuration cycle 2
ISE #2 configuration cycle 2

...
ISE #N configuration cycle 2

ISE #1 configuration cycle M
ISE #2 configuration cycle M

...
ISE #N configuration cycle M

ISE ID
(IID)

FU
with
Skip

Complex
FU

FU
with

Partial
Skip

Input Register Values

Output Register Values

SFU
Selection

C
o
n

tr
o
l

S
ig

n
a
ls

Instruction
Fetch

.

.

.

Control Register #1

2-entry
Instruction Buffer

Control Register #2

Control Register #M

Fig. 7: Just-in-Time Customizable (JiTC) processor architecture: Integration of SFUs in the pipeline datapath

supported by reserving four opcodes in the ISA.

To support ISE decoding, we require a 2-entry instruction buffer

between the fetch and the decode stage so that the decoder has access

to the entire 64-bit ISE. When the decoder detects an ISE opcode,

it decodes the second half of the ISE in the buffer for the source

operands.

Multi-cycle execution of ISE on SFU with multi-banked
control memory: The SFU supports single-cycle execution of most

ISEs whose critical paths consist of up to 3 operators. Indeed,

almost 90% of the ISEs can be executed in one cycle on the
SFU. Through reconfiguration, SFU can also support multi-cycle

execution to achieve maximal speedup brought by ISEs with longer

critical paths. Reconfiguring the SFU involves changing the values

of the 62 control bits each cycle. It is compiler’s job to exploit the

reconfiguration ability of SFU, which we will detail in Section VI.

According to our observation, almost 99.77% of the ISEs can be

executed within 4 cycles.

Each ISE requires more control signals than regular instructions,

especially when multi-cycle execution is taken into consideration.

In JiTC core, the control signals for each ISE are stored in an on-

chip control memory that is accessed in parallel with the instruction

decode phase of the pipeline when an ISE is decoded. The IID field

in the ISE is used as an index into the control memory. As shown

in Figure 7, to support multi-cycle execution, the control memory

consists of M banks, where the ith bank stores the control signals

required for the execution of an ISE on the SFU in the ith cycle

(M = 4 in our design). The banks are accessed in parallel to retrieve

all the control signals of an ISE. With 10-bit IID field, storage space

for 1024 entries is required, where each entry holds 62 bits; the

approximate size of the control memory is 32KB. Additionally, the

control memory needs to store the number of cycles required to

execute each ISE. The number of cycles and the control bits read

from the control memory are written into the SFU’s sequence and

control registers, respectively.

For a single-issue in-order extensible processor, only one SFU

needs to be integrated; however, for multi-issue out-of-order exe-

cution, our experiments confirm that four SFUs achieve near-optimal

acceleration. When all of the input operands to an ISE are ready, the

ISE can start execution on the SFU. When the ISE execution inside

the SFU completes, the output operands are written to the register

file and the SFU becomes free to execute another ISE.

VI. COMPILER SUPPORT

Our JiTC architecture acquires the compiler support consisting

of automated ISE identification process, a graph-based mapper to

synthesize ISE onto SFU and generators for final executable binary

and configurations.

ISE identification and selection: Given an application, we first

detect the “hot” basic blocks through profiling. The DFGs of these

hot basic blocks are then analyzed to identify all the ISE candidate

patterns [38]. We impose the restriction of at most 4 input operands

and 2 output operands per candidate pattern as noted earlier [11],

[12], [37]. We also do not allow memory accesses and control flow

operations within an ISE. Once all the candidate patterns have been

identified, a subset of these patterns is selected such that (a) each node

in the DFG of a basic block is covered by at most one candidate

pattern, and (b) the cumulative speedup of the selected patterns is

maximized. The speedup of a pattern is defined as tsw
tcustom

, where

tsw is execution cycles on the base processor core and tcustom is

the execution cycles when the pattern is implemented in customized

circuit.

Mapping algorithm: A graph-based mapper is employed by

our compiler to synthesize the ISEs onto SFU. To exploit the

reconfigurability feature of SFU, we borrow the notion of Routing

Resource Graph (RRG) [24] from the FPGA domain to represent

the resources of SFU in different cycles and the connections among

them. The connections are generated such that the components of the

SFU in one cycle are connected to the components of the SFU in

the next cycle. For example, the RRG in Figure 10(a) shows how the

components of the SFU in cycle 1 are connected to the components

of the SFU in cycle 2. Basically, each of the three functional units in

cycle 1 is connected to any one of the three functional units and the

output registers in cycle 2, which means that the value generated by

one functional unit could be read by any functional units or stored

in the output registers in the next cycle. Note that the input registers

are connected to the functional units in the same cycle as their values

could be read within the period of one cycle. Similarly, the connection

between two fused functional units also appears in the same cycle.

The objective of the mapper is to map the DFG to the RRG of the

SFU so that the number of cycles required is minimized.

The mapping algorithm uses a greedy heuristic. Basically, it maps

the nodes in the DFG one by one and each node is placed closed to

its predecessors as much as possible. Its pseudo code is presented in

Algorithm 1.

Algorithm 1: Mapping algorithm

Input: The data flow graph (DFG) of the ISE and the SFU architectural
specification.

Output: The result RRG if mapping is successful.
Begin

order list = ALAP ordering(DFG);
RRG = Initialize RRG(SFU);
For Each operator u in order list do

successful = 0;
/*Take care of operator chaining within one functional unit.*/
If u has only one immediate predecessor v and u is v’s only immediate
successor then

If Map(v)→Res(u) == Available and Map(v)→Res(v) is connected
to Map(v)→Res(u) then

Map(v)→component(Res(v)) = Occupied;
successful = 1;

If successful == 0 then
/*Find and map to the closest available functional unit.*/
For cycle = 1 to 4 do

If successful == 1 then
break;

For all functional unit n in RRG(cycle) do
If n→status == Free and n→component(Res(v)) ==
Available then

Feasible = 1;
For each immediate predecessor v of u do

If Map(v) is not connected to n in RRG then
Feasible = 0;

If Feasible == 1 then
n→status = Mapped;
n→component(Res(v)) = Occupied;
successful = 1;
break;

If successful == 0 then
Return FAIL;

Return RRG;

To order the DFG nodes, we assign level values to each of the

nodes in the DFG according to an As Late As Possible (ALAP)
scheduling policy and sequentialize the nodes in the same level from

left to right. The nodes (functional units) in the RRG are also ordered

according to their time cycles. We also ensure that the two basic

functional units (BFU) are ordered first to have higher priorities in

mapping compared to the complex functional unit in the same cycle.

The greedy heuristic works as the following. Suppose we are

mapping a node u in the DFG that has predecessors v1, v2, . . . vx.

We identify the closest common free successor functional unit of

Map(v1),Map(v2), . . . ,Map(vx). Map(v) stands for the func-

tional unit to which operator v has been mapped to. We simply map u
to this free functional unit. If u has no predecessors, then the chosen

free functional unit would be the one with minimal cycle value.

To explore the potential of operator chaining within one functional

unit, we need to consider the components within one functional

unit. Fortunately, the only special case we need to take care of is

when u has only one immediate predecessor v and v has u as

its only immediate successor. This is because there is no external

connection between two connected components within one functional

unit. Suppose Res(u) stands for the component resource u requires.

If the functional unit Map(v) has an available component Res(u)
and its component Res(v) is connected to the component Res(u),
then we can directly map u to functional unit Map(v).

The process ends once all the nodes of the DFG have been mapped

to the RRG. In the rare event that the mapping fails because a pattern

requires more than 4 cycles, the pattern cannot be accelerated using

our SFU and is eliminated from further consideration.

Mapping example: We now show an example of how the DFG

in Figure 2 is mapped to the RRG of SFU. First, we assign order to

the DFG nodes using ALAP scheduling policy, shown in Figure 9.

The first operator we encountered is a multiplication; so we find the

*

Input: R1

+ >>

&

>>

Output: r4

Output: r5

Input: Imm 3 Input: R2 Input: R4

>>

Level 1

Level 2

Level 3

Level 4

Level 5

�

� �

�

�

�

Fig. 9: Level order assignment for DFG nodes with ALAP scheduling

(b) Final mapping (a) Routing Resource Graph (RRG) of SFU

… t (cycle)

Cycle 1

Cycle 2

ycle 1
Imm3

Imm3 R3 R2 R1

R4

Output1: R4 Output2: R5 t (cycle)

Cycle 1

Cycle 2 &
>>

>>

>>

R3 R2 R1

*
+

Imm33
ycle 1 >>

3 R3R33 R22R22 R11

*
+

Imm333 R3R3 R2R2 R1R

R44

ycle 2 &&
>>

>>

Fig. 10: Routing Resource Graph (RRG) of the SFU and the final
mapping of the DFG to the RRG

first free complex functional unit with the lowest cycle time, which

is the complex functional unit in cycle 1 and map this multiplication
to the multiplier component of it.

The second operator is an addition operator. The addition has

only one immediate predecessor which is the multiplication we

just mapped and the multiplication has this addition as its only

immediate successor. So we can try to map this addition to the same

complex functional unit. Fortunately, we find the MAC inside the

complex functional unit can support this mapping with the connection

requirement satisfied.

The next operator is a shift. We simply find the first free functional

unit in cycle 1 and map it there. Now we continue to map the

and operator. The and operator has two predecessors; so the earliest

common successor should be a functional unit in cycle 2. So we pick

the first basic functional unit in cycle 2 as it has higher priority. Then

the operator shift can be mapped to the same functional unit as the

and operator. Finally, the last shift operator is mapped to the second

basic functional unit in cycle 2 as it is the closest one. The final

mapping is shown in Figure 10(b).

Binary executable and configuration generation: Once the

compiler decides on the mapping of an ISE to the SFU, it generates

the corresponding control signals for the ISE. The compiler then

generates the binary executable that replaces, for each occurrence of

a candidate pattern, a sequence of instructions from the base ISA with

the corresponding ISE. Finally, the control signals are loaded into the

control memory before the application initiates execution. Note that

as the subset of ISEs selected is different for different applications,

the content of the control memory is different for each application.

In other words, the JiTC architecture achieves flexibility by changing

the content of the control memory and thereby instantiating different

ISEs per application.

VII. EXPERIMENTAL EVALUATION

Experimental Setup: We evaluate the performance of JiTC core

compared to traditional extensible processors with dedicated and high

performance ISE circuits [2], [3], [18], [27], [37], [38]. As mentioned

��

����

����

����

����

����

���	

���

����

�
���
�
���

������

������

���������

���������

������

������

��	����

��������

����� ��

! �"�
#�$$�%�

#�$$�&�%"

#�$$����"�

��
�'�&"(��"))

��
�'"()"&��

�)��$��*

+�
��"�)

!*"
�&���

,-�&"��

!�
��
�
��
./
�0
�&
��
&1

."1�/�0�&��&�"&�*����� &�

��������	
 �����	

��������	
���
������

2/#�
34�����%)�0�&������&

�"4��")0����� �

��

����

����

����

����

����

���	

���

����

�	���5��

�
��-�&

������$

����-���4

�� �" 6�$�&
�����&�

���
��&�����&

����
���

+��
���

,-�&"��

!�
��
�
��
./
�0
�&
��
&1

��
���� ��
� �����
�	��
����������
���
������

2/#�
34�����%)�0�&������&

�"4��")0����� �

��

����

����

����

����

����

���	

���

����

�
���
�
���

������

������

���������

���������

������

������

��	����

��������

����� ��

! �"�
#�$$�%�

#�$$�&�%"

#�$$����"�

��
�'�&"(��"))

��
�'"()"&��

�)��$��*

+�
��"�)

!*"
�&���

,-�&"��

!�
��
�
��
.7

 �
0�
$0
�&
��
&1

.%1�7 �0�$0�&��&�"&�*����� &�

��������	
 �����	

��������	
���
������

2/#�
34�����%)�0�&������&

�"4��")0����� �

��

����

����

����

����

����

���	

���

����

�	���5��

�
��-�&

������$

����-���4

�� �" 6�$�&
�����&�

���
��&�����&

����
���

+��
���

,-�&"��

!�
��
�
��
.7

 �
0�
$0
�&
��
&1

��
���� ��
� �����
�	��
����������
���
������

2/#�
34�����%)�0�&������&

�"4��")0����� �

Fig. 11: Speedup of JiTC and extensible processor over the baseline processor and the maximal speedup for extensible processor with unlimited
area

earlier, we selected 21 benchmark applications from MiBench [15]

and MediaBench [21] to derive the design of the SFU. Here we use
14 additional applications from SPECInt, HPEC, Olden, and Encrypt
benchmark suites to perform cross validation of the SFU design.

For a fair comparison, we design both the extensible processors

and the JiTC core by augmenting a RISC-like baseline core [5] with

no accelerator. For each of the 35 applications, we custom design

an extensible processor following the standard ISE identification and

selection methodology [37], [38]. That is, we design a total of 35

individual extensible processors, where each extensible processor is

capable of accelerating the specific application it is designed for.

We assume that the clock period of the baseline core is determined

by the latency of the MAC unit [2], [37], which also has roughly the

same latency as a multiplier [31]. All the designs are synthesized

using Synopsys Design Compiler version E-2010.12-SP4 with Free

PDK 45nm standard cell library. The MAC unit has a latency

1.58ns; thus the frequency of the baseline core and all the extensible

processors are set at 633MHz. JiTC core, however, has a frequency

of 606MHz constrained by the SFU latency as shown in Table I.

Further optimizations could lead to higher frequency of JiTC core.

Following prior works [11], [12], [37], we assume that each exten-

sible processor can support ISEs with at most 4 input and 2 output

operands, and cannot include any memory or control operations.

The latency of an ISE in the extensible processor is obtained by

dividing the latency along the critical path by the clock period of

the baseline core. The area of each individual extensible processor is

restricted to the area of the JiTC core. This area restriction leads to

only 1.5% average performance degradation compared to the speedup

of an extensible processor with unlimited area. We call the speedup

obtained from the extensible processor with I/O constraint but without

area constraint as maximal speedup.

We modified the SimpleScalar simulator [5] to integrate the SFUs

and corresponding control memory in the pipelined datapath. We

modeled both in-order and out-of-order pipelines for JiTC core and

the extensible processors. For the extensible procesors, we assume

that all ISEs are implemented as dedicated functional units in the

pipeline. We extended the instruction set to support the ISE formats,

and modified the gcc cross-compiler for SimpleScalar to identify

the ISEs for each application and to generate binary executables

that include calls to the ISEs. Table II shows the configurations

for both in-order and out-of-order micro-architecture in SimpleScalar

simulator setup. The configuration parameters are chosen to closely

match realistic in-order (ARM Cortex-A7) and out-of-order (ARM

Cortex-A15) embedded processors.

In-order architecture Out-of-order architecture

Pipeline 1 way 4 ways

RUU size 2 entries 128 entries

IFQ size 4 entries 16 entries

LSQ size 2 entries 16 entries

L1 I-Cache 32KB, 2-way, 1 cycle hit

L1 D-Cache 32KB, 2-way, 1 cycle hit

Unified L2 512KB, 4-way, 10 cycle hit

Control memory 32KB

TABLE II: Simulated processor configurations

Results for profiling benchmarks: Let us first focus on

performance comparison with profiling benchmarks (MiBench, Me-

diaBench) used to derive the design of the JiTC core (left of Figure

11). For in-order pipeline, Figure 11(a) shows the performance of

JiTC core and the extensible processors compared to the baseline

core with no accelerator. The speedup is defined as tsw
tcustom

where

tsw is execution cycles on the baseline core and tcustom is the

execution cycles on an extensible processor or a JiTC core. We also

plot the maximal speedup for extensible processors in Figure 11.

JiTC architecture achieves an average speedup of 1.184X, which is

97.40% of the speedup achieved by extensible processors (1.216X)

and 94.93% of the maximal speedup (1.234X). The slight loss in

performance of the JiTC core comes from two sources: the reduced

clock frequency and multi-cycle execution of 10% ISEs on the SFU.

The remaining 90% ISEs can execute in single-cycle on the SFU.

More importantly, JiTC has huge advantage in terms of flexibility: we

need a different extensible processor to accelerate each application,
while a single JiTC core can accelerate all the different applications
with minimal performance loss. This is the fundamental reason why

for some large benchmarks, JiTC can outperform extensible processor

which is area-constrained to support limited number of feasible ISEs.

For out-of-order pipeline, we use 4-way decode, issue, execute, and

commit. As expected, we need at most 4 SFUs in this case to achieve

maximal speedup. For out-of-order pipeline, Figure 11(a) shows the

performance of JiTC core and extensible processor compared to

the baseline processor with no accelerator. Here JiTC achieves an

average speedup of approximately 1.230X across all benchmarks in

Mediabench and Mibench, which is 97.54% of the speedup achieved

by the extensible processor (1.262X) and 95.98% of the maximal

speedup (1.282X).

Results for validation benchmarks: The benchmarks from

MiBench and MediaBench were used to derive the design of JiTC

core. Our objective, however, is to design a flexible architecture

that can support any contemporary or emerging application domains.

In order to stress test the design of our architecture, we attempt

to accelerate applications from benchmark suites with completely

different characteristics compared to the embedded space. We chose

SPECInt [25], Encryption, Olden, and HPEC [16] benchmark suites

for this evaluation. HPEC is derived from HPCC [22], [13] and PCA

[20] both targeting general-purpose high-performance computing.

These validation results are shown in the right of Figure 11.

JiTC still achieves similar speedup to extensible processors, around

96% on an average for both in-order and out-of-order executions.

This confirms that even though the JiTC core was designed to
accelerate embedded applications, the design is flexible enough to
support a completely different application domain, e.g., SPEC and

HPEC. However, for these benchmarks, the speedup achieved using

customization (extensible processor or JiTC) is limited to around

1.10X. This is because these benchmarks have lower ratio of ALU

operations and smaller basic blocks [8], characteristics that are not

ideal for customization.

VIII. CONCLUSION

In this paper, we proposed a Just-in-Time Customizable (JiTC) pro-

cessor core that can accelerate execution across application domains.

The heart of our innovation is a specialized functional unit (SFU)

that can execute most application-specific instructions at traditional

extensible processor-like efficiency through fast reconfiguration. The

SFU is integrated in the processor pipeline though an enhanced

decoding mechanism and the compiler is modified to support to the

mapping of ISEs to the SFU. Experimental results show that JITC

architecture offers traditional extensible processor-like performance

with far superior flexibility.

IX. ACKNOWLEDGMENTS

This material is based upon work supported by the the Singapore

Ministry of Education Academic Research Fund Tier 2 MOE2009-

T2-1-033, MOE2012-T2-1-115, and the United States National Sci-

ence Foundation under grants 1210182 and 1035603. Any opinions,

findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation.

REFERENCES

[1] G. Ansaloni et al. Design and architectural exploration of expression-
grained reconfigurable arrays. In SASP, 2008.

[2] K. Atasu et al. Automatic application-specific instruction-set extensions
under microarchitectural constraints. DAC, 2003.

[3] K. Atasu et al. An integer linear programming approach for identifying
instruction-set extensions. In CODES+ISSS, 2005.

[4] K. Atasu et al. Fast custom instruction identification by convex subgraph
enumeration. In ASAP, 2008.

[5] T. M. Austin et al. Simplescalar: An infrastructure for computer system
modeling. IEEE Computer, 35(2), 2002.

[6] L. Bauer et al. RISPP: rotating instruction set processing platform. In
DAC, 2007.

[7] P. Bonzini et al. Compiling custom instructions onto expression-grained
reconfigurable architectures. In CASES, 2008.

[8] A. Bracy et al. Dataflow mini-graphs: Amplifying superscalar capacity
and bandwidth. In MICRO, 2004.

[9] A. Bracy and A. Roth. Serialization-aware mini-graphs: Performance
with fewer resources. In MICRO, 2006.

[10] T.J. Callahan et al. The Garp architecture and c compiler. IEEE
Computer, 33(4), 2000.

[11] N. Clark et al. Application-specific processing on a general-purpose core
via transparent instruction set customization. In MICRO, 2004.

[12] N. Clark et al. An architecture framework for transparent instruction set
customization in embedded processors. In ISCA, 2005.

[13] J.J. Dongarra and P. Luszczek. Introduction to the hpcchallenge
benchmark suite. Technical report, DTIC Document, 2004.

[14] V. Govindaraju et al. Dynamically specialized datapaths for energy
efficient computing. In HPCA, 2011.

[15] M. R. Guthaus et al. MiBench: a free, commercially representative
embedded benchmark suite. In WWC, 2001.

[16] R. Haney et al. The high performance embedded computing (HPEC)
challenge benchmark suite. In HPEC Workshop, 2005.

[17] S. Hauck et al. The Chimaera reconfigurable functional unit. IEEE
Trans. VLSI Syst., 12(2), 2004.

[18] Tensilica Inc. http://www.tensilica.com.
[19] R. Koenig et al. KAHRISMA: a novel hypermorphic reconfigurable-

instruction-set multi-grained-array architecture. In DATE, 2010.
[20] J. Lebak et al. Polymorphous computing architecture (PCA) kernel-level

benchmarks. Technical report, DTIC Document, 2005.
[21] C. Lee et al. MediaBench: a tool for evaluating and synthesizing

multimedia and communicatons systems. In MICRO, 1997.
[22] P. R Luszczek et al. The HPC challenge (HPCC) benchmark suite. In

SC, 2006.
[23] R. Lysecky et al. Warp processors. ACM TODAES, 11(3), 2006.
[24] L. McMurchie and C. Ebeling. Pathfinder: a negotiation-based

performance-driven router for FPGAs. In FPGA, 1995.
[25] Spec org. Spec cpu benchmark suits. http://www.spec.org/cpu.
[26] Y. Park et al. CGRA express: accelerating execution using dynamic

operation fusion. In CASES, 2009.
[27] L. Pozzi et al. Exact and approximate algorithms for the extension of

embedded processor instruction sets. IEEE Trans. on CAD of Integrated
Circuits and Systems, 25(7), 2006.

[28] P. G. Sassone et al. Static strands: safely collapsing dependence chains
for increasing embedded power efficiency. In LCTES, 2005.

[29] P. G. Sassone and D. S. Wills. Dynamic strands: Collapsing speculative
dependence chains for reducing pipeline communication. In MICRO,
2004.

[30] H. Singh et al. MorphoSys: an integrated reconfigurable system for data-
parallel and computation-intensive applications. IEEE Trans. Computers,
49(5), 2000.

[31] P. F. Stelling and V. G. Oklobdzija. Implementing multiply-accumulate
operation in multiplication time. In ISCA, 1997.

[32] M. Stojilovic et al. Selective flexibility: Breaking the rigidity of datapath
merging. In DATE, 2012.

[33] F. Vahid et al. Warp processing: Dynamic translation of binaries to
FPGA circuits. Computer, 41(7), 2008.

[34] S. Vassiliadis, J. Phillips, and B. Blaner. Interlock collapsing alu’s. IEEE
TC, 42(7), 1993.

[35] A. Ye and J. Rose. Using bus-based connections to improve field-
programmable gate array density for implementing datapath circuits. In
FPGA, 2005.

[36] S. Yehia and O. Temam. From sequences of dependent instructions
to functions: An approach for improving performance without ILP or
speculation. In ISCA, 2004.

[37] P. Yu and T. Mitra. Characterizing embedded applications for instruction-
set extensible processors. In DAC, 2004.

[38] P. Yu and T. Mitra. Scalable custom instructions identification for
instruction-set extensible processors. In CASES, 2004.

